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Abstract: As one of the global biodiversity hotspots, the mountains of Central Asia are home to a large
number of wild fruit species. Although the hotspots are constantly being seriously affected by climate
and land-use changes, effective assessments of the impacts of these changes for the dominant species
of wild fruit forests, wild apple (Malus sieversii), have been limited. We compiled 8344 occurrence
records for wild apple across its whole distribution ranges from field surveys and herbarium and
literature records. After data thinning to reduce sampling bias, we used ensemble niche models
to project current and future suitable habitats, examined the importance of environmental factors,
and assessed whether current national protected areas (PAs) are effective in protecting the suitable
habitats. We found that the distribution of wild apple is currently fragmented. Under future scenarios,
it would shift 118-227 km towards high latitudes and ~200 m towards high elevations, losing nearly
27-56% of suitable habitats in the south, and gaining some habitats in the north. The increased
temperature and expansion of cropland contributed to these shifts. Nevertheless, about 13% of the
suitable habitats are covered by existing PAs and less than 25% of suitable habitats will be protected
in the future. The cold spots for protecting intact wild fruit forests are located in Xinjiang, China and
Kyrgyzstan. Overall, we provide a detailed evaluation of the impacts of climate and land-use changes
on current and future distributions of wild apple in Central Asia. Considering that this species faces
a greater risk of habitat loss in the south of Central Asia, we advocate developing effective in situ
conservation strategies with long-term monitoring that will provide deep insights into the fate of
wild fruit forests.

Keywords: crop wild relatives; ecological niche model; protected area; range shift; useful plant
species; wild fruit forest

1. Introduction

Crop wild relatives (CWRs) are important socio-economic resources [1] that provide
unique ecosystem functions and services in their native habitats and represent key sources
of genetic material [2,3]. Human-induced climate change represents a particular challenge
for CWRs [4,5] through increasing ambient temperatures, altered hydrological cycles and
more frequent extreme weather events [6]. Globally, Vincent et al. [5] reported that 726 of
1261 CWRs will lose 50% or more of their current habitats due to climate change in the
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2070s. At regional scales, the negative impacts of climate change in the distributions of
CWRs were also documented in China [7], Europe [8], and North America [9]. Nevertheless,
the role of land-use changes in reshaping the distributions of CWRs is largely neglected,
although dramatic changes in land-use are increasingly impacting natural and semi-natural
habitats of CWRs [10,11]. Meanwhile, a large geographic bias exists in these studies, with
many studies in Europe and North America and a few in Central Asia, Africa, and South
America, although these regions hold a high richness of CWRs [9,12,13]. In addition,
compared to agriculture-related CWRs (e.g., maize, wheat, and rice), the effects of habitat
suitability and trends in climate change and land-use change on wild fruit tree species are
less examined [14].

Wild fruit trees are an important component of CWRs [10,15,16]. Wild fruit trees are
widely distributed in tropical and temperate climatic regions [9,10,17]. The climate changes
and other environmental crises have triggered a dramatic loss in wild fruit trees” genetic
diversity [10,16], while their conservation has yet to be addressed systematically. In situ
conservation of wild fruit trees has been largely neglected. Among the world’s protected
areas, only a few were established for wild fruit trees [18]. Less than 22% of the average
proportion of suitable habitats for wild fruit trees are protected currently [5]. Considering
their importance, there are large knowledge gaps on how wild fruit trees and the forests
will respond to climate and land-use changes in the future, especially in global biodiversity
hotspots.

