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Abstract

Urbanization alters the physicochemical environment on an unprecedented scale and

strongly affects biodiversity. How urbanization affects the biodiversity of soil micro-

bial communities, especially in large cities, however, is poorly known. We investi-

gated soil microbial communities from 258 sites covering a variety of environmental

gradients in the megacity of Shanghai, China, to determine the impact of urbanization

on soil microbial biodiversity. Using the distance to city centre, urbanized land cover,

and road density as three proxies to characterize the levels of urbanization, we rev-

ealed that increased urbanization was associated with slightly homogenized commu-

nities of prokaryotes, total fungi, and arbuscular mycorrhizal fungi but not

ectomycorrhizal fungi. The richness of soil prokaryotes and total fungi was weakly

but positively related to urbanization as well. For the abundance of microbial phy-

lotypes along urban gradients, we observed synchronous increases and decreases of

many phylotypes at relatively high and low urbanization levels, respectively. Further,

urbanization explained an independent part of microbial variances in richness and

community composition, although the contribution of soil properties in explaining

the variances was generally larger than that of urbanization. Together, this work pro-

vides evidence for the influences of urbanization on the biodiversity of soil microbes

and highlights the importance of considering taxa and the level of urbanization to

assess the impacts of urbanization on biodiversity.

K E YWORD S

indicator microbe, microbial biogeography, plant–microbial linkages, urban biodiversity,
urbanization

Received: 5 July 2021 Revised: 25 October 2021 Accepted: 30 October 2021

DOI: 10.1002/ldr.4145

282 © 2021 John Wiley & Sons, Ltd. Land Degrad Dev. 2022;33:282–293.wileyonlinelibrary.com/journal/ldr

https://orcid.org/0000-0003-0589-6267
mailto:jzhang@des.ecnu.edu.cn
mailto:junxiangli@sjtu.edu.cn
http://wileyonlinelibrary.com/journal/ldr
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fldr.4145&domain=pdf&date_stamp=2021-11-25


1 | INTRODUCTION

Urban spaces are expanding at an unprecedented rate, and the transi-

tion of human populations from rural to urban areas increases anthro-

pogenic modification of the urban environment, including land use

change, development of transportation networks, and management of

urban soils and plants (Antrop, 2004; Hoyt, 1939; McDonnell &

Pickett, 1990). The impact of urbanization on species distributions

and community composition is expected to cause diversity loss and

biotic homogenization based on studies on macroorganisms

(e.g., plants (Aronson et al., 2014), birds (Sol et al., 2017), and arthro-

pods (Merckx & Van Dyck, 2019). However, how soil microbial diver-

sity and community composition respond to urbanization remains

poorly understood and controversial (Schmidt et al., 2017; Wang

et al., 2018), despite the critical role that soil microbes play in biogeo-

chemical cycling (Falkowski et al., 2008), pollutant detoxification

(Boetius, 2019), urban air quality (Bowers et al., 2011), and human

health (Mills et al., 2017).

Quantifying changes in diversity and community composition of

soil microbes in relation to urban gradients provide an approach for

understanding the ecosystem consequences of urbanization

(McDonnell & Pickett, 1990). Using land use types to represent a

range of human disturbances and management impacts, a few studies

have reported similar or converged microbial communities or func-

tional guilds (e.g., mycorrhizal fungi) in response to the intensive

human-impacted land use (e.g., residential land) (Schmidt et al., 2017;

