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A B S T R A C T   

The most salient feature of forests is the vertical-filling architecture of its constituent species. However, among 
the possible determinants of tree community assembly, vertical niche differentiation has been poorly studied. 
Here we used an Unmanned Aerial Vehicle to measure spatial variation of canopy structure in five subtropical 
forest plots in China, and evaluated the importance of canopy structure and topography in structuring tree di
versity and species distributions. We combined data from canopy attributes with topography and the locations of 
533,763 individuals of 614 tree species. Spatial simultaneous autoregressive error models were used to evaluate 
the relative importance of each variable to species diversity. We found that varaibles describing canopy structure 
contributed significantly to tree richness patterns in all plots and all forest layers, although the strength and 
direction of the effects varied among the sites. Among the study species, the abundance distributions of 38–49% 
of them in four plots were explained by the combination of canopy structure and topographic variables, and 
21–33% by canopy structure or topography alone, while the abundances of 48% species in the Heishiding plot 
were explained by canopy structure alone. Our study shows that canopy structure variations and topography 
jointly shape species distributions in these forests and our findings highlight the importance of considering 
canopy structure and related ecological processes for understanding community assembly.   

1. Introduction 

Forest canopies and their associated structure are critical in main
taining high biodiversity and supporting ecosystem functioning (Ozanne 
et al., 2003). As the important vegetation layer for plant community 
photosynthesis and transpiration, canopy structure dramatically affects 
the distributions of forest productivity (Antonarakis et al., 2011; Gough 
et al., 2019), forest biomass, and carbon storage (Lefsky et al., 2002; 
Saatchi et al., 2011; Zhang et al., 2014), leading to structural and 
functional complexity of forest stands. The vertical niche differentiation 

driven by this complexity was conceptualized as a vertical dimension of 
niche space (MacArthur & MacArthur 1961), and has long been recog
nized as providing important habitat and diverse food resources for 
vertebrates and invertebrates. There has recently been a renewed in
terest in the concept of vertical niche for predicting plant and animal 
diversity and their distributions across multiple scales (Zhang et al., 
2013; Nakamura et al., 2017; Fahey et al., 2019; Meyer et al., 2020; Feng 
et al., 2020). 

Tall forests usually have high under-canopy variation in both quality 
and quantity of solar radiation (Lambers et al., 2008) which contributes 
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to strong niche differentiation, particularly along the vertical dimension, 
through competition for light as well as disturbances resulting from 
shading suppression, windfall, pests and diseases (Kohyama 1993; 
Couteron et al., 2005). Moreover, taller trees in general have deeper or 
wider root systems supporting nutrient and water acquisition (Koch 
et al., 2004), and their crowns often inhibit neighboring trees (Lutz 
et al., 2014). Although the importance of species-habitat associations (e. 
g. the edaphotopographic niches that define species occupancy in the 
horizontal plane) in regulating plant community assemblage, especially 
the assemblages of species-rich tropical and subtropical forests, has been 
widely appreciated (Harms et al., 2001; John et al., 2007; Wang et al., 
2009), the role of forest canopy structure in promoting forest diversity is 
poorly understood. 