The mountains of Central Asia, one of 36 global biodiversity hotspots, cover about 86
million hectares in area and are one of the most important centers of origin and diversity
for temperate wild fruit trees [19]. More than 90% of temperate-zone fruit species are found
here, including wild apple (Malus sieversii), walnut (Juglans regia), and apricot (Armeniaca
vulgaris) [20,21]. Wild apple and other wild fruit trees together form ancient forests, wild
fruit forests, which have both biological and economic value for fruit production and
play an important ecological role in Central Asia [22]. Meanwhile, with approximately
60 million people living here, biodiversity in this region is under serious threats and is
especially sensitive and vulnerable to changes in climate and land-use [6,23]. The increases
in air temperature in this region were projected to be the most pronounced in summer and
winter, with the largest magnitudes of 5.0 °C and 5.4 °C, respectively, by the end of the
century [6]. Moreover, the expanding cropland, deforestation, and other human activities
are dramatically changing this region’s ecosystems [24]. During the last decades, wild fruit
trees have been diminished to half of their original habitats [10,21,22]. There are 44 wild
fruit tree species that have been listed in the Red List of endangered trees of Central Asia,
including wild apple [25]. Therefore, it is particularly important to assess the impacts of
climate and land-use changes on wild fruit trees for regional agricultural production and
food security in this biodiversity hotspot [26].

Wild apple is a dominant species of wild fruit forests in Central Asia and an ancient
progenitor of the domesticated apple [27,28], which contains precious genetic resources
and provides key ecosystem services [22]. In Central Asia, its distribution covers a large
percentage of the total area of wild fruit forests, e.g., over 70% in the mountain leskhozes
of Kazakhstan [29]. In wild fruit forest communities, wild apple trees usually dominate
solely or co-dominate with 1-2 other wild fruit tree species [29]. For example, in one 4 ha
sampling plot in Xinjiang, China, nearly 99% of 1715 tree individuals were wild apple trees,
while others belonged to another seven species [30]. In 95 plots of wild fruit forests we
surveyed in China, wild apple contributed ~50% of total biomass, with over 80% biomass
for 49 plots (unpublished data). However, due to over 70% habitat loss in the last three
decades, wild apple has been listed in the red list of IUCN [31] and in the ‘Red Data Book of
China, Kazakh and Kyrgyz’ [10]. In this study, we aimed to gain a better understanding of
habitat requirements of wild apple, predict future population dynamics under climate and
land-use change scenarios, and evaluate whether existing national protected areas (PAs)
have effectively protected this species. By combining detailed species distribution data
of wild apple and climate and land-use data, we used ensemble niche models to predict
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the suitable habitats of wild apple across its entire range under current and future periods.
Specifically, we addressed the following questions: (a) What is the current status of wild
apple’s native distributions? How will its range shift under future scenarios of climate
change and land-use? (b) Which environmental factors have dramatic impacts in shaping
spatial distributions of wild apple? (c) Are the current national PAs effective in protecting
suitable habitats of wild apple in the current and future scenarios? Where are the hot and
cold spots for maintaining intact wild fruit forests in this region?

2. Material and Methods
2.1. Study Area

The mountains of Central Asia, most of the Tarbagatai and Barlyk Mountains, and a
small part of the Altai Mountains were selected as the current study area (37° N-51° N,
65° E-88° E; Figure 1). The study area stretches from Tajikistan in the south to Kazakhstan
and Russia in the north, including a large area of seven countries: western Tajikistan, north-
eastern Afghanistan, Kyrgyzstan, eastern Kazakhstan and Uzbekistan, western Xinjiang in
China, and a small part of Russia. This region is surrounded by desert on three sides, with
elevations ranging from 200 m in the low-lying desert to more than 7000 m in the Tien Shan
Mountains. Annual precipitation ranges from about 250450 mm, and precipitation in the
driest month is less than 20 mm [32]. The average temperature in January is —20 °C to
—5 °C, and average July temperature reaches 18 °C to 29 °C [33]. The soils have relatively
high nitrogen and organic content in the wild fruit forests [29].
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Figure 1. Location of the study area in Central Asia. X]J: Xinjiang, China, KAZ: Kazakhstan, KGZ:
Kyrgyzstan, TJK: Tajikistan, UZB: Uzbekistan, TKM: Turkmenistan. Red points represent occurrence
records for wild apple.

