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Abstract: Volatile organic compounds (VOCs) released by the receptive syconia of Ficus species play
a vital role in attracting highly species-specific pollinating fig wasps. The components of VOCs
vary considerably among Ficus species, but are generally dominated by a few common terpenoid
compounds or specific proportions of several compounds. Terpene synthase (TPS) is the main source
of specific and diverse terpenoids, but the evolution of the TPS gene family in Ficus and the potential
functions of the TPS genes in species-specific pollination remain largely unelucidated. In this study,
using transcriptomes of ostiole bracts of receptive male figs from 24 Ficus species collected from
South China and Southeast Asia, we comprehensively scanned and investigated the composition and
evolutionary characteristics of all TPS genes in all 24 species. We identified 248 TPS genes, including
33 orthologous genes and six singletons. Sequence and phylogenetic analysis showed that a majority
of the 248 TPSs contained the DDXXD and DTE motifs, rather than the DXDD motif, and involved
all subfamilies (TPS-a,b,c,e/f and g) known in other angiosperm genomes, suggesting a very diverse
and complex composition of class I TPSs during the receptive phase. In addition, compared to TPS-a,
which is generally the largest subfamily in some plants, the TPS-b subfamily contained the highest
number of genes in Ficus species. Expression profile comparison showed that the distribution and
expression levels of different TPSs among different Ficus species differed considerably, but a few TPS
genes were common across most species. Positive selection analysis showed that the Ficus TPS genes
were mainly under purifying selection, with only four genes having positive selection signals and
two genes having positive selection sites, and two genes having relatively fast-evolving rates. The
present study demonstrates the basic evolutionary characteristics of TPS genes in Ficus and reveals
the roles of TPSs in shaping the diversity and specificity of the fig–fig wasp symbiotic relationship.

Keywords: fig; TPS; DDXXD motifs; expression profile; positive selection

1. Introduction

The interaction between plants and pollinating insects is considered to be an important
driving force for the biodiversity and evolution of angiosperms in the tropics [1,2]. While
the polymorphism of floral characteristics helps cater to diverse or specific flower visitors,
the quantity and quality of pollen transmitted by flower visitors affect the reproductive
success of plants. In nature, most of the interactions between plants and pollinators are
generalized, except for a few highly obligate mutualisms, such as fig–fig wasp and yucca–
yucca moth.

Ficus, which belongs to the Moraceae family, constitutes one of the largest genera of
angiosperms with approximately 750 species, including trees, shrubs, epiphytic vines, and

Diversity 2022, 14, 721. https://doi.org/10.3390/d14090721 https://www.mdpi.com/journal/diversity

https://doi.org/10.3390/d14090721
https://doi.org/10.3390/d14090721
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diversity
https://www.mdpi.com
https://orcid.org/0000-0002-4795-8940
https://orcid.org/0000-0002-8911-6346
https://orcid.org/0000-0003-0074-9153
https://doi.org/10.3390/d14090721
https://www.mdpi.com/journal/diversity
https://www.mdpi.com/article/10.3390/d14090721?type=check_update&version=1


Diversity 2022, 14, 721 2 of 16

other life forms [3,4]. The most typical feature of Ficus is its unique enclosed inflorescence
commonly known as a syconium or fig. A syconium contains hundreds or thousands
of tiny flowers and connects to the external environment via a narrow ostiole at its top.
The opening of the ostiole is controlled by bracts, which are the main parts of Ficus that
emit volatile organic compounds (VOCs) in receptive-phase syconia to attract obligate
pollinators [5,6]. Only morphologically specialized fig wasps can enter the syconium and
pollinate the female flowers within [7,8]. A species of Ficus can only attract and drive
one or a few fig wasp species to pollinate [9]. The key components that attract specific
pollinating wasps are different and generally include one or a few common terpenoid
compounds or specific proportions of several compounds [10]. These key components
strongly attract specific pollinator wasps, but not the wasps that pollinate other Ficus
species [11]. Even for the same Ficus species, the specific pollinating wasps attracted by
syconia in the receptive phase may be rejected by those in other developmental stages.
This “push and pull” mechanism maintains the specific symbiotic relationship between
pollinating wasps and their host plants [12–14].

VOCs include terpenoids, fatty acids derivatives, phenylpropanol/benzene ring com-
pounds, and amino acid derivatives. Terpenoids represent the largest and most diverse
class of chemicals, among the myriad of compounds produced by plants [15]. In Ficus,
terpenoids provide key olfactory signals that attract pollinating wasps [10,16]. Terpenoids
can be classified into monoterpenes (including 10 carbons), sesquiterpenes (including
15 carbons), diterpenes (including 20 carbons), and triterpenes (including 30 carbons).
Most monoterpenes and sesquiterpenes are oily liquids that become volatile at room tem-
perature and have special odors [17]. The synthesis of plant terpenoids generally occurs in
three stages: (1) isopentenyl diphosphate (IPP) and dimethylallyl pyrophosphate (DMAPP)
are synthesized through the mevalonate (MVA) pathway in the cytoplasm and the 2-C-
methyl-D-erythritol 4-phosphate (MEP) pathway in the plastid, respectively; (2) under the
action of allyl transferase, geranyl diphosphate (GPP), farnesyl diphosphate (FPP), ger-
anylgeranyl diphosphate (GGPP), and intermediates with various molecular weights are
formed; (3) GPP, FPP, and GGPP, under the action of various terpene synthases (TPSs), gen-
erate monoterpenes, sesquiterpenes, diterpenes, and their derivatives (Figure S1). Finally,
the modified enzymes catalyze hydroxylation, methylation, isomerization, and reduction
to further produce terpene alcohols, acids, esters, and other derivatives [15,18].