A principal challenge in understanding canopy structure is the 
shortage of techniques for collecting and analyzing canopy data (Barker 
& Pinard 2001). Traditional techniques based on ground surveys of 
canopy structure are difficult to apply to large-size (e.g., several hect
ares) forest communities due to problems with accuracy, or even 
differentiating interwoven canopies. The challenges are especially acute 
in subtropical and tropical forests with dense forest canopies (Larjavaara 
& Muller-Landau 2013). Recent advances in remote sensing provide new 
insights into canopy studies in vegetation structure and ecosystem 
functions (Anderson & Gaston 2013; Turner 2014; Stovall et al., 2019). 
Satellite and manned airborne remote sensing instruments have been 
used to study forest canopies (e.g., Saatchi et al., 2011; Zhang et al., 
2016a; Feng et al., 2020), but mainly at larger scales due to relatively 
coarse spatial and temporal resolutions. Therefore, these data do not 
often match well with ground-based inventory data collected at small 
spatial scales (usually less than a few hectares), relevant to addressing 
questions of species coexistence (Innes & Koch 1998; Kerr & Ostrovsky 
2003; Wulder et al., 2004). Aircraft LiDAR and terrestrial laser scanning 
are used to accurately represent forest structural characteristics (e.g., 
Lefsky et al., 2002; Kane et al., 2010; Gough et al., 2019; Fahey et al., 
2019, Jeronimo et al., 2019; Rahman et al., 2022), but they requires 
high levels of expertise and computing power to process the data (Roşca 
et al., 2018). The recent development of Unmanned Aerial Vehicles 
(UAV) or drones has made it possible to acquire high-resolution 
remotely sensed data immediately (Anderson & Gaston 2013). 
Compared with satellite and manned airborne remote sensing tech
niques, UAVs based on Structure from Motion (SfM) point clouds can 
collect data on biotic and abiotic variables at high or moderate spatial 
resolutions (several centimeters) and avoid the limitations in long- 
duration cloud cover associated with satellite imagery, especially in 
subtropical and tropical forests (Koh & Wich 2012; Whitehead et al., 
2014). Due to these advantages, drones have been used to estimate 
forest structure properties in boreal (Puliti et al., 2015) and temperate 
forests (Getzin et al., 2012; Dandois & Ellis 2013), and monitor tropical 
forest recovery (Zahawi et al., 2015). However, many of these previous 
studies were conducted in small plant survey plots with relatively flat 

terrain, which limits the ability to evaluate the importance of both 
complex canopy structure and topographic variables. Montane forests 
represent 23% of the Earth’s forest cover (Price et al., 2011). They 
harbour a very high biodiversity and also play an important role in 
determining global and regional climates due to complex topography. 
We are interested in understanding the roles of canopy structure and 
topography in mountainous forests. 

In this study, we selected five large (≥15 ha each), stem-mapped 
subtropical forest plots to evaluate whether canopy vertical stratifica
tion, in addition to topography, could improve understanding of plant 
community assembly. These forests are commonly located in mountains 
with complex terrain. In each of the five plots (Table 1), all stems with 
diameter at breast height (DBH) ≥ 1 cm were georeferenced and iden
tified to species. Overall, there were 533,763 free-standing living stems 
with ≥1 cm DBH in these five plots. To evaluate the variations of forest 
canopy structure, we used an UAV equipped with still-photograph 
camera to collect visible light images. At the community level, we 
analyzed the effects of canopy structure and topography on plant di
versity for all trees together and across different forest layers. At the 
species level, we analyzed the correlations between spatial distributions 
of species abundance and these variables. Specifically, we addressed 
three main questions: (1) To what degree does forest canopy structure 
have the influence on the community assembly of tree species in sub
tropical forests? (2) Is there a consistent pattern of the underlying 
drivers of high plant diversity among the forests? (3) How does the 
importance of canopy structure and topography in species distributions 
vary across species and among the forests? 

2. Materials and methods 

2.1. Study area 

This study was conducted in five protected areas in the subtropical 
forest regions of China, extending over 6◦ in latitude and 10◦ in longi
tude (Table 1). The Chinese subtropical region covers approximately 
25% of the area of the country (Song, 2013). The zonal vegetation is 
primarily evergreen broad-leaved forests, dominated by the genera 
Castanopsis, Lithocarpus, Cyclobalanopsis (Fagaceae), Machilus (Laur
aceae), Schima (Theaceae), Distylium (Hamamelidaceae), Magnolia, and 
Michelia (Magnoliaceae) (Box et al., 1991; Wang et al., 2007; Song, 
2013). The subtropical region harbors high plant diversity, including a 
large number of endemic and relict species. Mean annual temperature of 
these five areas ranges from 13.5 ◦C to 21.4 ◦C, and annual precipitation 
ranges from 1517 mm to 2482 mm (Table 1). Among 198 endemic plant 
genera in China, 148 genera (75%) occur in this region (Song, 2013). 
The dominant soil types are yellow soil in Tiantongshan (TTS), yel
low–brown soil in Baishanzu (BSZ), and latosolic red soil in three other 
sites that are in Guangdong Province. 