Wang et al., 2018). Using rural–urban gradient to reflect the differ-

ences of population density and its induced environmental change,

some studies have documented higher soil microbial diversity in the

urban area (Wang et al., 2017; Yan et al., 2016), while others reported

little or no difference between urban and rural soils (Boeraeve

et al., 2019; Docherty et al., 2018; Huot et al., 2017). Although those

analyses are important in understanding the highly complex human-

modified ecosystem, categorical or quantitative metrics of urbaniza-

tion may carry different meanings in different studies or regions

(Theobald, 2004), hindering a synthesis of results. Meanwhile, the

same land use type in city centre and rural areas may have different

impacts due to the modulating effects of the surrounding environ-

ment. For instance, land use and road density of surrounding areas

may influence soil microbes by affecting habitat fragmentation and

microbial dispersal limitation (Ramalho & Hobbs, 2012; Reese

et al., 2016). In addition, urban environments could have more signifi-

cant influences on some microbial phylotypes (so-called indicators),

leading to significant changes in their abundance and frequency along

urban gradients. Recent studies in stream ecosystems have docu-

mented the loss of microbial indicators with increased urbanization

(Martin et al., 2018; Simonin et al., 2019). However, most studies on

soil microbes have involved a small number of sampling sites (e.g., Hu

et al., 2018; Lumini et al., 2010), limiting our understanding of how soil

microbes respond to the complex urban environment.

Extensive physical, chemical, and biotic changes in urban areas can

have confounding effects on soil microbes. Human effects can be both

intentional (e.g., fertilization and irrigation) and unintentional

(e.g., atmospheric deposition of organic chemicals), which could result in

highly variable soil physical and chemical properties in urban (Wall

et al., 2015). Soil physicochemical properties can directly regulate the

diversity and community composition of soil microbes (Fierer &

Jackson, 2006; Lauber et al., 2008; Wang et al., 2018). Moreover, recent

studies suggest that soil management enriches copiotrophic microorgan-

isms (e.g., Proteobacteria in bacteria and Ascomycotabacteria in fungi)

adapted to higher resource availability (Thompson & Kao-Kniffin, 2019).

Urban plant communities are characterized by relatively homogeneous

composition, with a high proportion of exotic species (Aronson

et al., 2014). Urban plants could affect belowground microbes by direct

interaction with microbes (e.g., plant-mycorrhizal fungi) and by indirect

mediation of soil physicochemical properties via litterfall and root exu-

dates (Hooper et al., 2000; Liu et al., 2020). However, these effects have

been largely unexplored in urban ecosystems.

As the economic capital in China and one of the most populated

megacities in the world, Shanghai has witnessed rapid urbanization on

an unprecedented scale in the last four decades, which dramatically

changed its landscape and soil environment (Li et al., 2013). With a

residential population of over 24 million and a land area of

6340.5 km2, urbanization-associated changes have placed important

and diverse effects on urban ecosystems and the organisms living

therein (Cui & Shi, 2012). To evaluate whether or not and how urbani-

zation influences the diversity and community composition of soil

microbes, we conducted a large sampling effort across 258 sites in

Shanghai City (�5200 km2, Figure 1). Meanwhile, we quantified the

level of urbanization using three metrics, including the distance

between each site and the city centre, urbanized land coverage, and

road density surrounding each site. The detailed information on soil

properties and vascular plant diversity at each site was collected. The

main objectives of this study were: (a) characterize the variations in

genetic diversity and composition of soil microbes in relation to the

three urbanization indices, which reflected different aspects of

anthropogenic modification of the urban environments; (b) identify

how soil microbial indicators respond to urbanization; and (c) evaluate

the direct and indirect effects of urbanization on diversity and compo-

sition of soil microbial communities.

2 | MATERIALS AND METHODS

2.1 | Study sites

Shanghai City (120�520–122�120 E, 30� 400–31�530 N) is located in

eastern China at the southern estuary of the Yangtze River. As the

central city of the Yangtze River Delta urban agglomeration, Shanghai

has experienced a dramatic urban expansion in the past four decades.

The urbanized land area increased more than threefold from 1984 to

2014, with a nearly 11% expansion rates annually on average (Zhao

et al., 2016). The sprawling of the urban area is characterized by

increasing major roads and urban land uses (Gao & Wu, 2005).

To better represent the spatial and environmental heterogeneity,

a dual-density, tessellation-stratified random sampling design was
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adopted (Hope et al., 2003). We divided the Shanghai city (except for

Chongming Islands) into 861 3 km � 3 km grids. A sampling density

of 3:1 was used to sample the grids inside and outside the highly

urbanized areas (Figure 1a; < 16 km radius from the Shanghai People's

Square). Within each selected grid, a modified Whittaker sample site

with the size of 20 m � 50 m was settled on a randomly selected

greenspace (Wang et al., 2020). In total, 258 sampling sites were

established, ranging from 45 km in latitude and 63 km in longitude

(Figure 1a). The geographic locations of all sites were recorded using a

centimetre-level differential GPS (Trimble Geo 7x).