The TPS gene family exists widely in plant genomes, most of which are involved in
the production of secondary metabolites [19,20]. At the protein level, each TPS enzyme
has two conserved domains, Pfam ID PF01397 and PF03936, distributed at the N- and
C-terminals. On the basis of their related catalytic motifs, TPSs can be divided into classes
I and II [21–23]. Class I TPSs, including all monoterpenes, all sesquiterpenes, and some
diterpenes, contain two conserved DDXXD and NSE/DTE motifs. Class II TPSs, which
only include diterpenes, contain only a conserved DXDD motif. In addition, the N-terminal
domain of plant TPSs usually has a conserved R(R)X8W motif [21]. The second R of the
motif R(R)X8W is not conserved, and some cases even feature the absence of the R(R)X8W
motif [24].

At present, genome-wide comparative analysis of the evolutionary characteristics of
the TPS gene family has been performed in more than 50 species [22,25]. Meanwhile, the
number of plant species for which TPS gene family information has been obtained, on the
basis of individual genome screening, is increasing [9,23,26–28]. Previous studies showed
that the plant TPS gene family can be divided into seven subfamilies, namely, TPS-a, TPS-b,
TPS-c, TPS-d, TPS-e/f, TPS-g, and TPS-h [21,22]. These subfamilies are specific for an-
giosperms, gymnosperms, land plants, vascular plants, and Selaginella moellendorffii Hieron,
respectively [21]. TPS-a, TPS-b, and TPS-g encode proteins that produce sesquiterpenes
and monoterpenes, respectively.

Owing to the importance of terpenoids in plant growth, chemical interactions, and
protection in the environment [15], the cloning, expression, and functional characteriza-
tion of TPS genes have also been completed in many plant species [16,19,26,28–30]. For
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example, He et al. [28] demonstrated the dynamic regulation of TPS genes in the emission
of herbivore-induced plant volatiles after studying the expression and promoter activity
of cucumber TPS genes in response to different herbivores. Recently, eight TPS genes
from F. carica L. were isolated and confirmed to play a key role in their defense against
pests during syconium development by triggering diverse and dynamic changes in volatile
emissions [16].

Although numerous studies have provided an important basis for understanding the
functions and contributions of TPS genes, existing studies only focused on a few species
and paid more attention to plant protection. In this study, to reveal the TPS diversity of
Ficus and the evolutionary characteristics of the special gene family, we investigated the
TPS genes in 24 Ficus species using RNA-seq. We aimed to (1) identify the potential TPS
genes that function in Ficus pollination attraction, (2) determine the gene structures, phylo-
genetic relationships, and expression divergence of the TPS genes among different Ficus
species, and (3) evaluate the probable effects of positive selection on the Ficus TPS genes.
The findings of this study could lead to an improved understanding of the production
mechanism of VOCs in Ficus and, most importantly, may shed light on the evolution of the
TPS gene family across the genus.

2. Results
2.1. Characteristics of the TPS Genes in the Receptive Phase of Male Figs of 24 Ficus Species

After RNA-sequencing, we obtained 41.52–56.03 million raw reads from the ostiole bract
transcriptomes of 24 Ficus species. For different species, we achieved 40.17–55.09 million clean
reads after adapter clipping and quality control. Using the Trinity program, the clean reads
of each species were assembled into 34,454–90,120 transcripts. The high-quality transcripts
of the 24 species were subjected to cluster and assembly analyses, resulting in coding of
18,344–68,322 unigenes, N50 lengths of 877–1970 bp, and GC contents of 43.77–52.24%. All
assembly statistics are summarized in Table S1.

Using blast scanning, a total of 248 TPS genes with two conserved N-terminal and C-
terminal domains (PF01397 and PF03936) were identified from the unigenes of the 24 ostiole
bract transcriptomes (Table S2). Among the genes, 180 TPSs were found to have complete
coding sequences, and 68 were found to have incomplete coding regions (Table S2). All
TPS genes containing a typical Terpene_Synth_C (or Terpene_cyclase_plant_C1) conserved
domain were confirmed after revalidation by the NCBI Online Batch CD-Search. At the
protein level, those complete TPS genes showed an obvious sequence length polymorphism
ranging from 405 aa in F. variolosa to 850 aa in F. microcarpa (Table S2). Different numbers
of TPS genes were found to be expressed during the receptive phase of male figs. Among
the 24 Ficus species. F. altissima showed the most TPS genes (19), while F. fistulosa and F.
montana showed the fewest (3) (Table 1).

Table 1. Twenty-four Ficus species used in this study.