Table 1 
Descriptive statistics for five stem-mapped subtropical forest plots.  

Sites Locations Area 
(ha) 

Mean annual 
temp. (◦C) 

Annual 
Prep. (mm) 

Elevation 
range 
(m) 

Slope 
(◦) 

Species 
richness 
(DBH ≥ 1 
cm) 

Total abundance of 
live trees 

Number of species with 
≥ 50 individuals 

Tiantongshan 
(TTS) 

29◦48′N, 
121◦47′E 

20  16.9 1517 313–585 9–48 154 108,540 79 

Baishanzu (BSZ) 27◦45′N, 
119◦12′E 

25  13.5 2482 1417–1642 5–37 151 224,483 92 

Chebaling (CBL) 24◦43′N, 
114◦15′E 

20  18.1 1900 431–545 4–53 223 86,518 96 

Heishiding 
(HSD) 

23◦31′N, 
111◦52′E 

15*  19.6 1751 445–672 5–50 249 54,207 119 

Dinghushan 
(DHS) 

23◦10′N, 
112◦32′E 

20  21.4 1966 241–465 6–52 177 60,015 67 

*The Heishiding plot is 50 ha from which 15 ha was selected for the current analysis due to the range limit of the drone survey. 
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2.2. Ground inventory data 

Following the protocols from the Smithsonian CTFS-ForestGEO (the 
Smithsonian Center for Tropical Forest Science - Forest Global Earth 
Observatory) network (Condit 1998; Anderson-Teixeira et al., 2015; 
Davies et al., 2021), all stems with DBH ≥ 1 cm were tagged, geore
ferenced and identified to species (Table 1). Plot sizes ranged from 15 to 
25 ha, and the elevation ranges were between 114 m in the Chebaling 
(CBL) plot and 272 m in the TTS plot. These plots were sufficiently large 
and heterogeneous to cover a sufficient range of habitat complexity 
(Wang et al., 2009; Yang et al., 2016; Yin, 2016). All these forests are 
mature, and the forest ages of these plots range from approximately 100 
to 300 yrs. Overall, there were 533,763 free-standing living individual 
stems with ≥1 cm DBH in these five plots. The richness of woody plant 
species ranged from 151 in BSZ to 249 in HSD (Table 1). In the current 
work, we used a 20-m grid scale (20 m × 20 m) for all the analyses at 
both community and species levels, since this plot size is commonly used 
in forest community ecology. We further checked the number of large 
trees (DBH ≥ 10 cm: roughly 10 m in height for the dominant tree 
species in this forest) for each plot, and found that all 20-m grids had 19 
large trees on average, suggesting that this scale was suitable for 
community-level analyses in these sites. 

2.3. Topographic variables 

The topography of these five plots was represented by four variables: 
elevation, slope, aspect, and convexity (Harms et al., 2001). Within-plot 
elevations were surveyed on a 20 m × 20 m grid using electronic total 
stations (Condit 1998). The elevation of each 20 m × 20 m quadrat was 
taken as the average elevation from each of the four corners. Slope was 
defined as the mean angular deviation from the horizontal of each of the 
four triangular planes formed by connecting three of the corners of each 
quadrat. Aspect was defined as the compass direction in which the slope 
faces. Convexity of each quadrat was calculated as the elevation of the 
focal quadrat minus the mean elevation of eight surrounding quadrats. 
For edge and corner quadrats, convexity was defined as the elevation of 
the center point minus the mean of its four corners (Harms et al., 2001). 