The modified Whittaker nested sampling method was used for

plant surveys (Stohlgren et al., 1995). Each sampling site was sepa-

rated into 14 subplots, including two 50 m2, two 10 m2, and ten 1 m2

subplots. All vascular plants in the subplots were identified from July

to September in 2014–2017 (Wang et al., 2020). Overall, we recorded

214 woody species and 439 herbaceous species, accounting for 10%

and 26% of the current plant records of Shanghai City (Ma, 2014).

2.2 | The metrics of anthropogenic impacts

We used ArcGIS with land use maps derived from 1 m spatial resolu-

tion aerial images (http://www.shanghai-map.net) to measure three

urbanization indices. The distance to City centre (Euclidian distance

between each site and Shanghai People's Square) was used to repre-

sent the roughly increased population density approaching City centre

in Shanghai (Cui & Shi, 2012). Urbanized land cover (%) and road den-

sity (km km-2) reflected variation in urban land use (Luck & Wu, 2002)

and transportation networks (Hawbaker et al., 2006) surround each

site. Within a 1 km radius of each site, we identified four major urban

land use types, including industrial land, traffic road, public infrastruc-

ture, and residential land (Li et al., 2013). Urbanized land cover was

calculated as the proportion of the summed area of four land use

types of the total area of each circle. Road density was calculated as

the total road length within the same radius for each site.

2.3 | Soil sampling and soil physicochemical
properties

We performed soil sampling in September 2017. In each site, we

selected three subplots (2 m � 2 m) along the diagonal line from

southeast to northwest to obtain the representative soil samples.

Three soil replicates were obtained by equally mixing five equally

distributed soil cores (2.5 cm in radius and 15 cm in depth) in each

subplot. Soil sampling tools were surface sterilized between sampling

F IGURE 1 Distribution of sample sites and richness of soil microbes. (a) The geographic distribution of 258 sampling sites across Shanghai
City (excluding Chongming Islands). (b) Histograms representing the distribution of the 258 sites along three urbanization metrics. Distance to the
City centre, urbanized land cover, and road density were used as proxies to characterize the level of urbanization. (c-d) Maps showing richness
distribution of prokaryotic and total fungal communities. The richness is the number of different phylotypes found in each sample at the ASV
level. Ordinary kriging interpolation was used for microbial richness mapping [Colour figure can be viewed at wileyonlinelibrary.com]
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sites. All samples were transported to the laboratory on ice within

12 h after collection and separately stored at �20�C until DNA

extractions or at 4�C until physiochemical analysis. Eight soil physico-

chemical properties, including pH, total organic carbon (TOC), total

nitrogen (TN), total phosphorus (TP), total potassium (TK), soil water

content (SW), and inorganic nitrogen (IN: N-NH4
+ and N-NO3

�) were

measured as described previously (Liu et al., 2021).

2.4 | Molecular analysis and sequence processing

Total DNA was extracted from 0.5 g soil mixed from each site using

the Mag-Bind Soil DNA Kit (Omega Bio-Tek, Norcross, Georgia, USA).

Primers 338F and 806R and ITS5F and ITS2R combined with Illumina

adaptors were used to amplify the 16S rRNA gene in prokaryotes and

internal transcribed spacer (ITS1) regions in fungi (Lee et al., 2012;

Tedersoo et al., 2011). Each sample was amplified in triplicates. Posi-

tive PCR products were confirmed by electrophoresis. Amplicons from

triplicate reactions were purified with GeneJET Gel Extraction Kit

(Thermo Scientific) and mixed in equal density ratios. Sequencing was

performed using Illumina Miseq (2 � 300 bp paired-end reads) plat-

form at Personal Biotechnology Company (Shanghai, China).

