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Abstract
Aim: To derive null models for the expected number of species shared among multiple 
samples or habitat patches, allowing exploration of the geometric effects of subdivi-
sion on species diversity.
Location: Global.
Major taxa studied: Predominantly sessile organisms.
Methods: The occurrence probability of a species in a subdivided area depends on its 
abundance and spatial pattern over a known habitat extent. The joint probability that 
two subareas share a species is the product of the probability of species occurrence 
in each subarea provided that the latter probability is independent. The sum of this 
probability over all species is the number of species the two subareas share, or zeta 
diversity of order 2. Generalizing from 2 to m subareas yields a null model for zeta di-
versity of order m. From zeta diversity, many metrics (e.g., beta and gamma diversity) 
for the m habitat patches can be calculated, revealing the effects of increasing habitat 
fragmentation.
Results: The null models show the geometric effects of subdivision depend on pat-
terns of spatial distribution of species within a landscape and evenness of species 
abundance distribution. For aggregated assemblages, increasing subdivision de-
creases shared species, increases beta diversity and results in higher total species 
richness in subdivided habitat than an equal contiguous area.
Main conclusions: To correctly interpret diversity patterns in fragmented habitat 
the geometric effects of subdivision must be considered. Our models explain why 
fragmented habitat could have higher diversity than continuous habitat of equal area 
but predict a threshold patch-size above which this will not occur (here c. 100 ha). 
Apparently positive diversity effects of subdivision, including more species in groups 
of small patches, are probable outcomes of spatial aggregation of assemblages. The 
shared species null models offer an analytical tool for exploring the geometric effects 
of subdivision on diversity while controlling for total habitat area.
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1  |  INTRODUC TION

What difference in species richness should be expected between 
a single contiguous patch of habitat and an equal area of habitat 
subdivided among several smaller patches? This question came to 
prominence in the 1970s SLOSS debate, in which researchers ques-
tioned whether a Single Large Or Several Small reserves would 
protect more species (Diamond,  1975; Simberloff & Abele,  1976). 
Related questions have recently contributed to conflicting opinion 
on the biodiversity impacts of the breaking apart of habitat ver-
sus habitat loss from land clearance (i.e., the fragmentation ‘per 
se’ debate; Fahrig, 2017; Fahrig et al., 2019; Fletcher et al., 2018). 
Recently, May et  al.  (2019) showed via simulation that increasing 
habitat subdivision can, counterintuitively, increase the survival 
probability of any species whose individuals have aggregated spa-
tial distributions; referred to as the geometric effect of habitat loss. 
Given this finding, if the consequences of fragmentation for diver-
sity are to be comprehensively understood, this geometric effect 
from habitat subdivision needs to be distinguished from changes 
to diversity that arise subsequently from impacts of habitat loss 
and isolation on species demographic rates (Chisholm et al., 2018; 
Hanski et al., 2013; Kobayashi, 1985; May et al., 2019). To resolve 
this poorly understood phenomenon for multispecies assemblages, 
we develop an analytical null model for shared species in subdivided 
habitat. With such a null model it is possible to infer the direction 
and magnitude of any likely geometric effects of habitat fragmenta-
tion to quantify their probable effects on observed species diversity 
patterns.

Asking how many species a group of discrete patches share is 
an intuitive way to appreciate the spatial distribution of species 
and to compare their composition. It has long been recognized 
that key to understanding the effects of habitat subdivision on 
total species number is the degree of overlap in species composi-
tion between the patches—the proportion of species they share 
(Simberloff & Abele, 1976; Tjørve & Tjørve, 2008). The number of 
species shared between two habitat patches is central to many mea-
sures of pairwise dissimilarity, or beta diversity (reviewed in Koleff 
et al., 2003). Extending this idea, zeta (ζ) diversity predicts the ex-
pected number of species shared among any number of samples or 
sites, where the number of samples is referred to as the order of 
zeta (Hui & McGeoch, 2014). Zeta diversity has been used to show 
how shared species are a common currency from which multiple di-
versity patterns can be derived (Arita, 2017; Hui & McGeoch, 2014; 
Lu et  al.,  2019). Analogous to the partitioning of gamma diversity 
into alpha and beta diversity components, zeta diversity partitions 
diversity of groups of samples into multiple components from which 
other diversity measures can be expressed. For example, Jaccard’s 
pairwise similarity index is ζ2∕

(
2ζ1 − ζ2

)
, where ζi is zeta diversity of 

order i (Hui & McGeoch, 2014). Thus, a null model for shared spe-
cies, or zeta diversity (these terms are used interchangeably), allows 
the calculation of many diversity metrics useful for understanding 
the effects of subdivision (see Methods), including the expected 
number of species confined to only a single patch, of interest from 

the perspective of extinction risk in a metapopulation framework 
(Hanski, 1999).

The number of species shared by multiple patches can be pre-
dicted from the probability that each species occurs in those 
patches. These occurrence probabilities for a given area can be de-
rived using methods based on spatial sampling theory, which com-
bine species abundance distributions (SADs) and species spatial 
distributions to predict areal diversity patterns and scaling relation-
ships (e.g., Arrhenius, 1921; Coleman, 1981; Harte et al., 2008; He 
& Legendre, 2002; Kobayashi, 1985; Morlon et al., 2008; Plotkin & 
Muller-Landau, 2002). Such methods can be used to explore proba-
ble diversity outcomes by varying the properties of these distribu-
tions (e.g., evenness in abundance or intraspecific aggregation), for 
example, to analyse species–area relationships (Harte et al., 2008; 
He & Legendre,  2002; Wilber et  al.,  2015) and pairwise composi-
tional similarity (Morlon et al., 2008; Plotkin & Muller-Landau, 2002). 
Here we use spatial sampling theory to derive a null model for zeta 
diversity as a first step in predicting the consequences for diversity 
when a given habitat area is subdivided into several discrete patches. 
With such a null model, the predicted zeta diversity can be used to 
quantify a range of metrics (Hui & McGeoch,  2014) beneficial for 
understanding the geometric diversity effects of subdivision.