2.4. Aerial drone survey 

The Microdrones MD4-1000 small drone (http://www.microdrones. 
com) was used for aerial survey in September and October 2016. This 
UAV weighed 2.65 kg, had a cruising speed of 12 m/s, a maximum flight 
duration of 88 min, and a maximum payload of 1.2 kg. A Sony NEX-5 
still-photograph camera was mounted to the bottom of the drone to 
acquire aerial imagery. 

Flight missions were planned with the software mdCockpit using 
orthoimages and a digital elevation model (DEM) of the flight area. 
Flight altitude was ~250 m above the canopy. We collected the UAV 
images with 70–80% overlap between adjacent collection paths. Pixel 
size of the raw images was approximately 5 cm. To geocorrect the point 
cloud, we selected a dozen ground control points (GCPs) for each plot. 
These GCPs were selected in open areas of each site, and the horizontal 
and vertical coordinates of each GCP were measured using a Trimble 
RTK (Real-Time Kinematic) GPS with the accuracy of < 1 m (UTM Zone 
49 N, WGS84 horizontal datum) before the drone survey. The raw aerial 
photographs were processed into georeferenced orthoimages, digital 
surface models of the canopy (DSM), and point clouds using the software 
“Pix4dmapper” (http://pix4d.com) at a resolution of 5 cm. The aerial 
drone data are publicly available in Zhang et al. (2021). 

2.5. Canopy height model (CHM) generation and canopy height metrics 

A canopy height model (CHM) was generated with a pixel size of 1 m 
by subtracting the DEM from the DSM in each plot. The elevation of each 
canopy pixel was interpolated by ordinary kriging from the DEM 

generated from the 20 m × 20 m grid using the total station. Accuracy 
was evaluated by the mean error (ME) and the root mean square error 
(RMSE) between estimations and observations. The values of ME ranged 
from − 0.02 m to 0.07 m within five sites, and the RMSE ranged from 
3.71 m to 6.18 m. A suite of forest canopy metrics in each plot was then 
developed at spatial scales of 20 m. These metrics included maximum 
canopy height (the average of three highest values at 1 m2 scale; 
ht_max), canopy closure (ht_closure), standard deviation of heights 
(ht_sd), skewness of the heights (ht_skewness), and the vertical distri
bution ratio (ht_VDR; Goetz et al., 2007). Three measures, ht_max, 
ht_closure and ht_VDR, were used to represent the overall canopy hight 
and light availability from top canopy. High values in ht_max, ht_closure 
and ht_VDR generally suggest for low light availability and relatively 
low disturbance events recently (Zhang et al. 2016a). Two measures, 
ht_sd, ht_skewness, were related to the variations of forest canopy 
structure. High values in ht_sd and ht_skewness usually suggest for 
complex canopy strcture with multip layers, which may be related to 
high plant diversity (MacArthur & MacArthur 1961). We quantified 
ht_closure by the percentage of 1 m × 1 m pixels with > 10 m height in 
each 20 m × 20 m quadrat. The threshold of 10 m height was a rough 
estimation of canopy heights in subtropical evergreen broadleaved for
ests in China (Song 2013). Values of ht_closure ranged from 0 to 100 
with higher values indicating closed canopy and lower values indicating 
open canopy. ht_VDR was calculated using the equation: ht VDR =
HTmax − HTmed

HTmax
, where HTmax and HTmed were maximum and median values 

of canopy height at each grid cell. 