Subgenus Section Subsection Species Name
Abbreviations TPS No. Site Latitude

(N)
Longitude

(E)

Ficus

Eriosycea Eriosycea

F. chartacea ficha 8 China—Guangdong 8.776 99.724
F. fulva fiful 14 China—Guangdong 8.776 99.724

F. grossularoides figro 3 Thailand—Narathiwat 5.799 101.762
F. hirta fihir 16 China—SCBG 23.171 113.349

F. langkokensis filan 11 China—Guangdong 24.227 112.006
F. ruficaulis var. antaoensis firuf 4 Taiwan 21.962 120.811

F. triloba fitri 13 China—SCBG 23.180 112.537

Ficus Frutescentiae

F. abeli fiabe 12 China—Guangdong 23.636 113.780
F. erecta var. beecheyana fiere 11 China—Guangdong 23.765 113.915

F. formosa fifor 6 China—Guangdong 23.623 113.811
F. heteromorpha fihet 15 China—Guangdong 24.918 113.033

F. ischnopoda fiisc 11 Thailand—Chiang Mai 18.504 98.665
F. pandurata fipan 13 China—Guangdong 24.252 112.036
F. pyrifomis fipyr 12 Thailand—Chiang Mai 18.504 98.665
F. variolosa fivar 13 China—Guangdong 23.624 113.797
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Table 1. Cont.

Subgenus Section Subsection Species Name
Abbreviations TPS No. Site Latitude

(N)
Longitude

(E)

Sycidium Sycidium Sycidium F. montana fimon 3 Thailand 7.557 99.776

Sycomorus Sycomorus
Sycocarpus F. fistulosa fifis 3 China—Guangdong 23.156 112.511

F. hispida fihis 8 China—SCBG 23.180 113.350

Neomorphe F. variegata fivae 9 China—Guangdong 23.176 112.538
Hemicardia F. semicordata fisem 11 Thailand—Chiang Mai 19.362 98.922

Urostigma Urostigma
Conosycea

F. altissima fialt 19 China—SCBG 23.188 113.363
F. benjamina fiben 7 China—SCBG 23.186 113.358
F. microcarpa fimic 13 China—SCBG 23.178 113.352

Urostigma F. rumphii firum 13 Myanmar 21.966 96.069

A total of 10 motifs were extracted from the 248 TPS genes, but three (DDXXD, DTE,
and RXR) showed the highest degree of conservation. Generally, these TPS genes contained
DDXXD and DTE motifs at the C-terminus (Figure 1A).
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Figure 1. Sequence characteristic, phylogeny, subfamily classification, and expression profile of
248 FTPS genes. (A) Three conserved motif logos of the 248 Ficus genes, showing DDXXD, DTE, and
RXR motif, respectively. (B) A maximum likelihood tree based on amino acid sequences of 248 FTPS
genes and 33 A. thaliana genes, showing that these FTPSs are classified into five subfamilies and
33 orthologous genes (A. thaliana genes are colored in red). (C) Expression heatmap of 248 FTPS
genes across 24 species. * Genes with positive sites.
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We classified 248 TPSs into 33 orthologous genes (FTPS1–FTPS33) and six single-
tons (FTPS34–FTPS39) using OrthoMCL clustering analysis and by manually checking
the sequence similarity (Figure 1B, Table S2). Subsequently, we annotated these genes
using the nonredundant protein database (Table S3). Consequently, we found that these
FTPSs were probably matched to 18 known terpene synthases and their analogs, including
frequently occurring myrcene synthase, (−)-germacrene D synthase, linalool synthase,
and E-beta-caryophyllene synthase. Generally, these expressed FTPSs tended to encode
acyclic monoterpenes (12 acyclic and five cyclic) and cyclic sesquiterpenes (five acyclic and
15 cyclic), indicating the complex configuration of the compounds. In addition, 10 pair
paralogous TPSs were found in eight FTPS genes of 10 species (Table S4).

2.2. Subfamily Analysis of the FTPS Genes

A phylogenetic tree for 248 FTPS genes and 33 Arabidopsis TPS genes was constructed
in RAxML using the ML method (Figure 1B). In the ML tree, the FTPS genes were classified
into four separate clades. According to the classification of the Arabidopsis TPSs in each
clade, the four clades corresponded to four TPS subfamilies, namely, a, b, g, and c and e/f.
Most FTPSs were clustered into the TPS-b (114), TPS-a (94), and TPS-g subfamilies (29). In
contrast, the number of genes in TPS-e/f and TPS-c subfamilies was greatly reduced. Two
TPS-c genes were mixed into the nine TPS-e/f genes.

2.3. Expression Analysis of the FTPS Genes

To check the expression differences of the FTPSs, we compared the TPM values of
the 39 FTPSs (Figure 1C, Table S5). For those paralogous pairs (Table S4), only the higher
expression values were used. Consequently, we found that the expression of FTPS genes
varied among the 24 species. Although most FTPSs were expressed in a limited number
of species, a few genes were common across multiple species. For example, six genes
(FTPS1–FTPS5, FTPS7, and FTPS8) were expressed in more than half of the 24 Ficus species.
Remarkably, FTPS1 was expressed in 21 species. In contrast, six singletons were highly
species-specific, and only one species (F. rumphii) had two singletons (Figure 1C, Table S4).
Nevertheless, each species usually has a specific FTPS expression profile. However, two
distantly related species, F. pyrifomis and F. semicordata, shared very similar FTPS expression
profiles (Figure 1C).

2.4. Positive Selection Analysis

The ML tree of the 24 species of Ficus constructed from the concatenated TPS genes
(Figure S2) conformed to the taxonomy of the species [31]. Using the ML tree as a guide,
we performed a positive selection analysis for 20 of the 33 FTPS genes, distributed across
>4 species.