Our aims in this paper are therefore to (a) derive an analytical 
model to predict the expected number of shared species (zeta di-
versity) in subdivided areas for random and non-random distribu-
tion of species, (b) validate model predictions for shared species and 
other related metrics in subdivided habitat, and (c) use the models to 
demonstrate how shared species, and some resulting patterns of di-
versity, will change under different constraints, both ecological (e.g., 
different relative species-abundance distribution) and geometrical 
(e.g., patch area and number).

2  |  METHODS

2.1  |  Model derivation

2.1.1  |  Shared species under random placement

Assuming complete knowledge of the abundance of every species in 
a study extent, A, and random distribution of a species within it, the 
occurrence probability of the species in an area a is (Arrhenius, 1921; 
He & Gaston, 2000):

where Ni is the abundance of species i in the extent of the study area A.
In two samples of size a from the same community, the expected 

number of shared species is the sum of the product of the occurrence 
probability (Equation 1) from the two areas, a, across all species S. 
Among m disjoint samples of equal area a (m < A/a), under random 
placement of individuals (the probability that species i occurs in both 

(1)Pi = 1 −
(
1−

a

A

)Ni
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sample k and l equals the product of occurrence probabilities in each 
sample, Pk∩l,i = Pk,i ⋅ Pl,i), the expected number of shared species (i.e., 
zeta diversity of order m, denoted ζm|a) is simply:

where the expected number of species shared in m samples depends 
only on the sample area a and abundance vector Ni. Note when m = 1, 
Equation (2) as a function of sample area a is simply the random place-
ment species–area model (Arrhenius, 1921; Coleman, 1981).

2.1.2  |  An approximate expectation for shared 
species under non-random placement

Most populations of species are aggregated in space (Condit 
et al., 2000; He et al., 1997). In this case the joint probability of oc-
currence for a species is dependent on the distance between sam-
pling locations (Diggle,  2013). This means the derivation adopted 
above for random placement of individuals is not a general solution 
(i.e., Pk∩l,i ≠ Pk,i ⋅ Pl,i generically). However, it is possible to use a simi-
lar approach to approximate the case where samples are adequately 
separated in space for their sampling probability to be independ-
ent of distance, or the area of interest (e.g., sampling grain) is large 
relative to the typical clustering pattern. That is, aggregation can be 
measured in different dimensions (Hui et al., 2010), where the num-
ber of individuals across samples is over-dispersed (variance > mean) 
but with samples randomly placed in space (i.e., Pk∩l,i ≈ Pk,i ⋅ Pl,i).

To account for non-random (aggregated to regular) distributions 
of individuals among samples, models have been derived from the 
negative binomial (He & Legendre, 2002) and finite negative bino-
mial distribution (Zillio & He, 2010). Notwithstanding the argument 
in the previous paragraph, under a negative binomial distribution 
of individuals among randomly placed samples (Pk∩l,i ≈ Pk,i ⋅ Pl,i), the 
expected number of shared species in m samples of area a, or ex-
pressed as α = a/A (the proportion of total study extent in one sam-
ple) is:

where ki is a parameter accounting for the spatial distribution of spe-
cies i, with other notation following Equation (2). The term (1 − α) is 
required to ensure the number of species is zero when a = 0, and S 
when a  =  A, describing areal sampling without replacement (He & 
Legendre, 2002; Zillio & He, 2010).

Alternatively, based on the finite negative binomial distribution 
of individuals among randomly placed samples (Zillio & He, 2010), 
the equivalent model is:

where Γ(n) = (n – 1)! is the gamma function and other notation is as for 
Equation (3).

In both Equations  (3) and (4), clustering parameter ki adjusts the 
mean density in subarea a for species i, representing the effect of in-
traspecific spatial patterns. Aggregated, conspecific individuals have 
an attractive effect, meaning ki takes positive values, while in regular 
distributions conspecifics are inhibitory, resulting in negative values of 
ki (He & Gaston, 2000; Zillio & He, 2010). Parameter ki can therefore be 
varied systematically to describe different conspecific spatial distribu-
tions, from aggregated to regular to random (e.g., He & Legendre, 2002; 
Wilber et al., 2015). As k approaches infinity (either negative or posi-
tive; He & Gaston, 2000), conspecific individuals follow random place-
ment and Equations (3) and (4) converge to Equation (2).

In reality, every species follows a unique spatial pattern, that is, 
has a unique ki value (Condit et al., 2000; He et al., 1997), and this 
value changes with area. If the value of k for every species at each 
scale of interest had to be estimated individually, it would result in 
an unfeasibly large number of parameters to fit Equations  (3) and 
(4) (i.e., one for every species). Because the value of ki changes with 
area, ki needs to be estimated at each scale. Fortunately, there are 
two simplifications that make this unnecessary. First, aggregation 
tends to scale with area as a function of species abundance (see 
‘Scaling properties of the k parameter’). Second, a single community-
level estimate of k is adequate to model emergent patterns of diver-
sity (Plotkin & Muller-Landau, 2002). Here we achieve this using a 
scaling factor 1/c, where ki = Ni�∕c and Ni� is the abundance of spe-
cies i in subarea a (note, � = a∕A), and c is the estimated community 
level scaling parameter at this spatial scale. Substituting c = Ni�∕ki 
into Equations (3) and (4) we obtain the negative binomial (Equation 
5) and finite negative binomial (Equation 6) shared species null mod-
els of individuals among randomly placed samples:

and

where c is now a constant for a given α and other notation is the 
same as above. The use of a community-level scaling factor not only 
decreases complexity in the use of the model for prediction of spe-
cies diversity at different scales, but also provides a mean to validate 
model predictions where it can be used as a model parameter to fit 
Equations (5) and (6) to observed data. As the use of Equations (5) 
and (6) should make little quantitative difference, the additional com-
plexity of Equation (6) may not be warranted for numerical calcula-
tion and we validated both models for comparison (see Supporting 
Information Appendix S2). However, in the main text we choose to 
use Equation (6) because it is the exact model within a finite habitat 
extent (Zillio & He,  2010). Note that when m  =  1, Equation  (5) is 
the species–area model for the negative binomial distribution (He & 