2.6. Statistical analysis 

To measure woody plant diversity in each plot, we calculated species 
richness, species evenness, and the effective number of species (Jost 
2006) based on the Shannon diversity index (exp[HShannon]) for each 20 
m × 20 m quadrat (Fig. 1; Fig. S1). The Shannon diversity index ac
counts for both abundance and evenness of the species, and weights 
overproportionally for rare species. It is calculated as follows: HShannon =

−
∑s

i=1(pi)ln(pi), where pi is the proportion of total individuals repre
sented by species i (Shannon 1948). Species evenness was calculated as 
the Shannon diversity index divided by the natural logarithm of species 
richness (Pielou 1975). Meanwhile, to evaluate the influence of forest 
vertical structure on plant diversity in different forest layers, we also 
calculated these diversity indices of three different forest layers, 
including understory (DBH < 5 cm), midstory (5 cm ≤ DBH < 10 cm) 
and overstory (DBH ≥ 10 cm). That is a rough classification based on the 
vegetation structure of subtropical forests in China (Song 2013). 

In each plot, the five drone-acquired canopy variables (ht_max, 
ht_closure, ht_sd, ht_skewness and ht_VDR) and four topographic vari
ables (elevation, convexity, slope and aspect) were selected as the pre
dictor variables at both the community and species levels. Considering 
the spatial accuracy of predictor variables, we limited our statistical 
analysis to the 20 m scale (grain resolution). To consider the multi
collinearity effect among these measures and the possible interactive 
effects bewteen canopy structure and topographic variables, we calcu
lated Pearson correlation coefficients after accounting for spatial auto
correlation for each pair of variables at each site. Nearly all 50 pairs of 
the variables had correlation coefficients less than |0.7|, expect for 
ht_max and ht_closure in TTS and ht_closure and ht_VDR in DHS. 

For the community-level analysis, spatial simultaneous autore
gressive error models (SARs) were used to evaluate the relative impor
tance of each variable to each of three biodiversity measures (species 
richness, species evenness, and Shannon diversity index) for all trees 
together and across the three forest layers (Kissling & Carl, 2008). 
Compared with common ordinary least squares regression and other 
spatial linear models, SARs can account for spatial autocorrelation in 
species distribution data by adding the autoregressive process as the 
spatially independent error (Kissling & Carl, 2008). 
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For the species-level analysis, SARs were used to analyze the corre
lations between species abundance at the 20 m scale and these pre
dictors. To reduce small sample size bias in data analysis, only species 
with ≥ 50 individuals were selected for the analyses (Table 1). All 
possible combinations of nine predictor variables were used to fit the 
models. The best combination of these variables was selected by 
comparing all model subsets using Akaike’s Information Criterion (AIC) 
(Burnham & Anderson, 2002). Then, for the ‘best’ model, we calculated 
the relative importance of predictor variables by using the standardized 
partial regression coefficients of all predictor variables (cf. Kissling & 
Carl, 2008; Zhang et al., 2013). The Akaike weight (w) for each predictor 
variable was calculated by the summed AIC weights of all subset models 
where the variable appears (Burnham & Anderson 2002). The value of w 
varies between 0 and 1, and a large value indicates the high importance 
of this variable. 

All statistical analyses were carried out using R 4.0.0 software (R 
Core Team, 2020). SARs were calculated using the R package ‘spdep 1.1- 
3′ (Bivand et al., 2019). The spatial weight matrices of the SARs were 
calculated with the nearest neighbor and a row-standardized coding 
style (Kissling & Carl, 2008). 

3. Results 

3.1. Biodiversity measures 

Drone-acquired canopy metrics showed substantial variations in 
distribution patterns in each of these five plots (Fig. 1; Fig. S1). Species 
richness at 20-m scale varied from <10 species in some quadrats to over 
50 species in others (Fig. 1). Spatial regression modeling showed that the 
relative importance of vertical and topographic variables in species 
richness varied greatly among these five plots (Table 2; Fig. 2a). Canopy 
structure variables contributed significantly to the explanations of the 
richness patterns in all five plots. Maximum canopy height (ht_max) in 
BSZ and CBL and the skewness of the heights (ht_skewness) in TTS and 
DHS were negatively related to species richness, canopy closure 
(ht_closure) in HSD and the vertical distribution ratio (ht_VDR) in TTS 
and BSZ were positively related, and ht_closure in DHS had a negative 
relation with richness. Among four topographic variables, mean eleva
tion, convexity and slope had significantly positive relations with plant 
richness in TTS, CBL and DHS, and the convexity in HSD, the aspect in 
DHS and mean elevation in BSZ were negatively correlated with plant 
richness. 