The QIIME2 pipeline (version 2019.10) and the DADA2 plugin

with default settings were used to process raw reads (Bolyen

et al., 2019). Taxonomy was assigned to representative sequences

using the SILVA 132 (Quast et al., 2012) and UNITE v8.0 database

(Abarenkov et al., 2010) for prokaryotes and fungi, respectively. AVS

(phylotype) abundance tables were normalized to the smallest sample

size (9146 and 21,584, respectively) after singletons were excluded.

Fungal phylotypes were further assigned to ectomycorrhizal fungi

(ECM) using FUNGuild (Nguyen et al., 2016) by including highly prob-

able confidence score guild assignments. Phylotypes belong to sub-

phylum Glomeromycotina were assigned to arbuscular mycorrhizal

fungi (AM) (Spatafora et al., 2016). There were 51 and 59 sites omit-

ted from AM and ECM community analysis, respectively, because

they lacked any AM or ECM fungi.

2.5 | Statistical analysis

Subsequent analyses were carried out in R 3.5.0 (R CoreTeam, 2018).

Microbial diversity and community composition were calculated as

the number of different phylotypes (richness) and abundance-based

Bray–Curtis dissimilarity. Soil microbial diversity and spatial variations

across the city were mapped by a geostatistical analysis. We calcu-

lated the semivariogram from the observations and predicted the

interested property at unsampled locations using semivariogram

models by ordinary kriging. For each diversity index, we applied qua-

ntile transformation to guarantee an approximated normal distribution

and eliminate the effects of outliers (Song et al., 2015). We fitted two

semivariogram models (ordinary least squares and restricted maximum

likelihood methods) and retained the one that minimized the effect of

random variability on total semivariance. The goodness of the adopted

models was then evaluated in terms of the adjusted coefficient of

determination (R2adj) and the root mean square error (RMSE) using

cross-validation. The R package 'gstat' was used for these analyses

(Pebesma, 2004). The relations between microbial diversity and com-

munity composition and urbanization were examined by ordinary least

squares regression. For visual simplicity, we computed the mean dis-

similarity of each sample to all others, which produced generally simi-

lar outcomes as all pairwise comparisons of Bray–Curtis dissimilarity

(data not shown). Significant differences in linear regression slope

between taxonomic groups were compared using R package lsmeans

(Lenth & Lenth, 2018).

To identify urbanization indicators, we applied threshold indicator

taxa analysis using R package TITAN v2.1 (Baker et al., 2016). This

analysis detected the phylotype abundance and frequency changes

via calculating the phylotype-specific indicator value (IndVal)

(Dufrêne & Legendre, 1997). TITAN distinguishes negative and posi-

tive changes in abundance and frequency and tracks cumulative

responses of those phylotypes in the community. Large cumulative

change within a narrow range of urbanization values is evidence of a

community threshold. The 95% confidence interval was assessed from

1000 bootstraps (Baker & King, 2010). All potential indicators were

identified by performing TITAN along three urbanization metrics sepa-

rately. Indicators in three metrics were also identified to investigate

whether urbanization selected for phylotypes in a particular phylum

or order.

Canonical variance partitioning was first used to estimate the rel-

ative contribution of urbanization (the distance to city centre, urban-

ized land cover, and road density), soil properties (pH, SW, TOC, TP,

TK, IN, C/N), plant diversity [woody and herbaceous richness, even-

ness, and Shannon diversity (PWri, PWev, PHri, PHev, PWsh, and

PHsh)], and geographic locations (latitude and longitude) in explaining

the microbial diversity and community composition (Table S1). All var-

iables were standardized to guarantee approximated Gaussian and

homoskedastic residual distribution of the models. Forward selection

using the function ordistep in R package 'vegan' (Oksanen

et al., 2010), starting from a full redundancy analysis (RDA) model,

was applied to select significant variables. The explained variance

(independent and interactions between the significant variables) in

microbial diversity and composition was determined by canonical vari-

ation partitioning and the adjusted R2 with redundancy analysis

(Ramette, 2007). Statistical significance of the independent effects

was assessed from 1000 permutations of the final model. The vari-

ance explained by each group of variables was computed as the sum

of the variance explained by all independent effects (Karimi

et al., 2018).