(2)

�m|a =
S∑
i=1

P1∩2∩…∩m,i =

S∑
i=1

P1,i ⋅ P2,i ⋅ . . . ⋅ Pm,i =
∑ [

1−
(
1−

a

A

)Ni

]m

(3)�m|α =
S∑
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[
1−(1−α)

(
1+

Niα

ki

)−ki
]m
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[
1−

Γ
(
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Γ
(
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)

Γ
(
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(
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Legendre, 2002) and Equation (6) is the species–area model for the 
finite negative binomial distribution.

2.2  |  Calculating diversity in subdivided habitat 
from shared species

Consider a formerly continuous landscape of area A that has been 
subjected to instantaneous habitat destruction, resulting in m 
randomly placed discrete remnant patches of subdivided habitat, 
each with area a (i.e., the total remaining habitat is m × a ≤ A) and 
separated by a non-habitat matrix. We can use the random or non-
random null models of individuals among randomly placed samples 
(Equations 2 or 6) to predict zeta diversity (orders 2 to m), from which 
the expected effects of subdivision on diversity for the m randomly 
placed patches can be calculated for any desired fraction of total 
area A. We use the zeta diversity partition to calculate three diver-
sity metrics: (a) species accumulation across 1 to m patches, that is, 
species-accumulation curve; (b) pairwise Sørensen dissimilarity; and 
(c) the number of species found in only a single patch (single-patch 
endemics). We summarize these calculations below and refer inter-
ested readers to their original derivations (Hui & McGeoch, 2014; 
McGeoch et al., 2019).

The total number of species accumulated from 1 to m patches of 
size a is the species-accumulation curve. If samples are interpreted as 
remnant patches following land clearance, the number of species in m 
patches represents the total species diversity of the resulting subdi-
vided landscape (i.e., gamma diversity). The difference in the number 
of expected species in a single, continuous patch of size m × a versus 
the total species diversity in m discrete patches each of area a, is es-
sentially the difference in species number expected due to subdivision 
alone (as considered in the SLOSS debate). To explore this difference, 
we vary m from 2 to 32 samples, adjusting patch area a to maintain 
a constant total area. Species richness in individual patches will de-
crease from the shrinking patch area with increasing m, but the total 
habitat area remains constant. From the zeta diversity components (ζj), 
species accumulation is calculated recursively (Hui & McGeoch, 2014):

where Stm,a = the total number of species contained in m patches of 
area a and ζj = the number of species shared in j patches ( j = 1, 2,…, 
m). Thus, zeta diversity can be used to calculate the number of species 
found in all m patches, or only a subset of these. Equation (7) offers a 
critical model for assessing the effect of landscape fragmentation on 
diversity. This is done by comparing Equation (7) and the species–area 
models (m = 1) defined by Equations (2) or (6) but replacing subarea 
a by m × a. That is, the difference between Stm,a and �1|ma is attribut-
able only to habitat subdivision as the total habitat area (= m × a) is 
constant in the comparison; it thus defines the geometric effect of 
habitat subdivision.

Another important facet of diversity in subdivided habitat is the 
number of subpopulations each species maintains. For a constant 
patch size, extinction risk is a function of the number of occupied 
patches in a metapopulation (Hanski, 1999), species most at risk in 
a subdivided landscape are those that are endemic to a single patch 
(hereafter single-patch endemics or SPE). The number of SPE can 
be calculated from zeta diversity according to the formula (Hui & 
McGeoch, 2014): Stm,a – Stm–1,a, where Stm,a and Stm–1,a are calculated 
from Equation  (7). Similarly, the number of species confined to a 
given number (n) of patches is Stm,a – Stm–n,a.

2.3  |  Model validation

Our approach affords a spatially implicit expectation for the diversity 
of randomly placed patches of habitat arising from a formerly con-
tinuous landscape were all the habitat loss and subdivision to occur 
instantaneously, that is, the geometric fragmentation effects (May 
et al., 2019). The value of the null models is in establishing an expec-
tation for the effects of subdivision (and this alone) on diversity for 
given abundances and spatial patterns of species. For the underlying 
non-random model to be valid we require inter-patch distances to 
be large enough to ensure the joint probability of occurrence of the 
species at any two locations is independent of their distance. Our 
simulations and empirical results have confirmed this assumption 
(Supporting Information Figures S3.1, S3.2, Appendix S3) and the 
non-random model (Equations 5 or 6) should provide a reasonable 
approximation for empirical species. This is not surprising for forest 
tree species, as Condit et al. (2000) showed that for stem-mapped 
forest plots distance decay in neighbourhood density mainly occurs 
at the fine scale, on the order of tens of metres. This suggests these 
data should provide a suitable test for the non-random model. Thus, 
we used both empirical data from stem-mapped plots and simulated 
forests with specific spatial patterns for model validation.