2.2. Data Source
2.2.1. Species Occurrence Records for Wild Apple

To obtain high-quality occurrence records for wild apple across its whole distribution
range, we compiled data from field surveys, herbariums and the literature. The field
surveys were conducted in all of the countries with wild apple distribution in Central Asia.
Precisely, we had several exhaustive investigations of wild apple populations in Xinjiang,
China from 2008 to 2021, including distribution range and abundance of wild apple across
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its whole elevational ranges in six counties. For herbarium data, we combined the records
from Global Biodiversity Information Facility [34] and Chinese Virtual Herbarium [35].
Finally, we obtained 8344 occurrence records for wild apple. To reduce the potential effects
of spatial sampling bias in these records, we deleted duplicate and pseudo-presence points
(e.g., records of planted wild apple located in water or snowy mountains), removed records
outside the distribution boundaries of wild apple, and then performed spatial thinning
for retained records using the ‘thin’ function in R package ‘spThin’ [36]. The cleaned and
thinned dataset contained 352 occurrences (Figure 1).

2.2.2. Current and Future Climate Data

The current and future climate was derived from the WorldClim database at a 2.5 arc-
min resolution [37]. To reduce multicollinearity, we removed highly correlated variables
using Pearson’s correlation coefficients (1121 > 0.7) [38], considering that mean diurnal
range (Bio 2) has no clear biological significance in explaining the distribution of wild
apple [29]. Finally, we selected three climate variables: annual mean temperature (MAT),
temperature seasonality (TEMP_season), and precipitation of driest month (PREC_dry).
The future climate in the 2050s (2040-2060) and 2090s (2080-2100) was characterized by two
different CMIP-6 scenarios from Shared Socio-economic Pathways (SSPs): SSP1-RCP2.6
(SSP126, the sustainability-oriented scenarios) and SSP5-RCP8.5 (SSP585, the unconstrained
growth scenarios) [39].

2.2.3. Current and Future Land-Use Data

We used the Land-Use Harmonization (LUH2) dataset [40], which reports the propor-
tional coverage of 12 land-use classes within each 15 arc-min grid cell of the globe in the
current and future scenarios (SSP126 and SSP585). We reclassified 12 LUH classes into five
major types, including forested land, non-forested land, grazed land, cropland and urban
land [41]. Forested land includes forested primary land and potentially forested secondary
land; non-forested land includes non-forested primary land and potentially non-forested
secondary land (e.g., shrubland, national parks and wilderness recreational areas); grazed
land includes managed pasture and rangeland; cropland includes C3 annual crops, Cs
perennial crops, C4 annual crops, C4 perennial crops, and Cs nitrogen-fixing crops. To
derive a continuous surface matching the climate resolution, we downscaled the LUH2
surface to 2.5 arc-min using the ‘bilinear” method of the ‘resample” function in R package
‘raster’ [42].

2.2.4. Topographic and Edaphic Variables

Considering the large elevational range in this region, topographic and edaphic vari-
ables might be critical factors that control plants” distribution [29]. Thus, we selected
elevation (ELEV) and soil pH (pH) in the models. Elevation was derived from the SRTM el-
evation data. Soil pH was obtained from the SoilGrids at a 250 m resolution [43]. Elevation
and soil pH were assumed to remain constant in the projections for the 2050s and 2090s.

2.3. Species Distribution Models

As ensemble species distribution modeling (SDM) produces more robust predictions
and allows quantifying uncertainties [44], we chose an ensemble niche model to model
species distribution for wild apple. According to previous studies, random forests (RF),
gradient boosting machines (GBM), and maximum entropy (MaxEnt) are often regarded as
having strong predictive performance [45]; therefore, we selected these three algorithms
for ensemble predictions. We generated ten sets of pseudo-absences by randomly selecting
absence with the same number as presence records from the whole study area [46]. We
evaluated the models by randomly dividing the original data set into two parts, one for
calibrating models (80%) and the other for evaluating them (20%) by Kappa, means of
the true skill statistic (TSS) and the area under the receiver operating characteristic curve
(AUCQ) [47]. In order to avoid overfitting, we used internal cross-validation in model
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fitting [48,49]. Then, this process was repeated five times to ensure that the random
partitioning did not influence the estimated predictive accuracy [50]. These models were
then projected under the current and two future scenarios at a 2.5 arc-min resolution,
using ensemble forecasting classified into binary presence—absence predictions of suitable
habitat with the threshold that maximizes TSS [51]. All models and ensemble forecasts
were calculated for a full dispersal (no dispersal constraints) scenario and performed within
R package ‘BIOMOD?2’ [50].