Using one ratio model calculation, the ω range of 20 FTPS genes was found to be
0.250 (FTPS15) to 0.758 (FTPS16) (Table 2). In order to better detect the probable selective
constraint on each FTPS gene in the evolutionary process, the free ratio model, which
allows varied ω ratios in each branch, was implemented by the likelihood ratio test (LRT).
Two genes, FTPS10 and FTPS12 showed significant selection signals (Table 2), suggesting
divergent evolutionary rates of the genes among different Ficus species.
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Table 2. Positive selection analysis of FTPS genes occurred in more than four species under branch
model test.

Gene Model np Mates of Parameter lnL df 2∆lnL p-Value a

FTPS1 Free-ratio 79 Variableω −4424.469 38 35.058 0.606
One-ratio 41 0.522 −4441.998

FTPS2 Free-ratio 67 Variableω −5413.296 32 33.835 0.379
One-ratio 35 0.449 −5430.214

FTPS3 Free-ratio 67 Variableω −5872.822 32 37.559 0.229
One-ratio 35 0.679 −5891.602

FTPS4 Free-ratio 59 Variableω −5024.747 28 21.298 0.813
One-ratio 31 0.496 −5035.396

FTPS5 Free-ratio 51 Variableω −3504.033 24 19.138 0.745
One-ratio 27 0.345 −3513.602

FTPS6 Free-ratio 23 Variableω −3252.649 20 3.613 0.999
One-ratio 13 0.465 −3254.456

FTPS7 Free-ratio 43 Variableω −3883.714 20 19.883 0.465
One-ratio 23 0.503 −3893.656

FTPS8 Free-ratio 43 Variableω −6311.560 20 14.685 0.794
One-ratio 23 0.504 −6318.902

FTPS9 Free-ratio 23 Variableω −3433.342 10 8.137 0.615
One-ratio 13 0.479 −3437.411

FTPS10 Free-ratio 35 Variableω −4081.220 16 26.337 0.049 *
One-ratio 19 0.426 −4094.389

FTPS11 Free-ratio 27 Variableω −3358.780 12 18.882 0.091
One-ratio 15 0.499 −3368.221

FTPS12 Free-ratio 27 Variableω −3715.070 12 23.205 0.026 *
One-ratio 15 0.517 −3726.673

FTPS13 Free-ratio 23 Variableω −4886.043 10 6.841 0.740
One-ratio 13 0.382 −4889.464

FTPS14 Free-ratio 15 Variableω −3614.771 6 10.329 0.111
One-ratio 9 0.637 −3619.935

FTPS15 Free-ratio 15 Variableω −3086.012 6 4.530 0.605
One-ratio 9 0.250 −3088.278

FTPS16 Free-ratio 15 Variableω −3125.859 6 6.115 0.410
One-ratio 9 0.758 −3128.916

FTPS17 Free-ratio 19 Variableω −3127.501 8 3.009 0.934
One-ratio 11 0.447 −3129.006

FTPS19 Free-ratio 15 Variableω −2834.753 6 4.801 0.570
One-ratio 9 0.407 −2837.153

FTPS20 Free-ratio 23 Variableω −3453.672 7 3.639 0.820
one-ratio 13 0.548 −3455.491

FTPS26 Free-ratio 23 Variableω −5711.069 8 14.155 0.078
one-ratio 13 0.489 −5718.147

a Significantly different values according to the χ2 value with specific k degrees of freedom at a significance level
of 0.05 (*).

In the branch-site model, we identified three genes (FTPS3, FTPS16, and FTPS20) with
significant statistics values (p < 0.01 or p < 0.05) in four species-specific (F. montana or F.
pyrifomis, F. fistulosa, and F. formosa) clades (Table 3), suggesting a divergent evolutionary
rate of the genes in these species. In addition, we also found that three and one positive se-
lection sites in FTPS4 and FTPS8 in F. hirta–F. triloba and F. heteromorpha clades, respectively
(Table 3).
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Table 3. Positive selection analysis of FTPS genes occurred in more than four species under branch
site model test.

Gene Clade Models Compared np p-Value a lnL ω Values Positive Sites
(BEB) b

FTPS3 fimon Model A 38 1.490 × 10−2 * −5595.802 p0 = 0.023ω1 = 1.000
ω2 = 44.817

Model A null 37 −5598.162 p0 = 0.023ω1 = 1.000
ω2 = 1.000

fipyr Model A 38 6.105 × 10−4 ** −5490.893 p0 = 0.015ω1 = 1.000
ω2 = 315.194

Model A null 37 −5496.038 p0 = 0.018ω1 = 1.000
ω2 = 1.000

FTPS4 fihir-fitri Model A 34 0.051 −4860.385 p0 = 0.000ω1 = 1.000
ω2 = 92.201

258S * 345Y *
424M *

Model A null 33 −4861.730 p0 = 0.000ω1 = 1.000
ω2 = 1.000

FTPS8 fihet Model A 26 0.059 −5773.442 p0 = 0.047ω1 = 1.000
ω2 = 28.837 217H **

Model A null 25 −5776.607 p0 = 0.047ω1 = 1.000
ω2 = 1.000

FTPS16 fifis Model A 13 1.129 × 10−3 ** −3118.162 p0 = 0.417ω1 = 1.000
ω2 = 314.584

Model A null 12 −3122.826 p0 = 0.408ω1 = 1.000
ω2 = 1.000

FTPS20 fifor Model A 16 6.005 × 10−7 ** −3399.251 p0 = 0.588ω1 = 1.000
ω2 = 246.640

Model A null 15 −3427.039 p0 = 0.626ω1 = 1.000
ω2 = 1.000

a Significantly different values according to the χ2 value with specific k degrees of freedom at a significance level
of 0.01 (**) or 0.05 (*). b Significantly different values with p > 95% (*) and p > 99% (**).