For species evenness (Fig. 2b; Table 2), ht_max had significantly 
negative relations in TTS and HSD, ht_VDR showed significantly positive 
relations in TTS, BSZ, and HSD, and ht_closure was positively related in 

BSZ. Three topographic variables (mean elevation, slope and aspect) in 
TTS and the convexity and slope in BSZ showed significant relations 
with species evenness, while the correlations between topography and 
evenness in three other plots were relatively weak. 

For the effective number of species exp[HShannon] (Fig. 2c; Table 2), 
ht_max had significantly negative relations in the TTS, HSD and DHS 
plots. Standard deviation of heights (ht_sd) had positive relations in BSZ, 
HSD and DHS. ht_VDR showed positive relations in BSZ. The effective 
number of species was greatly related to several topographic variables in 
TTS, BSZ and DHS plots, while only the slope had a strongly positive 
effect in CBL and weak effect in HSD. 

When we divided plant communities into three forest layers, the 
effects of vertical and topographic variables in three biodiversity mea
sures in the understory layer of each forest were very similar to the re
sults for entire communities (Fig. S2; Table S1). The explanatory power 
(pseudo R2) of the final selected models in the understory was stronger 
or nearly equal to those for entire communities (Table 2 & S1), while the 
explanatory power in the midstory and overstory layers was generally 
lower than that in the understory layer (Tables S2 & S3; Figs S3 & S4). 

3.2. Species abundance, canopy structure and topography 

Spatial distributions of most tree species abundance in these five 
plots were significantly correlated with at least one predictor (Fig. 3), 
but the relative importance of these predictors varied dramatically 
among these five plots. Among five canopy structure variables, ht_max 
in TTS and HSD, ht_sd in BSZ, and ht_skewness in TTS were included in 
the “best” models for nearly 30% of selected species in each plot. Among 
topographic variables, meanelev in BSZ, CBL and DHS, convex in TTS 
and DHS, and slope and aspect in BSZ played important roles in deter
mining the abundance distributions of nearly 30% and even 40% of the 
selected species (Fig. 3). 

When we grouped these nine predictor variables in the final selected 
models into three groups (Fig. 4), we found that, among the study spe
cies, the abundance distributions of 38–49% species in the plots (except 
HSD) were explained by the combination of vertical and topographic 
variables, and the species abundances explained by canopy structure or 
topography alone (21–33%) were relatively consistent in these four 
plots. In HSD, the abundances of 57 of 119 (48%) species were explained 
by canopy structure only, 31 species by topography only, and another 31 
species by both of them. When we divided these species by growth forms 
and leaf habits, the overall trends were similar (Fig. 4). 

Fig. 1. Drone-acquired canopy height maps at 1-m resolution and species richness maps at 20-m scale for each of five subtropical forest plots. Plots: Tiantongshan 
(TTS), Baishanzu (BSZ), Chebaling (CBL), Heishiding (HSD), and Dinghushan (DHS). Values for x-axis and y-axis reflect dimensions of each plot in meters. 
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4. Discussion 

4.1. The influence of forest canopy structure in plant diversity 

Ecological niche differentiation has been considered as a pivotal 
mechanism in determining plant community assembly (Hutchinson, 
1961; Vellend 2016). Among possible determinants of niche partition
ing, vertical niche differentiation is relatively less considered than 
horizontal niche differentiation. Previous studies have shown that plant 
diversity was positively related to canopy complexity in different forests 
through the provision of varying light environments for plants (e.g., 
Rüger et al., 2009; Zhang et al., 2013; Zellweger et al., 2017). Impor
tantly, a high level of variation in light environments depends on the 
existence of a high and complex canopy so that various levels of shading 
can exist throughout the forests (Hubbell et al., 1999). The horizontal 