Structural equation modeling (SEM) (Grace et al., 2009) adopted

to build a system-level understanding of the direct and indirect effects

of urbanization on the diversity and composition of prokaryotic and

total fungal communities (Figure S1). The variables identified as signif-

icant predictors from canonical variance partitioning were included.

Three urbanization metrics were included considering that the impor-

tance might be underestimated in canonical variance partitioning due

to high correlations with some environmental variables (Table S1).
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Latitude and longitude were included to account for spatial autocorre-

lation and other unexamined variables that may covary with latitude

and longitude (Delgado-Baquerizo et al., 2018). The SEM analyses

were conducted using R package 'lavaan' (Rosseel, 2012). Model per-

formance was indicated by a nonsignificant χ2, high comparative fit

index (CFI), high Tucker-Lewis Index (TLI), low root square mean error

of approximation (RMSEA), and standardized root mean square resid-

ual (SRMR) (Fan et al., 2016).

3 | RESULTS

3.1 | Urbanization gradient and microbial diversity

The level of urbanization described by the distance to City centre,

urbanized land cover, and road density varied across 258 sites

(Figure 1b). Although three metrics were correlated (Table S1), no sin-

gle variable could characterize urbanization alone. In areas >50 km

from city centre, over 13% (3 in 23 sites) and more than 21% (5 in

23 sites) sites were associated with >60% urbanized land cover

and > 6 km/km2 road density, respectively. In highly urbanized areas

(Figure1a; < 16 km radius from the City centre), only eight sites (about

11%) were associated with >80% urbanized land use and > 10 km/

km2 road density.

Across 258 soil samples, we detected a total of 143,931 and

33,295 different prokaryotic and fungal phylotypes (Figure 1c,d). The

average soil sample harboured 1442 (±245) and 436 (±132) prokary-

otic and fungal phylotypes, respectively. Soil prokaryotes were domi-

nated by the phyla Proteobacteria (29.37% of 2,359,668 total

sequences), Acidobacteria (18.44%), Chloroflexi (16.03%),

Actinobacteria (13.94%), Gemmatimonadetes (5.59%), and Lat-

esciprokaryotes (3.87%), while fungi were dominated by phyla of

Ascomycota (52.12% of 5,568,672 total sequences), Basidiomycota

(9.47%), and Mortierellomycota (4.47%) (Figure S2). The richness of

prokaryotes and fungi, as well as the most dominant phyla, exhibited a

clustered or patchy distribution (Figure S3).

3.2 | Relationships between urbanization and
microbial diversity and community composition

Prokaryotic and total fungal richness were weakly but positively asso-

ciated with three urbanization metrics, except for total fungal richness

along the distance to City centre (Figure 2a–c). Compositional dissimi-

larity in prokaryotic and total fungal communities was weakly but neg-

atively correlated to three urbanization metrics, except for the total

fungal dissimilarity along road density (Figure 2d–f). The richness and

relative abundance of AM and ECM fungi did not relate to urbaniza-

tion metrics, although the relative abundance of AM fungi clearly

showed a clustered distribution (Figure 3a,b). However, AM fungal

compositional dissimilarity showed a similar pattern to that of total

fungi where increased urbanization was associated with more similar

AM fungal communities (Figure 3c–e).

In general, more indicators showed an increased (positive indica-

tors) rather than a decreased (negative indicators) occurrence with

increased urbanization (1.39%–0.74% vs. 0.93%–0.48% in prokary-

otes and 1.26–0.80% vs. 0.56%–0.44% in total fungi; Table S2). The

highest numbers of indicators were associated with road density. We

revealed two thresholds for each gradient at which a synchronous

increase and decrease occurred for many phylotypes at relatively high

and low urbanization levels, respectively. For instance, along the dis-

tance to City centre, prokaryotic and fungal thresholds were detected

around the distance of 15.94 and 44.87 km and 18.41 and 48.03 km

from the City centre, respectively (Figure 4). Identifying the indicators

that responded to the three urbanization metrics, we found no indica-

tion that urbanization selected certain phyla, but indicators belonging

to prokaryotes of the order Betaproteobacteriate and fungi of the

order Trichosporonales and Diversisporales were more likely to increase

their abundance with urbanization (Figure S4).