2.4. Data Analysis

To test the expansion or contraction of the distributional range of wild apple under
different climate and land-use scenarios, we calculated the percentage of suitable habitat
changes for wild apple in the current and future periods [52]. The latitudinal range
shifts (north-south) were assessed using the centroids of the predicted present and future
distributions [8]. Further, we calculated the elevational range shifts for potential range size
along elevation at 200 m intervals and compared the variety of the range size between the
current and two future scenarios in the same elevation zone.

To determine the importance of environmental variables for the current distribution of
wild apple, we firstly created a pseudo-absence dataset for modeling instead of assuming
that a non-presence equals a true absence [46,50]. Second, to reduce the potential effects
of sampling effort bias of background points, we selected random presence and pseudo-
absence points to model 100 times in R packages ‘rfPermute” and ‘A3’ [53]. In addition,
we used Monte Carlo tests to plot the density distribution of environment variables. We
randomly selected presence and pseudo-absence points to model using the function ‘en-
mtools.rf” and plot bivariate heat figures using the ‘visualize.enm’ function in R package
‘ENMtools 1.0" [54].

To assess the effectiveness of PAs for conserving wild apple under climate and land-
use changes, we calculated the range size and proportion of potentially suitable habitat
within PAs for both current and future scenarios. We used the databases provided by the
World Database on Protected Areas [55] and Resources and Environmental Science Data
Center, Chinese Academy of Sciences to select 110 international or national terrestrial PAs
in the study area (Table S1). These PAs cover a total of 232,891.31 km? (ca. 17% of the
study area), and 45 of them were established to protect wild fruit forests as their major
targets [10,55]. All analyses were performed in R software v4.2.0 [56].

3. Results
3.1. Range Shifts of Wild Apple

All SDMs showed high performance (mean Kappa, TSS and AUC values: >0.89;
model sensitivity: >0.92; model specificity: >0.95). Currently, wild apple is fragmentally
distributed (ca. 49,956 km?), and more than 29% of the distributions are in Xinjiang of China,
Kyrgyzstan and Kazakhstan, respectively, and less than 3% in Tajikistan and Uzbekistan
(Figure 2a; Table S2).

In the 2050s, wild apple is expected to shift 118-167 km towards the north, gaining a
small part of suitable habitats in the northern regions, while losing most current distribution
areas in southern regions (Figures 2b,c and 3a,b). In particular, it is expected to completely
lose its suitable habitats in Uzbekistan under SSP585 (Figure 3a,b; Table S3). Additionally,
wild apple will shift towards higher elevations and gain suitable habitats in the mid-
elevations (Figure 4).
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(a) Current
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(c) 2050s_SSP585

Figure 2. The distribution range of suitable habitat for wild apple in the current (a) and future
scenarios (b—e). Green areas indicate highly suitable habitats, while gray regions indicate absence.
The dashed lines show country boundaries in this region.

In the 2090s, wild apple would shift further towards the north and lose most of its
suitable habitats in southern Uzbekistan and Tajikistan (Figures 2b,c and 3a,b). In particular,
they will lose ca. 100% of suitable habitats in Uzbekistan and Tajikistan under SSP126 and
SSP585 (Figure 3c,d; Table S3). Along elevations, wild apple will shift further towards
higher elevations (ca. 200 m) under the SSP585, gain a large number of suitable habitats
in the mid and high elevations, and lose part of its suitable habitat in lower elevations
(<1000 m; Figure 4).
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(a) 2050s_SSP126 (b) 2050s_SSP585