3. Discussion

TPS is an important enzyme that is primarily responsible for catalyzing the synthesis
of various terpenoids [23]. In the present study, using ostiole bract transcriptomes, we
compared the genic characteristics of expressed TPSs among 24 Ficus species. The number,
distribution, and expression level of the TPS genes among different Ficus species were
obviously inconsistent, suggesting a diverse composition of terpenes in Ficus species.

3.1. Numbers of TPS Genes in 24 Ostiole Bract Transcriptomes

The TPS gene family is a mid-size family of angiosperms [21]. The number of TPSs
in angiosperms varies widely, ranging from two TPS in Zostera marina [22] to 152 in Vitis
vinifera [21,22,24]. In particular, TPS genes typically follow a lineage-specific evolutionary
pattern, resulting in diverse terpenoid products [32,33]. In addition, given that the TPSs are
expressed in a spatiotemporal differential and organ-specific manner, the number of TPS
genes identified from the transcriptomes is probably smaller than the number localized in
plant genomes. In this study, within Ficus, using tissues at the same development stage,
we also found that the number of TPS genes was quite different among the 24 species.
For example, there were only two TPS in F. fistulosa, but 19 in F. altissima (Table 1). In
addition, for species within the same subgenus, even within the same section of Ficus,
we did not find any similarities in the distribution pattern of the TPS genes. To further
estimate the occurrence frequency of the TPS genes during the receptive stage of male
syconia, we scanned two known genomes of F. microcarpa and F. hispida and compared their
TPS number at a genome-wide level to the number identified in our study. We identified 33
and 59 TPS genes in the two genomes and found that only 39% (13) and 13% (eight) TPS
genes of two species occurred during the receptive stage (Table 1). This result suggests that
the number and occurrence frequency of TPS genes in the receptive stage of male syconia
largely depend on the species in Ficus. This situation is consistent with the hypothesis that
different species of Ficus release specific volatiles to attract specific pollinating wasps [34].
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3.2. Sequence Characteristics and Subfamily Categories of the FTPS Genes

According to the amino acid motifs and catalytic mechanism, TPS enzymes can be
divided into two classes: class I and II [21–23]. Class I TPSs contain two conserved motifs,
DDXXD and (N,D)DXX(S,T,G)XXX(E,D) (also named DTE), which facilitate ionization of
an isoprenoid diphosphate moiety and generate a reactive carbocation intermediate. In
contrast, Class II TPSs typically contain only a DXDD motif, which protonates substrates,
catalyzes scaffold rearrangements without cleavage of the diphosphate ester bond, and
produces initial carbocation intermediates [35]. In this study, at the protein level, the DXDD
motif was only found in one sequence of FTPS25 (fihir39312). Phylogenetic analysis showed
there was another paralog of the sequences in F. hirta (fihir17484). However, owing to the
low expression levels of the two sequences (Table S3), we could not detect sufficient reads to
assemble complete coding sequences, including the DXDD domain in the second sequence.
Because the DXDD motif is the characteristic of Class II TPS gene, the FTPSs identified in
our transcriptomes should be dominated by Class I TPS enzymes [36]. This suggestion was
also supported by the subsequent phylogenetic analysis.

On the basis of genome-wide comparisons of multiple plants, the TPS family has
been split into seven subfamilies, i.e., TPS-a, TPS-b, TPS-c, TPS-d, TPS-e/f, TPS-g, and TPS-
h [21,22,37]. Among the subfamilies, TPS-d and TPS-h are distributed only in Gymnosperms
and Selaginella moellena, respectively [21]. Notably, in this study, we identified all of the
other five TPS subfamilies that can be distributed in angiosperms in the 24 Ficus species,
suggesting a diverse and complicated composition of terpenes in the receptive stage of male
syconia. In addition, compared with other plants such as A. thaliana [38], grapevine [24],
and tomato [30], in which TPS-a genes are the most abundant genes, here, we found
that a majority of FTPSs were categorized into TPS-b (46%) rather than the TPS-a (38%)
subfamily (Figure 1B). Previous studies have shown that the TPS-b subfamily is mainly
composed of angiosperm monoterpene synthases genes [39,40], except a sesquiterpene,
(E,E)-α-farnesene synthase gene, found in apple [41], poplar [42], and soybean [43]. Here,
we also identified an orthologous gene encoding (E,E)-α-farnesene synthase (FTPS8) in
12 Ficus species (Table S3). More interestingly, our study revealed that most FTPSs protein
sequences in the TPS-b subfamily (63%) lack the second R of the R(R)X8W motif, i.e., lacking
the RR domain (Figure 2). Previous authors confirmed that the RR domain was functionally
important to isomerize GPP to a cyclizable intermediate [44]. However, the RR domain
may be absent in the monoterpene synthases producing only acyclic compounds, which do
not require isomerization [45]. Therefore, our study suggests that a majority of the Ficus
TPS-b genes likely encode acyclic terpene synthases. This suggestion is supported by our
current annotations that 70% of monoterpenes were acyclic (Table S3). However, the result
is inconsistent with previous findings that many of the enzymes in the plant TPS-b group
produce cyclic monoterpenes [21]. Therefore, the production of rich highly volatile acyclic
monoterpenes may be a distinguishing characteristic for the Ficus TPS-b enzymes.