Empirical data were from the 50-ha Barro Colorado Island (BCI) 
stem-mapped forest plot (Condit et al., 2012), 2005 census, which 
recorded 211,845 live stems (with diameter at breast height ≥ 1 cm) 
distributed among 301 tree/shrub species. Stem-mapped forest data 
such as BCI are useful for testing spatial patterns of diversity, as they 
provide precise (x, y) coordinates and species identity for all individu-
als within a total plot area (typically 50 ha). It is also worth noting that 
BCI data show little change in shared species with distance, particu-
larly with increasing zeta order (Supporting Information Figure S3.1). 
This is typical of landscapes of similar spatial extent, which offer use-
ful data to test our models. For the following simulations, we retained 
the same total number of individuals and species as the empirical 
data but varied either the spatial distribution of individuals of each 
species (aggregated, random or regular) while retaining the empirical 
abundance distribution, or the species abundance distribution while 
retaining a constant spatial pattern (i.e., maintaining approximately 
the same level of aggregation as the empirical data).

In model validation we compared five intraspecific spatial pat-
terns, those of the empirical data and four simulated forests with 

(7)Stm,a =

m�
j=1

(−1)j+1
⎛
⎜⎜⎝
m

j

⎞
⎟⎟⎠
� j
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individuals positioned at random, at higher and lower strength of 
aggregation than BCI, and regularly. We report the results for the 
empirical and random plots in the main text and the remainder in 
Supporting Information Appendix S2. The locations of individuals in 
the random plot were simulated from a Poisson point process, while 
the aggregated and regular plots used Thomas and Strauss point 
pattern processes, respectively, simulated using R package ‘spatstat’ 
(Baddeley et al., 2015). The two sigma values used for the Thomas 
process (i.e., for aggregated plots), 35 and 50 m, respectively, repre-
sented slightly less and slightly more aggregated distributions than 
the empirical data (which had diversity patterns consistent with a 
sigma of approximately 40 m). In all simulations, the number of trees 
for each species was kept as the observed in BCI.

We also compared four different species abundance distribu-
tions, again using the empirical SAD and simulating three common 
SAD models with the same number of species and individuals as 
the empirical BCI data. Simulated SADs were based on the broken 
stick, log series and lognormal models, each simulated using R pack-
age ‘sads’ (Prado et al., 2017). For technical detail on simulations see 
Supporting Information Appendix S1.

To create data to validate the models, we sampled 20 randomly 
positioned, non-overlapping square quadrats. To test model per-
formance when changing the size of subdivided area (or grain) and 
to model the scaling relationship for k (Equation (8), see below) we 
sampled at 10 different grains (quadrat size = 25, 100, 225, 400, 
625, 900, 1,225, 1,600, 2,025 and 2,500 m2). At each grain, sam-
pling was repeated 200 times and the shared species and related 
diversity metrics (see ‘Calculating diversity in subdivided habitat 
from shared species’) were calculated for each sampling iteration. 
The mean and sampling variation (95% sampling intervals) were cal-
culated for the 200 iterations and compared with model predictions.

2.3.1  |  Model fitting and validation

The random placement model (Equation 2) has no free parameters, 
but the non-random model (Equation  6) required a single fitting 
step: estimating c at each sampling grain. All other models and diver-
sity calculations using the zeta diversity partition were parameter 
free. We used numerical optimization (Brent’s method) to find the 
value for c that minimized the absolute difference between mean 
observed richness in one quadrat for each grain and the value pre-
dicted by Equation  (6) with m = 1 (i.e., the number of species in a 
subarea, a). R code to fit and apply the models for prediction is avail-
able at https://github.com/deane​d01/Subdi​vHabi​tatDi​versi​ty/ and 
archived at https://doi.org/10.5281/zenodo.5767025.

The estimate for k was then used in the finite negative binomial 
model (Equation 6) to predict shared species �m of m order at sam-
pling grain a and the predicted shared species were used to calcu-
late species accumulation curves, total species diversity, pairwise 
Sørensen dissimilarity and single-patch endemic species. Goodness-
of-fit of these metrics was assessed using the coefficient of deter-
mination (R2) and relative root-mean-square error (RMSE), defined 

as: RMSE =

�
1∕m

∑m

i=1

�
xi−oi∕oi

�2 , where: oi = observed, xi = pre-
dicted and m = the number of patches (from 5 to 20). Model fit was 
also illustrated graphically by showing predicted versus observed 
(mean ± 95% confidence limits) values. We present the validation 
results for Equations (2) and (6) and corresponding diversity metrics 
applied to the empirical and simulated data, respectively, in the main 
text and present all other validation results (e.g., for simulated SADs 
and spatial patterns) in Supporting Information Appendix S1.

2.3.2  |  Scaling properties of the k parameter

For the non-random models, community-level parameter k scales 
according to a power law (Plotkin & Muller-Landau, 2002) and can 
be estimated at any scale once a base scale value is known (He & 
Hubbell,  2003). Quantifying this scaling relationship is critical to 
predicting shared species for different areas (and therefore levels of 
subdivision). Using scaling factor c as a fitting parameter allows us to 
test this relationship, which follows:

where ca is the value of the scaling parameter at the spatial grain a, c0 is 
the value of the parameter quantified at base scale a0 and z is a param-
eter describing the scaling relationship. We tested the fit of Equation (8) 
using the estimate for c at the 10 sampling grains identified during 
model validation (25–2,500  m2), adopting 400  m2 as the base scale 
(a0) to estimate c0. Choice of base scale is effectively arbitrary (He & 
Hubbell, 2003) but for this study extent, 400 m2 represents a suitable 
trade-off between capturing aggregation at species level while avoiding 
saturated distributions of species (where the species occurs in every 
cell) at large spatial grains. Other base scales gave similar results.

2.4  |  Model predictions for diversity in 
subdivided habitat

Having validated the model, we did two sets of simulations to ex-
plore how (a) shared species and the total species number in subdi-
vided landscape were affected by changes in sampling grain, species 
abundance and spatial distributions, and (b) how subdivision alters 
observed diversity for a constant total habitat area. In simulations 
we retained the same constraints on area and species abundance as 
for validations.