(c) 2090s_SSP126
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Figure 3. Changes in suitable habitat for wild apple in the 2050s (a,b) and 2090s (c,d). Red colors
indicate the loss of suitable habitats, green indicates newly increased suitable habitats, and blue
indicates stable habitats.
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Figure 4. The changes in range size for wild apple along elevations under the current and future

scenarios.
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3.2. The Importance of Environmental Factors

Among the predictor variables of limiting species distribution (Figure 5), ELEV ex-
plained 15% of the spatial variations, followed by soil pH (10% of the variations) and
MAT (9% of the variations). Among land-use variables, cropland and non-forested land
explained about 7% of the variations. It is predicted that wild apple is mainly suitable to
grow in the regions with MAT of 5-15 °C and soil pH between 6.5 and 7 (Figure 6a,b) in
whole distribution ranges. In addition, wild apple can survive in regions with PREC_dry
of <20 mm, but cannot survive in regions with high cropland expansion (Figure 6¢,d).
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Figure 5. The relative importance of environmental predictors for the wild apple distributions. ELEV:
the elevation; pH: soil pH; MAT: annual mean temperature, TEMP_season: temperature seasonality,
PREC_dry: precipitation of driest month. p value significance codes: “**’ p < 0.01, " p < 0.05.

3.3. The Effectiveness of Current Protected Areas

The current PA network only covers 13% of suitable habitats for wild apple, leaving
the regions of Kyrgyzstan, Xinjiang of China, and Zhambyl of Kazakhstan under poor
protection (Figure 7a; Table 1). In the future, wild apple will lose all suitable habitats in
Zhambyl of Kazakhstan, Tajikistan and Uzbekistan, although there will be an increase
in protected suitable habitats in other regions (Figure 7a; Table 1). Additionally, 80% of
PAs for this species are located in the south of Central Asia, including South Kazakhstan,
Kyrgyzstan, Tajikistan, and Uzbekistan (Table S1). In particular, sixteen of 34 international
or national PAs for this species are located in Tajikistan. Notably, suitable habitats for wild
apple will be fully protected in Uzbekistan under the SSP126 and SSP585 by the 2050s. In
the 2090s, the suitable habitats that are protected will be less than 25% in Central Asia.
Moreover, suitable habitats under protection still will be low in Xinjiang of China and
Zhambyl of Kazakhstan under the two future scenarios (Figure 7; Table 1).
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Figure 6. The density distributions of selected environmental predictors for the current occurrence
records for wild apple. The white dots represent the occurrence records we used for the ENM. MAT:
annual mean temperature; pH: soil pH; PREC_dry: precipitation of driest month.
Table 1. The range size and proportion of suitable habitats for wild apple within current protected
areas under the current and future scenarios.
. Range Size (km?) and Proportion (%)
Country Region
Current 2050s (SSP126)  2050s (SSP585)  2090s (SSP126)  2090s (SSP585)
China Xinjiang 693 (4.93%) 966 (5.76%) 903(7.19%) 966(5.74%) 609(7.29%)
East Kazakhstan 588 (19.05%) 2961 (19%) 4536(21.82%) 2730(18.08%) 7497(26.27%)
Kazakh Almaty 3171 (36.39%) 3759 (48.77%) 3591(52.13%) 3780(50.42%) 3087(49.49%)
azakhstan Zhambyl 21 (0.74%) 0 0 0 0
South Kazakhstan 903 (27.04%) 504 (33.33%) 315(46.88%) 483(31.08%) 294(36.84%)
Kyrgyzstan / 483 (3.55%) 294 (4.86%) 168(4.37%) 294(4.88%) 105(8.47%)
Tajikistan / 84 (7.27%) 63 (17.65%) 0 42(15.38%) 0
Uzbekistan / 42 (25%) 21 (100%) 21(100%) 0 0
Total 5985 (12.75%) 9534 (17.27%) 9534(20.72%) 8295(16.96%) 11,592 (25.1%)
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Figure 7. The wild apple suitable habitats within current protected areas under the current and future
scenarios. Green areas indicate suitable habitats, while white regions indicate unsuitability.