and vertical heterogeneity provided by the large trees that have devel
oped over centuries drives this gradient (Lutz et al., 2013, 2018; Chu 
et al., 2019). Due to the lack of effective tools for measuring tree height, 
the diameter distributions of trees have often served as a proxy for local 
vertical canopy structure (Hao et al. 2007), although the general rela
tionship between diameter and height is well known. In this study, we 
showed that a lightweight drone can collect ecologically-relevant tree 
height data at hectare-scale extents. Combining drone-derived canopy 
data and ground-based surveys shed insights into the explanations for 
patterns of biodiversity in these five species-rich subtropical forests. At 
the community level, canopy height and its variation emerged as 
important predictors of three different measures of plant diversity for 
both the entire plant communities and understory layers. The consis
tency of results between the entire communities and understory layers 
were related to relatively high density of small trees and shrubs in the 

Table 2 
Spatial simultaneous autoregressive models of response variables (species richness, species evenness, and the effective number of species based on Shannon diversity 
index (exp[HShannon])) against all combinations of predictor variables. Standardized coefficients (Coef.) for the model with the highest Akaike weight (w) for a given 
variable group are given, as well as the Akaike weight (w) for each variable based on all possible combinations of predictor variables. Pseudo r2 of each model was in 
bold. *** P < 0.001; ** P < 0.01; * P < 0.05. Plots: Tiantongshan (TTS), Baishanzu (BSZ), Chebaling (CBL), Heishiding (HSD), and Dinghushan (DHS).  

Sites Variables Richness Evenness exp[HShannon] 

Coef. w Coef. w Coef. w 

TTS ht_max  0.317 − 0.301*** 0.997 − 0.222** 0.955  
ht_closure  0.336  0.393  0.327  
ht_sd − 0.101* 0.661  0.298  0.434  
ht_skewness − 0.127** 0.829 0.063* 0.516  0.337  
ht_VDR 0.181** 0.802  0.620 0.059 0.685  
meanelev 0.288** 0.956 0.380*** 0.995 0.418*** 0.996  
convex 0.135** 0.954  0.345 0.129** 0.958  
slope 0.128** 0.984 − 0.179*** 1.000 − 0.067* 0.691  
aspect  0.294 0.120** 0.934  0.319  
Pseudo r2 0.542  0.612  0.667  

BSZ ht_max − 0.184** 0.746  0.433 − 0.147 0.547  
ht_closure  0.397 0.195** 0.933 0.121 0.562  
ht_sd 0.072 0.594  0.654 0.124* 0.865  
ht_skewness  0.485  0.386  0.394  
ht_VDR 0.066 0.727 0.154** 0.710 0.118* 0.689  
meanelev − 0.323** 0.878  0.303 − 0.221* 0.736  
convex  0.465 − 0.209*** 0.995 − 0.129* 0.828  
slope  0.345 − 0.225*** 0.999 − 0.154** 0.958  
aspect  0.298  0.294  0.278  
Pseudo r2 0.617  0.324  0.450  

CBL ht_max − 0.243*** 0.994 0.145* 0.606  0.385  
ht_closure  0.273  0.345  0.292  
ht_sd  0.271  0.532  0.347  
ht_skewness  0.277  0.372  0.292  
ht_VDR  0.276 0.089 0.505  0.513  
meanelev  0.300  0.483  0.274  
convex 0.143** 0.910 − 0.09 0.592  0.326  
slope 0.289*** 1.000  0.271 0.207*** 1.000  
aspect  0.275  0.299  0.273  
Pseudo r2 0.436  0.446  0.367  