The TPS-a subfamily, which included 14 FTPS genes (Figure 1B), is the second largest
TPS subfamily in the Ficus species. Similar to other plants, most TPSs in the TPS-a clade
were sesquiterpene synthase genes [21,38]. A total of 13 out the 14 FTPS genes identified are
responsible for encoding sesquiterpenes. Only FTPS13, which encodes a cadinene synthase,
is an acyclic monoterpene.

The third largest TPS subfamily in the 24 Ficus species is TPS-g. This subfamily
includes 29 sequences (Figure 1B). TPS-g genes are often believed to show prevalence
in catalyzing acyclic products [21,46]. Here, these TPS-g genes were categorized into
three genes (FTPS5, FTPS10, and FTPS21) and two singletons (ficha23769 and fiful14859).
According to annotation by the nonredundant protein database, all five genes were matched
to two acyclic monoterpenes, linalool synthase and (3S, 6E)-nerolidol synthase 1.

TPS-e/f and TPS-c are small subfamilies in the Ficus species. The FTPS-e/f genes are
present in six species and involved in only two orthologous genes (FTPS15 and FTPS32).
The genes encode a diterpene (ent-kaur-16-ene synthase) and a monoterpene S-linalool
synthase, respectively. The ent-kaurene synthases often serve as precursors to plant growth
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regulators, and they exhibit a variety of useful pharmacological properties [47]. In other
words, the role of the compound is more focused on pest defense. However, in sunflowers,
Morris et al. [48] showed that kaurane diterpenes can be used as oviposition stimulants of
insects. By contrast, S-linalool is often used as an attractive volatile that some flowers emit
to please pollinators [49]. Despite their variability in function, in the fig–fig wasp symbiosis,
terpenes are always considered to be chemical attractants to fig wasps. Therefore, the exact
functions of the two TPSs in Ficus deserve further exploration. In the TPS-c subfamily, we
only found two paralogous sequences that encoded for FTPS25. The two sequences were
annotated as ent-copalyl diphosphate synthases and were highly specifically expressed in F.
hirta. This obvious gene expansion event implies that the FTPS25 may function during the
receptive phase of male syconia of F. hirta. In addition, the presence of the classic DXDD
motif in the gene suggests they function as Class II TPS.
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Figure 2. The R(R)X8W motif of the FTPS genes in the TPS-b subfamily. (A) The R(R)X8W motif
logo of all FTPS-b subfamily genes. (B) Some representative sequences of FTPS-b subfamily genes,
showing the R(R)X8W motif without the tandem RR domain.
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3.3. Expression Profiles of the FTPS Genes

By examining the expression profiles of the FTPSs, we determined the diversity
and complexity of FTPSs expression status in 24 Ficus species. Here, each species had
a unique expression profile indicating a highly species-specific expression array of the
FTPS genes. However, although we identified six singletons for five species, we showed
that the other 33 orthologous FTPSs were shared by at least two species (Figure 1C). This
result suggests that the odors emitted by each Ficus species blend compounds of multiple
common terpenoids, rather than entirely species-specific volatiles. By comparing the blends
of VOCs released from receptive figs of 20 Ficus species, Grison-Pige et al. [50] found that a
few major compounds such as β-ocimene, germacrene D, and linalool are common among
floral fragrances, while the rare compounds are usually present in a very low proportion in
the blends. In addition, Proffit and Johnson [11] showed that (E)-β-ocimene was responsible
for 41.75% of VOCs in receptive syconia of F. sycomorus. In this study, we found that at least
10 FTPSs were annotated as myrcene synthases (Table S3) and were highly expressed in
multiple species (Figure 1C). For example, FTPS1 and FTPS2 that encode different myrcene
synthases were found in 21 and 19 species, respectively. Given that myrcene is an isomer
of ocimenes, the myrcene/ocimene synthases should also produce common chemical
compounds during the repetitive phase of male syconia for the Ficus species. In addition,
we also found six FTPSs encoding germacrene D synthases were simultaneously expressed
in more than 16 species (Figure 1C). In plants, germacrene D, comprising some 300 isomers
(C15H24), has evolved ecological roles in the interaction of the plant with insects [51,52].
This plant sesquiterpene can specifically activate a major type of antennal receptor neuron
of the tobacco budworm moth Heliothis virescens [53]. However, whether germacrene D is
involved in the interaction of figs and fig wasps remains unclear.

In addition, it is worth noting that the distribution and expression intensity of the
FTPSs across species do not always correlate with the phylogenetic relationship of the
species. Recently, Yu et al. [54] investigated the volatiles emitted by receptive male figs of F.
hirta and F. triloba, two phylogenetic related species, and found that the two species share
48 VOCs, but the most abundant volatiles differ. Here, we identified 11 homologous FTPS
pairs between the two species, but the expression level of each FTPS pair was very different
(Figure 1C). These results suggest that the proportion of compounds is more important
than the composition itself.