2.4.1  |  Predicting the expected change in the 
number of shared species for different sampling grain, 
SAD and spatial pattern

For shared species, we predicted the outcome for m  =  20 using 
Equations  (2) and (6) by varying (a) patch area using six sampling 

(8)ca = c0

(
a

ao

)z

https://github.com/deaned01/SubdivHabitatDiversity/
https://doi.org/10.5281/zenodo.5767025
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grains: 0.05, 0.1, 0.25, 0.5, 0.75 and 1 ha; (b) relative abundance 
under three models of contrasting evenness (broken stick, log-
normal and log series, see Supporting Information Appendix S1); 
and (c) spatial distribution using aggregated, random and regu-
lar patterns at a given grain (0.25  ha) and for a log normal SAD. 
Parameter c was estimated at 0.25 ha from the non-random model 
(Equation 6) for the empirical and aggregated data as described in 
the previous section and a value of −0.05 was set to represent reg-
ular patterns. The sensitivity of shared species to these variations 
was illustrated using normalized zeta decline (normalizing shared 
species by S, the total number of species in the global extent rather 
than the total richness predicted across all samples) and gamma 
diversity (Equation 7).

2.4.2  |  Predicting the expected effects of 
subdivision on diversity for constant total area and 
contrasting SAD and spatial pattern

Finally, we used the above scenarios of varying spatial and abun-
dance distribution (see Model validation; Supporting Information 
Appendix S1) to explore the effects of increasing subdivision while 
retaining a constant total habitat area. The impacts of fragmentation 
for diversity are thought to become most pronounced when less 
than approximately 30% of habitat remains (Andrén, 1994; Hanski 
et al., 2013). We assumed 90% destruction of the habitat and di-
vided the remaining area into 2, 4, 8, 16 and 32 equal sized patches 
retaining the remaining proportion of habitat at 10% (note retaining 
20 and 30% of habitat produced qualitatively similar results). For 
each level of subdivision (represented by the number of patches 
into which the area was subdivided), we used the non-random 
shared species model with c scaled according to Equation (8) fit to 
the empirical or simulated data (Supporting Information Appendix 

S2) to calculate zeta diversity, from which we calculated total spe-
cies richness, pairwise Sørensen dissimilarity and the proportion 
of single-patch endemics. We present total species richness in the 
subdivided habitat as proportional change from the richness pre-
dicted for a single contiguous patch. Thus, positive values indicate 
more species were present within subdivided habitat, negative val-
ues the reverse. All simulations and modelling were done in R 3.5.1 
(R Core Team, 2014). The complete range of model validation and 
predictions presented in the Results and their underlying motiva-
tions are summarized in Table 1.

3  |  RESULTS

3.1  |  Shared species model validation

At 400-m2 sampling grain, predicted shared species for the non-
random and random models were all within sampling error in the 
observed mean for empirical and simulated random plots (Figure 1; 
see Supporting Information Figures S2.1–S2.6 in Appendix S2 for ad-
ditional model validations under other non-random spatial patterns 
and abundance distributions). For the empirical plot, the non-random 
model (Equation 6) tended to overestimate (Figure 1a), particularly 
with increasing sampling grain (Supporting Information Figure S2.7, 
Appendix S2). Mean RMSE for shared species predictions ranged 
from 0.03 to 0.35 and was largest for empirical and regular spatial 
patterns, while R2 exceeded .99 for all models and all spatial patterns 
(Supporting Information Table S2.1). For regular spatial patterns, 
models under-predicted shared species (Supporting Information 
Figure S2.1).

The estimated c parameter for the finite negative binomial model 
closely followed the scaling relationship of Equation (8) (Figure 2) for 
the BCI data, although for larger sampling areas the estimated value 

TA B L E  1  Summary of modelling stages undertaken and the underlying question/motivation for each. Analyses are divided into model 
validation and model application, with the relevant display item presenting the results in either the main text or Supporting Information 
Appendix S2

Topic Question addressed Result

Model validation

1. Shared species Do the models predict the number of shared species for 
simulated and empirical data?

Figure 1, Supporting Information Figures S2.1, 
S2.5, Table S2.1

2. Area-scaling in c parameter Does Equation (8) describe area-scaling in the c-parameter of 
the non-random shared species model (Equation 5/6)?

Figure 2, Supporting Information Figures S2.8, 
S2.10

3. Diversity patterns Do the predicted shared species provide reliable predictions 
of the expected diversity?

Figure 3, Supporting Information Figures 
S2.2–2.4

Model predictive application

4. Shared species How does the number of shared species change with changes 
in sampling grain, relative abundance and intraspecific 
spatial patterns?

Figure 4, Supporting Information Figure S2.9

5. Diversity patterns What are the expected geometric effects of subdivision for 
diversity?

Figure 5, Supporting Information Figures 
S2.11, S2.12
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was more prone to deviate from model predictions (Figure 2). The 
estimated model was ca = 1.06 ⋅ (a∕400)0.28, with R2 = .99.

3.2  |  Diversity prediction validation

Using estimated zeta diversity from the shared species null models 
(Equations 2 and 6), total species richness for multiple samples and 
single-patch endemic species were accurately predicted for all sam-
pling grains (25–2,500 m2; Supporting Information Figure S2.2) and 
spatial patterns (Figure 3, Supporting Information Figures S2.3–S2.6; 

all R2  >  .99; all RMSE  <  0.07; Supporting Information Table S2.1). 
Species accumulation curves for empirical data were accurately 
predicted (Figure 3, Supporting Information Figures S2.2, S2.3 and 
S2.6), despite declining accuracy for the non-random shared spe-
cies model (Equation 6) with increasing sampling grain (Supporting 
Information Figure S2.7). There was little difference in the predic-
tive performance of the two non-random models (Equations 5 and 
6) for any of the predictions, although where differences were ob-
served, the finite negative binomial model was superior (Supporting 
Information Table S2.1).