3.3 | Predictors of microbial diversity and
community composition

The SEM and canonical variance partitioning results showed that the

explained variances in prokaryotic and total fungal richness ranged

from 9.55% to 18.20% (Figure 5; Figure S5a). Both approaches showed

that the independent effects of soil properties on prokaryotic and fun-

gal richness were 1.5–9 times higher than urbanization, plant diversity,

and geographic distance. The effects of soil properties predominated

the variances explaining ECM fungal richness and contributed largely

to AM fungal richness as well. Among edaphic variables, effect sizes of

soil pH on prokaryotic and total fungal richness were about 1.5 times

stronger than other variables. TP was correlated with AM fungal rich-

ness, while TOC was correlated with ECM richness (Figure S5b).

Urbanization had independent effects on prokaryotic, fungal, and AM

fungal richness but not ECM fungal richness. Urbanization was also

indirectly related to the richness patterns via its effects on soil proper-

ties like pH, TK, and plant diversity like PWri and PWev. PWri and

PWev had direct effects on prokaryotic richness, and PWri was nega-

tively correlated to soil IN. Geographic distance directly affected pro-

karyotic and AM fungal richness and was indirectly related to microbial

distribution via strong effects on soil properties.

The explained variances in microbial composition ranged from

10.48% in ECM fungi to 37.14% in prokaryotes (Figure 4c,d;

Figure S5a). Similar to the results of richness, independent effects of

soil properties on microbial composition were stronger than urbaniza-

tion, plant diversity, and geographic distance, except for ECM fungal

composition. Higher soil pH and/or nutrients were associated with

similar microbial communities, except for the positive relationship

between C/N ratio and fungal composition. The effect sizes of soil pH

on prokaryotic and total fungal composition were at least 1.5-times

stronger than other edaphic variables. Urbanization showed indepen-

dent effects on prokaryotes, AM and ECM fungi, and indirectly oper-

ated on the microbial composition via its effects on soil properties like

pH, TOC, C/N ratio, and plant diversity. PWri and PWev explained
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prokaryotic composition but showed opposite trends. PHsh was posi-

tively associated with AM and ECM fungal composition. PWev was

negatively related to ECM fungal composition. For urbanization indi-

cators, soil properties independently explained large portions of their

variations in soil (6.81%–19.72%; Figure S5a). Plant diversity

explained some variations in positive indicators in prokaryotic and

total fungal communities, which were associated with high PWri and

low PGri.

4 | DISCUSSION

In the megacity Shanghai, we found that urbanization was associated

with homogenized community composition in soil prokaryotes and

total fungi. The compositional dissimilarity of soil microbes decreased

with urbanization, despite the increased richness in more urbanized

areas (Figure 2). Among examined environmental factors, soil proper-

ties had the major direct impacts (Figure 5). Particularly, soil pH was

negatively related to community composition and positively to the

richness of prokaryotes and total fungi. Consistent with observations

in natural ecosystems (Fierer & Jackson, 2006), the results suggest

that soil pH regulates microbial survival and fitness in urban ecosys-

tems. Our results also suggest that urbanization could directly contrib-

ute to compositional homogeneity, particularly in prokaryotic

communities (Figure 5c), by increasing urbanized land cover. Mecha-

nisms underlying the direct effects of urbanized land cover on soil

microbes may be related to habitat fragmentation and habitat loss

(Reese et al., 2016; Seto et al., 2012) but need further confirmation.