4. Discussion
4.1. Dramatic Range Shifts of Wild Apple

As an ancient progenitor of the domesticated apple and the dominant species in
wild fruit forests, wild apple in the mountains of Central Asia has extreme protection
value. With hyper-dominant contributions to wild fruit forests in forest productivity and
regional food and ecological security, the current and future distributions of wild apple
populations strongly represent the conservation status of the forests [28,29]. In this study,
our detailed analyses of the distribution range of wild apple in the scenarios of climate and
land-use changes represent a significant step in developing effective conservation strategies.
Currently, the distribution of this endangered species is scattered across the biodiversity
hotspot regions. Due to dispersal limitations, the fragmented geographic distributions
are highly vulnerable to environmental changes, such as long-term aridification [57] and
cropland expansion [58]. A recent study in genetic structure of 15 wild apple populations
reported that long-distance migrations and associated gene exchanges rarely occurred
among fragmented populations [57]. Therefore, wild apple and other wild fruit species
would be at greater risk of extinction in a rapidly changing climate in Central Asia.

Under future scenarios of climate and land-use changes, wild apple would have strong
range contractions in the southern parts and low elevations by the 2050s and 2090s, and
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range expansions in the northern parts and higher elevations. Strong range contraction has
mainly occurred in southern Kazakhstan, Tajikistan, Kyrgyzstan, and Uzbekistan. By the
end of the century, the increase in air temperature would reach its largest magnitudes of
5-5.4 °C in Central Asia [6]. Such an increase in temperature would certainly stimulate
the outbreak of insect pests [59] and exacerbate the range contraction of wild apple in the
south of Central Asia. Additionally, the aridity index and potential evapotranspiration will
increase significantly due to increased temperatures in Central Asia [60,61]. Furthermore,
significant expansions of cropland and urban areas will lead to a contraction in the range
of wild apple [62], especially in low elevations. These results indicate that wild apple will
be in a dangerous state due to the increased temperature and the expansion of cropland
and urban areas in the southern mountains of Central Asia.

As a consequence of range contractions and expansions in different regions, the center
of wild apple distributions will need to move ~160 km northward and ~200 m higher in
elevation to catch up with the speed of climate change by the 2050s. Due to the limited
natural migration of wild apple [28,29], future distribution ranges should be considerably
smaller than the current prediction. It is worth noting that the migrating abilities of crop
wild relatives vary significantly in different species. For example, seven herbaceous CWRs
in Europe were expected to shift in their distributional centroids 46-360 km northward
by the 2070s [8]. Furthermore, climate change is expected to cause wild apple to shift
toward higher latitudes and higher elevations. Successful migrations depend not only
on the potential speed of migration of a species, but also on ecological connectivity of
current habitats and the availability of healthy environments in potential destinations
for the migration [3,4]. These findings suggest that, for CWRs with high economic and
ecological value, species-specific distribution modeling and the assessment of conservation
status are urgently needed for their effective conservation.

4.2. The Influence of Climate Change on Wild Apple and Wild Fruit Forests

Our ensemble model suggests a strong effect of future climate on potentially suitable
habitats for this endangered species. Its geographic ranges are mainly limited by mean an-
nual temperature, temperature seasonality, and precipitation of the driest month. Although
vegetation dynamics in the Central Asian dryland are commonly believed to be dominated
by total precipitation [63], our study showed that temperature change is a major factor
shaping wild apple distributions. This finding is consistent with the dendroclimatological
evidence of wild apple in non-degraded forests in Xinjiang of China [58] and southeast
Kazakhstan [22]. Two possible mechanisms were used to explain the importance of tem-
perature for this species. First, the spring phenology of wild apple has both chilling and
heat requirements and is favored by the combined effects of the fall/winter cold and spring
heat [64,65]. Second, during the growing seasons, the increasing temperature promotes
tree growth by alleviating low-temperature stress and its effect on soil nutrient supply,
promoting water and carbon absorption, and prolonging the growing seasons [29,66].