3.3  |  Changes in shared species for contrasting 
ecological and sampling geometry

The expected proportion of total plot diversity shared among samples 
(the decrease in zeta diversity with increasing numbers of samples) 
was a nonlinear decreasing function of sample size under any of the 
constraints analysed (Figure  4a–c). With decreasing sampling area, 
less even SAD, or as spatial pattern changes from regular through ran-
dom toward aggregation, the proportion of shared species decreased 
(Figure 4a–c). The accumulation of species across all samples had the 
opposite trend to decline in shared species, increasing for greater 
decreases in zeta. For a given sampling area, the proportion of spe-
cies accumulated was most sensitive to the evenness of the SAD 
(Figure 4d–f). For example, the exponent of a power law species–area 
curve (i.e., s ∝ areaz) fitted to the data in Figure 4e changed by almost a 
factor of three between the broken stick (z = 0.07) and log series SAD 
(z = 0.20), while for a log normal SAD the different spatial patterns 
resulted in an increase of c. 50% (z = 0.10 to 0.15). In contrast, zeta re-
tention was most strongly affected by area and spatial structure, with 
rare species rapidly lost among small samples and under increasing 

F I G U R E  1  Predicted and observed shared species for twenty 400-m2 non-overlapping quadrat samples randomly located in observed 
and simulated 50-ha forest plots. Both plots use the empirical Barro Colorado Island (BCI) species abundance distribution (SAD) but species 
vary in spatial distribution: (a) empirical BCI data, and (b) simulated random BCI plot. Each panel shows the mean and sampling error (95% 
confidence interval) in observed shared species from 200 repeat samples. Solid lines are model predictions for (a) using the best estimated 
c (=1.06) for Equation (6), and (b) parameter-free random placement model (Equation 2)

F I G U R E  2  Scaling behaviour of the Finite negative binomial (FNB) 
c parameter as a function of sampling grain. Points show the estimated 
value of c in Equation (6) fit to mean diversity at the sampling grain 
indicated. The line is the fit of Equation (8) to a base scale of 400 m2, 
with estimated c400 = 1.06 and the exponent value z = 0.28
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intraspecific aggregation (Supporting Information Figure S2.5). When 
individuals were randomly positioned (Supporting Information Figure 
S2.5) there was little difference between retention of species in the 
assemblage with increasing order of zeta.

3.4  |  Effects of subdivision on diversity patterns

For aggregated assemblages, increasing subdivision of habitat area 
results in an increasing number of species being sampled relative 
to a single contiguous area, and more aggregated assemblages pro-
duce a greater proportional increase (Figure 5a). For a given level of 
aggregation, less even distribution of abundance results in a larger 
subdivision effect, increasing the number of species in subdivided 
relative to contiguous habitat (Figure 5b). Under random placement, 
the total species number does not change with subdivision, while for 
regular assemblages the total number of species sampled decreased 
with increasing subdivision (Figure 5a). For aggregated assemblages, 
the increase in species number slows down with subdivision and 
the most rapid changes occur as the area is broken up into a small 

number of patches (e.g., subdividing from 2–4 patches predicts 6 
additional species, but between 16 and 32 fewer than 3; Figure 5a, 
aggregated scenario). For the simulated scenarios, the proportional 
increase in species between a single patch and subdivided habitat 
was modest, remaining below 10% even for the simulated highly ag-
gregated assemblage.

Pairwise Sørensen dissimilarity had a qualitatively similar increase 
with subdivision but was more linear than changes in relative species 
number (Figure 5b). Pairwise Sørensen dissimilarity was also apparently 
more sensitive to changes in evenness of abundance than to changes in 
spatial pattern (Figure 5e). The proportion of species found in only a sin-
gle patch decreased rapidly when total area was subdivided among few 
patches but differed little with increasing subdivision. For example, in 
the empirical data, doubling the number of patches from 2 to 4 reduced 
the predicted number of species in only one patch from 48 to 37, while 
doubling from 16 to 32 patches predicted 30 and 29 species, respec-
tively. As with the other metrics, this proportion also increased with 
increasing aggregation (Figure 5c). However, the proportion of single-
patch endemics was more sensitive to changes in relative abundance 
than to aggregation for a given number of subdivided areas (Figure 5f).

F I G U R E  3  Observed and predicted total species richness (top row) and proportion of species found in only a single patch (bottom 
row) for 20 samples from empirical (left column) and simulated random (right column) 50-ha plots at 10 different sampling grains. (a) Total 
species in all samples for empirical Barro Colorado Island (BCI) data, (b) total species in all samples under random placement, (c) single-patch 
endemics (SPE) for BCI data (number of SPE ranged from 32–47 species), and (d) single-patch endemics under random placement (range: 29–
45 species). Lines show the prediction for Equation (7), using shared species predictions from Equation (6) (a, c) and Equation (2) (b, d). Points 
show the mean (error bars = 95% confidence interval) observed species from 200 repeat samples from the BCI data
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4  |  DISCUSSION

4.1  |  Intraspecific patterns determine the diversity 
of subdivided habitat

A higher total species richness in subdivided, than contiguous, hab-
itat of equal total area is a widely recognized empirical pattern (re-
viewed in Fahrig, 2020) but claims of any positive diversity effects 
from subdivision remain controversial (e.g., Fahrig et  al.,  2019; 
Fletcher et al., 2018). The null models derived and validated here 
show the presence of more species in subdivided, than contiguous, 
habitat is an inevitable geometric effect of landscape fragmenta-
tion in case of aggregated spatial distributions. As such, this geo-
metric expectation is an appropriate null hypothesis for testing the 
effect of landscape fragmentation on diversity (May et al., 2019). A 
similar idea appeared in Kobayashi (1985) almost 40 years ago but 
it remains widely unrecognized and its implications little explored 

(although see May et al., 2019). While this does not preclude the 
possibility of some positive effect of subdivision on species diver-
sity in actual landscapes (e.g., Fahrig, 2017), the simplest explana-
tion for greater richness of small patches in SLOSS-type patterns is 
that these arise from intraspecific aggregation with the strength of 
differences dependent upon species-abundance distribution pat-
terns (Figure 5, Supporting Information Figures S2.3, S2.6).