Urbanization also has indirect impacts on soil microbes by the changes

in soil properties. For instance, soil management practices (e.g., the

application of fertilizer, irrigation for salt washing, and the use of

amendments in urban land) could lead to higher or neutralized soil pH

(Pouyat et al., 2007), supporting a high survival rate and fitness of

microbes, thus inducing high soil microbial richness but less varied

communities among localities. Similarly, generally negative relation-

ships between examined soil chemical properties and microbial com-

position suggest that high soil nutrients enable similar community

composition, potentially by reducing resource competition and provid-

ing more diverse resources to less abundant microbes. The hyphal

network that facilitates nutrient uptake of fungi may cause them to

F IGURE 2 The relationships between urbanization and richness and compositional dissimilarity of soil prokaryotes and total fungi.
Compositional dissimilarity was calculated as mean Bray–Curtis dissimilarity of each sample to all others. The slopes were significantly different
between prokaryotic and total fungal communities in all cases (p < 0.001). Two sites with >25 km km-2 road density were treated as outliers and
excluded in (c) and (f). The asterisk indicates a significant association between microbial diversity or composition with urbanization examined by
ordinary least squares regressions: *p < 0.05, **p < 0.01, and ***p < 0.001 [Colour figure can be viewed at wileyonlinelibrary.com]
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be less sensitive to environmental changes than prokaryotes (Guhr

et al., 2015). However, DNA amplicon sequencing–based taxonomic

assays may lead to biased estimates of prokaryotic: fungal ratio due to

differences in inherent primer activity for prokaryotes and fungi. Fur-

ther work applying methods such as quantitative PCR-based analysis

and sequencing of total extracted DNA without amplifying specific

gene region can be used to evaluate how urbanization alters the pro-

karyotic:fungal ratio (Fierer et al., 2005; Malik et al., 2016).

Urbanization was associated with similar AM fungal communities,

but we observed no impacts on ECM fungal richness and community

dissimilarity. The underlying mechanisms may be, in part, related to

the differential effect of urbanization on AM versus ECM plant hosts

F IGURE 3 Maps of relative abundance and the relationships between urbanization and compositional dissimilarity for arbuscular mycorrhizal
(AM) and ectomycorrhizal fungal (ECM) communities. Ordinary Kriging interpolation was used for microbial mapping in (a-b). Compositional
dissimilarity in (c-e) was calculated as mean Bray–Curtis dissimilarity of each sample to all others. Statistical analysis was performed using ordinary
least squares regressions in (c-e): *p < 0.05, **p < 0.01, and ***p < 0.001 [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 4 Accumulation of urbanization significantly influenced indicators for prokaryotic and fungal communities. The peaks indicate
thresholds of urbanization value at which increased (positive) or decreased (negative) abundance and frequency of many indicators were
observed. Thresholds for prokaryotic and fungal communities along urbanized land cover and road density can be found in Table S2 [Colour
figure can be viewed at wileyonlinelibrary.com]
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and factors driving the composition of their mycorrhizal fungal com-

munities. As showed in our results, the community composition of

AM fungi was best explained by soil properties, plant diversity, urbani-

zation, and their interactions, while ECM fungal composition was

mainly explained by plant diversity and urbanization (Figure S5a).

Thus, AM fungi followed the general pattern of total fungi such that

urbanization was associated with homogenized AM fungal communi-

ties. This might be explained by the declining richness and evenness

of herbaceous plant species with urbanization, as most herbaceous

species associate with AM fungi (Table S1) (Smith & Read, 2008). For

ECM fungi, previous work documented decreased diversity but

increased homogenization in more urbanized areas, particularly in the

temperate zone where they are most diverse (Schmidt et al., 2017;

Tedersoo et al., 2012). Removal of original ectomycorrhizal trees

could lead to ECM fungal losses in temperate cities (Schmidt

et al., 2017). However, our findings suggest that even though woody

plant richness increased with urbanization (Table S1), ECM fungal

richness did not. And woody plant evenness, which was unaffected by

urbanization, explained variance in the ECM fungal community com-

position (Table S1; Figure S5b). Patterns in ECM fungal community

composition may, therefore, be better explained by analyzing the

abundance and diversity of ECM host plants.