Although precipitation does not mainly limit the spatial ranges of wild apple, the
precipitation in dry seasons determines where it could survive to some degree. The root
systems of wild apple feature with extreme thickness, sufficient depth, and numerous
horizontal branches that enable the species to survive in mean precipitation of less than
20 mm in dry seasons [22,29,32]. In addition, plant species distributions could be affected by
the combination of temperature and precipitation, as extreme warming exacerbates water
evaporation and further increases water stress in mountain ecosystems [63]. Considering
this, further studies based on field observations and control experiments are needed to
evaluate how wild apple and other wild fruit trees (e.g., Juglans regia and Armeniaca vulgaris)
in the biodiversity hotspots are affected by the interactions of temperature and precipitation.

4.3. The Influence of Land-Use Changes on Wild Apple and Wild Fruit Forests

Habitat loss due to cropland expansion and urbanization could result in species popu-
lation decreases and eventually cause local and regional extinction [11,67,68]. We revealed
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a significant negative correlation between wild apple and cropland coverage, indicating
that wild apple could not survive in the regions with intensive cropland expansion even if
the climatic niche is suitable. This species was classified as a vulnerable species due to over
70% of the habitat loss within the last 30 years in Kazakhstan [31]. One recent estimation
showed that the rate of expansion of cropland will exceed more than 22%, and urban areas
will expand more than 300% in this region [62]. These dramatic changes in the region
would certainly affect the populations of wild apple and other wild fruit trees.

Land-use changes could indirectly affect species distributions by having uneven
impacts at different elevations and adjusting soil physicochemical properties. In this study;,
we found that elevation and soil pH are the important environmental factors for limiting
wild apple. Since intensive agricultural activities and urbanization in low elevations,
rapid range reduction in these areas is happening and will continue due to land-use
driven changes in the abiotic environment. Towards a mechanistic understanding of
these processes, long-term monitoring of the changes in land use, climate, soil, and plant
community composition and structure is urgently needed for the protection of rare and
endangered species [69,70], especially in globally significant biodiversity hotspots.

4.4. Implications for the Protection of Wild Apple and Wild Fruit Forests

Protected areas are safeguarding biodiversity against direct human impacts [71]. Un-
der climate and land-use changes, protected areas may facilitate species’ range expansions
as stepping stones that facilitate colonization at the leading edges of species distribu-
tions [72]. Our results showed that a proportion of wild apple’s range size is less protected
under current conditions. For example, the currently suitable habitats (more than 29%)
for this species are mainly distributed in Xinjiang of China and Kyrgyzstan; however, the
proportion of protected suitable habitats is less than 9%. Additionally, the distribution of
protected areas is uneven, with 80% of protected areas distributed in the south of Central
Asia, and nearly 50% in only one country (Tajikistan). These findings suggest that current
protected areas are not guaranteed to provide suitable habitats for wild apple.

In future scenarios, our results show that wild apple will lose all suitable habitats
in Zhambyl of Kazakhstan, Tajikistan and Uzbekistan. This suggests that habitat-based
conservation strategies cannot compensate for climate-change-induced range loss [73].
Moreover, long-distance migrations and associated gene exchanges rarely occur among
fragmented populations of wild apple [57], suggesting that conservation efforts for this
species might fail in some regions. To effectively protect wild apple, a dynamic prioriti-
zation approach should be taken into consideration in the planning of future protected
areas [74]. These strategies should guide in situ conservation practices with long-term
ecosystem-level monitoring through the whole ranges of wild apple populations and wild
fruit forests.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/d14060489/s1, Table S1: The number, range size and proportion
of current protected areas (PAs) for wild fruit forests and wild apples in the study area. Table S2: The
range size and proportion of suitable habitats for wild apples in the current and future scenarios.
Table S3: Proportional changes of suitable habitats for wild apples in the future scenarios.
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