Of course, the eventual post-fragmentation landscape diversity 
of formerly contiguous habitat will unfold over time and depend on 
many interacting factors relating to changes in area and isolation of 
patches (reviewed in Haddad et al., 2015). Most fragmentation mod-
elling studies focusing on these long-term outcomes of biotic relax-
ation (where species’ populations and demographic rates adjust to 
the new carrying capacity of a landscape following clearance) have 
shown well-established negative effects for diversity (e.g., Chase 
et al., 2020; Fletcher et al., 2018; Haddad et al., 2015) but few con-
sider geometric effects (but see: Kobayashi, 1985; May et al., 2019). 

F I G U R E  4  Changes in normalized zeta diversity decline (ratio of the number of shared species and total species number; top row) and 
the corresponding proportion of total species sampled (bottom row) of 20 samples, under varying: (a, d) sampling grain, (b, e) species 
abundance distributions (SADs), and (c, f) intraspecific spatial pattern. Panels (b, c) and (e, f) were calculated using a 0.25-ha sampling grain. 
Values on the y axis represent the proportion of species shared or accumulated from a species pool of 301. Panels (a), (c), (d) and (f) used the 
lognormal (LN) SAD. Other SAD used were: BS = broken stick; LS = log series). Parameter k in panels (c, f) simulated different intraspecific 
spatial patterns: −0.05 = regular, 20 = random, 1.9 = observed aggregation in Barro Colorado Island (BCI) at 0.25 ha, and 0.65 = aggregation 
predicted from the simulated landscape with the aggregation parameter sigma of the Thomas point process = 0.25
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Although different fragmentation models predict wide variation in 
the long-term outcomes of fragmentation for diversity, they tend 
to show strong negative effects on total species number with in-
creasing fragmentation, particularly as total habitat amount declines 
(Arnillas et  al.,  2017; Chisholm et  al.,  2018; Claudino et  al.,  2015; 
Hanski et  al.,  2013; Rybicki et  al.,  2020; Thompson et  al.,  2017). 
Both Hanski et al. (2013) and Rybicki et al. (2020) used simulations 
to show fragmentation matters little when a high proportion of hab-
itat remains in the landscape but becomes important as total habitat 
area in the landscape falls below about 30%. However, even at such 
a small total habitat area, our models show the geometric effects 
of subdivision could have the reverse effect, resulting in positive 
fragmentation effects on landscape species richness, while poten-
tially spreading the risk of landscape-level extinction. For example, 
by reducing the proportion of species in the landscape confined to 
a single patch (Figure 5), the risk of local extinction for some species 

could decrease, relative to a single large patch, depending on the 
amount of dispersal among patches and how local extinction risk 
changes with patch size (McCarthy et al., 2005).

Because of the static nature of our models, any predictions would 
more closely approach reality in fragmented landscapes for long-lived 
sessile organisms than for highly mobile taxa, and for fragmentation 
that occurs over a short period of time. While our method does not 
consider any long-term implications of biotic relaxation on diversity, it 
is conceivable these initial patterns could become stronger over time, 
because post-fragmentation processes would drive species to be more 
aggregated, a weaker form of biotic relaxation (He & Hubbell, 2013). 
This would likely further increase the relative number of species in 
groups of smaller patches, consistent with much empirical evidence 
(e.g., Deane et al., 2020; Fahrig, 2017, 2020; Quinn & Harrison, 1988; 
Simberloff & Gotelli,  1984). Similarly, our null models predict only 
total species number, not species composition, nor abundance. It is 

F I G U R E  5  Predicted geometric effects of subdivision on diversity as a function of spatial pattern (left column) and evenness in 
abundance (right column). Diversity is compared for the total number of species relative to that predicted in a single contiguous area (top 
row), pairwise Sørensen dissimilarity (centre row) and the proportion of species found in only a single patch, that is, single-patch endemics 
(SPE; bottom row). Each point represents model predictions for the relative diversity metric as 10% of habitat area sampled from the original 
extent is increasingly subdivided (m = 2, 4, 8, 16, 32). Each simulation is based on the empirical data of Barro Colorado Island (BCI) and the 
curves corresponding to predictions for the observed data are shown in all panels
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possible the greater richness in subdivided habitat might be limited to 
the most common species in the pre-clearance landscape. However, 
within our validation data, there was a difference in the mean abun-
dance of species sampled in a single patch from those sampled in 
subdivided habitat, the latter tending to sample relatively rare species 
from the original landscape (Supporting Information Figure S2.11).

4.2  |  The effect of spatial pattern and abundance 
distributions on diversity in subdivided habitat

The roles of species abundances and spatial distributions for scal-
ing species richness and pairwise compositional similarity have been 
established from prior applications of spatial sampling theory (e.g., 
He & Legendre, 2002; Kobayashi, 1985; Morlon et al., 2008; Plotkin 
& Muller-Landau, 2002). Greater levels of intraspecific aggregation, 
or less even abundance distributions, both reduce species density 
in small areas. For a constant total number of species, this means 
fewer species are shared among pairs of samples (i.e., higher spe-
cies turnover; Morlon et al., 2008; Plotkin & Muller-Landau, 2002) 
and species–area curves have steeper slopes (He & Legendre, 2002). 
Here we show the consequences of this for subdivided habitat, 
where smaller patches, less even abundance distributions or more 
aggregated assemblages share fewer species between subareas 
and therefore accumulate a greater fraction of total original species 
number than a single continuous area (Figures 4 and 5).