F IGURE 5 Structural equation model describing environmental and spatial drivers structuring richness and community composition of
prokaryotes and total fungi. We grouped these predictors in the same boxes for graphical simplicity and only displayed significant relationships.
The values adjacent to arrows show the effect size of each relationship. Model performance was indicated by a nonsignificant χ2, high
comparative fit index (CFI), high Tucker–Lewis index (TLI), low root square mean error of approximation (RMSEA), and standardized root mean
square residual (SRMR). Significance levels are: *p < 0.05, **p < 0.01, and ***p < 0.001. Abbreviations of variables are as follows: Lat, latitude; Lon,
longitude; Dist, distance to City centre; Lcov, urbanized land cover; Road, road density; TP, total phosphorus; TK, total potassium; IN, inorganic
nitrogen; C/N, carbon/nitrogen ratio; PWri, woody plant richness; PWev, woody plant evenness [Colour figure can be viewed at
wileyonlinelibrary.com]
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The complex effects of urbanization we revealed in the megacity

offer potential explanations for the current inconsistencies in the liter-

ature on how soil microbial biodiversity responds to urbanization

(Docherty et al., 2018; Reese et al., 2016; Schmidt et al., 2017; Wang

et al., 2018). Despite the relatively low R2, three urbanization metrics

were related to soil microbial diversity and community composition.

Such a finding suggests that environmental filtering associated with

human population density, urbanized land use, and road density may

create a heterogeneous environment for soil microbes (Pouyat

et al., 2007; Vasenev et al., 2013), meaning that a low number of soil

samples may bias the estimation of urbanization effects. Our sampling

intensity across the megacity of Shanghai has provided explicit evi-

dence supporting threshold responses of microbes to different types

of urban gradients. At a relatively low level of urbanization

(e.g., > 15.94 km from city centre, < 72.28% urbanized land cover, or

<6.73 km km-2 road density), urbanization and its induced environ-

mental changes might cause loss of microbial diversity, while

increased diversity is expected at the relatively high level of urbaniza-

tion (Figure 4). Meanwhile, urbanization indicators seemed more sen-

sitive to shifts in road density than in human population density and

urbanized land cover (Table S2), suggesting microbial dispersal

through public transportation or commuting may be especially impor-

tant on soil microbes. In addition, large residual variances for both

microbial richness and composition indicate the importance of unex-

amined factors or other processes (e.g., stochasticity) in understanding

urbanization effects on soil microbes (Yang et al., 2021).

We revealed that woody plant diversity directly explained a part

of the total variances in soil prokaryotic richness and composition. Par-

ticularly, woody plant richness had positive effects on the positive indi-

cators in prokaryotes and fungi. These results suggest specific

microbial establishment or accumulation around plants in urban areas

(Van Der Heijden et al., 2008). For instance, symbiotic interactions

between plants and AM fungi (e.g., Diversisporales), or the accumula-

tion of pathogens (e.g., Betaproteoprokaryotices), could contribute to

the increased microbes around host plants (Brenner et al., 2005). Sig-

nificant changes in these phylotypes might be due to the presence of

certain host plants and/or the direct human management of urban

plants. In Shanghai, most ornamental plants are transplanted from

other regions, and over 70% of the trees are nonnative species in sites

within 11 km from the City centre (Wang et al., 2020). The positive

relationships between woody plant richness and the positive indicators

suggest soil microbes have been introduced with transplanted or non-

native trees (Lekberg et al., 2013). These results merit further investi-

gation to determine how much the pattern in soil microbial diversity

and composition can be explained by nonnative soil microbes.

5 | CONCLUSIONS

Rapid urban sprawling has raised large concerns that urbanization

reduces biodiversity, alters ecosystem functioning, and affects

human well-being. Our results from the megacity of Shanghai pro-

vide evidence for the effects of urbanization on soil microbial

biodiversity. Particularly, urbanization explained an independent

proportion of soil microbial richness and composition that could not

be explained by factors such as soil physicochemical properties. We

also showed that some microbial phylotypes sensitively responded

to urbanization and its induced environmental changes and dis-

played threshold effects on their abundance and frequency. Such

information is critical to improve our understanding of how soil bio-

diversity responds to anthropogenic modification of natural and

semi-natural ecosystems and provides guidelines for effective man-

agement of urban ecosystems.
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