However, interestingly, we also found that two distantly related species (F. pyrifomis
and F. semicordata) had highly similar expression profiles of FTPSs (Figure 1C). Within the
genus of Ficus, species F. pyrifomis and F. semicordata belong to different subgenera, Ficus
and Sycomorus, respectively. In this study, the single relevance between the two species is
that they were all collected from Thailand. Given that the two species have distinguished
morphologies from each other and from the other fig species, sampling and identification
errors can be ruled out. We also checked the other genes in the transcriptomes of the two
species and found different gene lists and expression profiles, suggesting that the two
RNA libraries were not misused or mixed. Previous studies confirm that similar volatile
blends of fig species can trigger their evolutionary convergence to attract particular wasp
species [55–57]. In turn, regionally pollinator sharing can produce gene flow between fig
species [54,58]. In Ficus, hybridization and introgression can occur not only among fig
taxa from the same section but also among taxa from different sections [58]. Therefore,
the current deviant may be a special case of hybridization and introgression of distantly
related species. Further confirmation research is very necessary. In addition, small doses of
compounds produced by lowly expressed genes may also play some key roles in attracting
special fig wasp in different symbiosis systems.

3.4. Positive Selection of FTPSs

In this study, the branch model and branch-site model methods were used to check for
the positive selection of homologous TPS genes. Except for five genes (FTPS10 and FTPS12
in the branch model test and FTPS3, FTPS16, and FTPS20 in the branch-site model test)
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that showed significantly positive selection signals in some specific species (Tables 2 and 3),
a majority of the FTPSs were still highly conserved among species and under purification
selective pressure, suggesting functional stability of the TPS genes. The five FTPS genes
encode four chemical compounds, linalool synthase, myrcene synthase, elemene synthase,
and E-beta-caryophyllene synthase (Table S3). Notably, these compounds are all common in
Ficus species rather than species-specific ones [50,54]. Grison-Pige et al. [50] confirmed that
beta-caryophyllene, linalool, myrcene, and beta-elemene can be identified from fig odors of
18, 10, six, and five Ficus species, respectively. Yu et al. [54] revealed that (E)-caryophyllene
and beta-element were all highly abundant compounds released by both F. hirta and F.
triloba. These results imply that the FTPS evolution may prefer to select those common
genes shared by several Ficus species rather than recruit some specific or rare new genes. In
addition, in this study, two genes (FTPS4 and FTPS8) with three and one positive selection
sites in species of F. hirta and F. triloba, and F. erecta var. beecheyana were also identified under
branch-site model, respectively. Although these sites were not located in the conserved
protein domains of plants TPS genes, these hidden interspecies divergences may prompt
the diversification and complexity on the structure and function of the FTPS proteins, and
then enforce VOC specificity. Further in-depth functional verification should be performed.

4. Materials and Methods
4.1. Sample Collection and RNA Sequencing

Twenty-four Ficus species belonging to four subgenera, with five sections and eight
subsections [3], were collected from South China and Southeast Asia (Table 1). To sim-
plify species names during data analysis, abbreviated names of the 24 Ficus species were
used (Table 1). The ostiole bracts of three receptive male syconia from three plants of
each of the 24 species were dissected and placed in RNAlater™ Stabilization Solution
(00936134, Takara).

Total RNA was isolated using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) ac-
cording to the manufacturer’s instructions. The quantity of RNA was evaluated using 1%
agarose gel electrophoresis and a NanoDrop 2000 spectrophotometer (NanoDrop, Wilm-
ington, DE, USA). A total of 1.5 µg of RNA per species was used as the input material
for an RNA library constructed using an Illumina TruSeq™ RNA Sample Preparation Kit
(Illumina, San Diego, CA, USA). Paired-end high-throughput sequencing was performed
by Novogene Bioinformatics Technology Co. Ltd. (Beijing, China) on an Illumina HiSeq
4000 platform.

4.2. RNA-Seq Assembly and Identification of TPS Genes

Data obtained by the RNA-seq of 24 Ficus species were assembled de novo using
Trinity v2.8.5 [59] under the De Bruijn algorithm to construct unique consensus sequences.
TransDecoder v5.5.0 (Haas et al., 2013) was used to predict the coding sequence (CDS) for
each isoform of a gene. The raw sequence data were deposited in the Genome Sequence
Archive (GSA) in the National Genomics Data Center, Chinese Academy of Sciences
(https://ngdc.cncb.ac.cn/gsa/; accessed on 31 July 2022), under the accession number
PRJCA009602.

To facilitate subsequent analysis, we processed all sequences with an in-house Perl
script and converted the nucleotide sequence of each unigene to protein sequence. Finally,
we obtained a protein database for the 24 Ficus species.

We selected amino acid sequences of the known TPS genes of Arabidopsis thaliana (L.)
Heynh. (https://www.uniprot.org/; accessed on 31 October 2021) as query sequences,
and then identified the TPS genes from the above constructed protein databases for the
24 Ficus species using a BlastP search (E-value < 10−5). PF01397 (N-terminal) and PF03936
(C-terminal) are the query models derived from the hidden Markov model of the TPS genes
in the PFAM database (https://pfam.xfam.org/; accessed on 31 July 2022). Using these two
HMM models as the query, we identified the TPS genes from the protein database of 24 Ficus
species using HMMER 3.2.1 [60]. To ensure data accuracy, the conserved domains of the TPS

https://ngdc.cncb.ac.cn/gsa/
https://www.uniprot.org/
https://pfam.xfam.org/
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proteins obtained using the above two methods were reconfirmed in the Conserved Domain
Database (https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi; accessed on
31 July 2022). The validated TPS genes were annotated using the online tool eggNOG-
mapper v2 (http://eggnog-mapper.embl.de/; accessed on 31 March 2022) with default
parameter [61] and the nonredundant protein database (https://www.ncbi.nlm.nih.gov/;
accessed on 31 March 2022) using BLASTP with the E-value cutoffs ≤ 10−5.