Unlike species richness, the proportion of single-patch endemics 
varies little with contrasting spatial distributions. This confirms the 
mathematical proof in He and Hubbell (2011), that endemics–area 
curves follow random placement, irrespective of spatial aggregation. 
In contrast, the evenness of abundance distributions has a strong 
influence on the proportion of single-patch endemic species, where 
more even distributions result in a smaller proportion of such spe-
cies. This suggests species abundance distributions have implica-
tions for the relative impacts of immediate and long-term extinction 
risk (Kitzes & Harte, 2015), which our shared species models can be 
used to explore for subdivided habitat.

4.3  |  The role of spatial scale

The value of the community-level clustering parameter in the non-
random shared species model scales with sample area according to a 
power function. This not only simplifies the use of the model in simu-
lation (Supporting Information Appendix S2) but also suggests a gen-
eral prediction. As k increases, the shared species—and therefore any 
diversity metric calculated from this—will begin to resemble that for 
random placement even for aggregated assemblages. Typically, this 
behaviour occurs at a value of k exceeding c. 10 (Zillio & He, 2010). 
As we confirm here, subdivision makes no difference to our ex-
pectation for diversity if individuals are randomly positioned (He & 
Hubbell, 2011; Kobayashi, 1985; May et al., 2019). Thus, it is reason-
able to expect that if all the patches under consideration were large 

enough that the corresponding k parameter for the original assem-
blage exceeded 10, then geometric effects of subdivision would not 
be evident. Extrapolating the area-scaling relationship for c shown in 
Figure 2, a minimum expected patch size to produce diversity patterns 
consistent with random placement would exceed 100 ha. Of 68 stud-
ies of fragmented landscapes analysed in Deane and He (2018), over 
80% of patches were less than this total area confirming that geometric 
effects of fragmentation for diversity should not be overlooked (May 
et al., 2019). Interestingly, in a review of the fragmentation literature 
for birds and mammals, Andrén (1994) proposed random placement as 
a reasonable expectation for diversity of patches, particularly during 
the early stages of fragmentation when remnant patches are largest 
and geometric effects of subdivision would be most likely small.

4.4  |  Model contribution

While a quantitative understanding of shared species in subdivided 
habitat is known to be essential for calculating total species diversity 
(Higgs & Usher, 1980; Simberloff & Abele, 1976), prior approaches 
have typically been derived on the basis of the species–area rela-
tionship (e.g., Harte & Kinzig, 1997; Higgs & Usher, 1980; Tjorve & 
Tjorve, 2008). Our analytical solution for shared species is derived 
from probability of species occurrence, a more basic quantity for de-
scribing species distribution, which is directly linked to species spa-
tial pattern and abundance. As such, the diversity expectation for 
subdivided habitat depends only on spatial distribution and abun-
dance of species. This expectation for the number of shared species 
unlocks the use of the zeta diversity partition (Hui & McGeoch, 2014) 
to calculate various diversity metrics in subdivided habitat. The es-
timation of single-patch endemics is one example and an important 
contribution of this study. This value can be predicted for any num-
ber of patches, offering useful context for understanding geometric 
effects on potential future extinction risk from a metapopulation 
perspective. New measures expressed in terms of zeta diversity are 
also emerging, along with methods to relate changes in zeta diversity 
to environmental gradients (Hui et al., 2018; Latombe et al., 2017, 
2018; Lu et al., 2019; McGeoch et al., 2019). With our approach to 
estimating shared species, such measures become available for pre-
dicting the expected geometric effects of subdivision for species 
diversity.

For application of the non-random model it is important to be 
aware the approximate joint probabilities (i.e., Pk∩l,i ≈ Pk,i ⋅ Pl,i for spe-
cies i in patches k and l) apply only for sampling grain and inter-sample 
distances at which abundances are independent, which will vary for 
each community. Model validations suggest they are reasonable for 
forest plots of tens to hundreds of hectares, an extent smaller than 
species’ distributional ranges. This might not be a limitation when 
simulating the geometric effects of late-stage fragmentation, where 
mean nearest-neighbour interpatch distances increase (Andrén, 
1994) and the assumption that patches would be adequately spaced 
to be independent is reasonable. Another assumption is that spatial 
distribution of species should follow Poisson or negative binomial 
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distributions. Although those patterns are widely observed for em-
pirical species (Condit et al., 2000; He et al., 1997; Zillio & He, 2010), 
departure from those patterns, for example, the presence of strong 
directional and spatially autocorrelated environmental gradients, or 
variation in spatial patterns among species, could contribute to the 
deviation between the expected and observed diversity. Future de-
velopment of the models could consider how to include heteroge-
neous environments and explicit incorporation of spatial location of 
fragments to provide a more general model.

5  |  CONCLUSION

Our shared species null models of individuals among randomly 
placed samples provide an analytical framework for exploring the 
geometric diversity effects of subdivision, and our resulting charac-
terizations of these effects yield some important insights. First, they 
confirm that more species are expected for a given amount of sub-
divided habitat whenever intraspecific spatial patterns are predomi-
nately aggregated (Kobayashi, 1985; May et al., 2019). As a starting 
hypothesis, the observation of more species in fragmented habitat is 
perhaps best interpreted as an artefact of subdivision rather than a 
positive effect. Likely geometric effects of subdivision for diversity 
should be ruled out before any biological explanation is proposed, 
particularly for long-lived, sessile taxa. Second, we show that any ad-
ditional ‘benefits’ from such geometric effects decrease in magnitude 
with increasing subdivision. This could be interpreted as support for 
a strategy of maintaining a few large habitat patches as the optimal 
compromise between maintaining large populations and spreading 
risk among multiple reserves (e.g., Soule & Simberloff, 1986). Finally, 
the models suggest that increasing subdivision also decreases the 
proportion of species found within a single patch. This raises some 
interesting questions regarding the rates of species loss that would 
be likely to occur from a single large fragment relative to a few smaller 
patches when only a small fraction of habitat remains.
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