4.3. Phylogenetic Relationship, Subfamily Classification, and Motif Analysis of the Ficus
TPS Genes

All identified Ficus TPS genes and 33 TPS genes from the A. thaliana genome (https:
//phytozome-next.jgi.doe.gov/; accessed on 1 July 2022) were combined to build a data
matrix. MAFFT v.7407 software [62] was used to perform multiple sequence alignments.
RAxML v8.2.12 software [63] was used to construct a maximum likelihood (ML) phy-
logenetic tree based on full-length amino acid sequences with the executed command
“raxmlHPC-HYBRID-SSE3 -f a -x 12345 -p 12345 -# 1000 -m GTRGAMMA”. The multiple
Em-for-Motif-Elicitation web server (https://meme-suite.org/meme/; accessed on 21 May
2022) [64] was used for the motif analysis of the Ficus TPS genes using the parameters
-nostatus -mod anr -minw 10 -maxw 50 -nmotifs 10.

4.4. Clustering, Annotation, and Expression Analysis of the Ficus TPS Genes

The OrthoMCL v2.0.9 [65] with a highly strict threshold of the following parameters: —
evalue 1 × 10−12 —identity 0.5 —CIP 0.6 —CALP 0.6 [66] was used to cluster the identified
TPS genes, and in-house Perl scripts were used to screen the clustering results to obtain
different TPS orthologs.

The value of transcripts per kilobase per million mapped reads (TPM) of each TPS
gene calculated by RSEM [67] was used to evaluate transcription abundance. To facilitate
data comparison, for the TPS with duplicated paralogs within the same species, we retained
only the TPS with the highest expression level for further analysis. After standardization
using the trimmed mean of M values (TMM), we obtained the original data matrix of
gene expression. Heat maps of the orthologous TPS genes were illustrated using TBtools
v1.09876 (https://github.com/CJ-Chen/TBtools/; accessed on 29 June 2022) [68], and
a color gradient was displayed as the log2(TPM + 1) transformed expression levels of
each gene.

4.5. Positive Selection Analysis

We performed gene positive selection analyses using the branch-site model and branch
model in the PAML package version 4 [69]. A concatenated TPS gene topology phylogenetic
tree was constructed as the guide tree using RAxML v8.2.12 software [63] under the
parameters “raxml HPC-HYBRID-SSE3 -f a -x 12345 -p 12345 -# 1000 -m GTRGAMMA”.
Species Morus notabilis C. K. Schneider was used as the outgroup. Because the PAML
documentation recommends that the absolute minimum be four or five if the sequence
divergence is optimal, the TPS genes that occurred in fewer than four species were ignored
from further processing.

In the branch model, the one-ratio model was the null model, which means that all
branches had the sameω value, while the free-ratio model considered that each branch had
a differentω value. We compared the likelihood ratio of the two models and calculated the
p-value using the LRT test.

In order to find genes that potentially experienced positive selection, the branch-site
model (model = 2 and NSsites = 2) of the PAML package was used, with each branch
specified as the foreground. To avoid false positive results in the branch-site model, the
following rigorous criteria were used: a dN/dS ratio (ω) greater than 1 on the foreground
branch, and positively selected sites with a posterior probability calculated by the Bayes
empirical Bayes (BEB) method greater than 0.95 and a p-value ≤ 0.05 in the likelihood ratio
test [70].

https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi
http://eggnog-mapper.embl.de/
https://www.ncbi.nlm.nih.gov/
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5. Conclusions

This study identified 248 TPS genes in 24 Ficus species, and then comprehensively
analyzed their sequence characteristics, phylogenetic relationships, expression profiles, and
selection divergences. Studies revealed that the FTPSs are dominated by class I synthase
genes, and the terpenoids encoded by the FTPSs may involve sesquiterpenes, monoterpenes,
and diterpenes. The 248 FTPSs can be classified into 33 homologous genes with different
expression strengths and expression profiles in 24 Ficus species. Complex combination and
divergent expression of the multiple terpenoid synthase genes may be an important factor
responsible for the diversity and specificity of Ficus terpenoids. In short, this study deepens
our understanding of the diversity of the fig TPS gene family.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/d14090721/s1: Figure S1: The biosynthesis pathway of plant
terpenoids and classification of terpene synthase (TPS); Figure S2: A concatenated FTPS phylogenetic
tree for positive selection analysis; Table S1: Summary of assembly results of transcriptome data for
24 Ficus species; Table S2: Amino acid sequences of 248 TPS genes in the 24 Ficus species; Table S3:
Annotation of Ficus TPS genes by the nonredundant protein database; Table S4: Expression of
different FTPS paralogous pairs in six species; Table S5: TPM values of FTPSs in the 24 Ficus species.
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