HSD ht_max  0.291 − 0.158* 0.762 − 0.152* 0.379  
ht_closure 0.208*** 0.983  0.510  0.317  
ht_sd 0.120* 0.630  0.356 0.102* 0.431  
ht_skewness  0.355  0.331  0.326  
ht_VDR  0.402 0.145** 0.728  0.621  
meanelev  0.375  0.308  0.274  
convex − 0.129* 0.681 0.117 0.691  0.355  
slope 0.107 0.630  0.286 0.082 0.447  
aspect  0.271  0.381  0.387  
Pseudo r2 0.274  0.449  0.415  

DHS ht_max  0.356  0.350 − 0.172*** 0.555  
ht_closure − 0.176** 0.826 − 0.116 0.405  0.609  
ht_sd  0.318  0.347 0.097* 0.507  
ht_skewness − 0.117** 0.863  0.358  0.356  
ht_VDR  0.366  0.376  0.348  
meanelev 0.165 0.661  0.297  0.386  
convex 0.262*** 1.000  0.412 0.165** 0.834  
slope 0.309*** 1.000 − 0.088 0.517 0.193*** 0.912  
aspect − 0.099* 0.781  0.308 − 0.107* 0.751  
Pseudo r2 0.530  0.358  0.415   
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understory in most plots. At the species level, the distributions of a large 
portion of species in the five plots were related to one or more metrics of 
canopy structure. 

Our findings partly differ from others based on data from the CTFS- 
ForestGEO stem-mapped plot network, of which our five plots are part, 
precisely because those studies did not include canopy data. For 
example, without canopy height data, Wang et al. (2009) in the Ding
hushan plot, Yang et al. (2016) in the Tiantongshan plot, and Yin et al. 
(2016) in the Heishiding plot found that spatial distributions of over 
80% of tree species were related to topographical variables. At the 
extreme end of the diversity spectrum, Furniss et al. (2017) found that 
all ten common species in a high elevation plot in the Utah plot all had a 
strong niche association using only aspect and parent soil type. How
ever, Harms et al. (2001) documented that only 16% (28 species) of 171 
plant species in a 50 ha Panamanian tropical forest plot on Barro Col
orado Island (BCI) showed significant correlations with topography, 
suggesting that local habitat specialization as defined only by topog
raphy played a limited role in tree diversity maintenance. In a 25 ha Sri 
Lankan mixed dipterocarp forest plot, Punchi-Manage et al. (2013) 

found that only 25% of the species spatial distributions was due to 
topographic association. Brown et al. (2013) compared the results of the 
ground tree survey data from 14 large subtropical and tropical forest 
plots, and found that the contribution of topography in community as
sembly varied greatly among different forests, with the increased 
importance in the high heterogenetic environment. Our study suggests 
that adding canopy data would almost certainly improve the inference 
of habitat niche. This is consistent with other studies that evaluated the 
importance of canopy structure related variables, including canopy 
height, canopy openness and light availability (e.g., Hubbell et al., 1999; 
Tateno & Takeda 2003; Rüger et al., 2009; Zhang et al., 2016b), and 
found vertical niche partitioning significantly contributes to plant 
community assembly. In addition, we found that canopy structure var
iables had stronger or near equal effects in plant diversity in the un
derstory layers of these forests compared with the entire communites, 
suggesting the importance of light enviroments in determining under
story plant diversity and subtropical forest regeration (Rüger et al., 
2009; Getzin et al. 2012). 

Despite the strong support for the importance of canopy structure 

Fig. 2. The relative importance of five 
drone-derived canopy variables (ht_max, 
ht_closure, ht_sd, ht_skewness and ht_VDR) 
and four topographic variables (elevation, 
convexity, slope and aspect) to (a) species 
richness, (b) species evenness, and (c) the 
effective number of species based on Shan
non diversity index (exp[HShannon]). The 
Akaike weight (w) for each variable was 
calculated based on the results of spatial 
simultaneous autoregressive models. Plots: 
Tiantongshan (TTS), Baishanzu (BSZ), 
Chebaling (CBL), Heishiding (HSD), and 
Dinghushan (DHS).   

J. Zhang et al.                                                                                                                                                                                                                                   



Forest Ecology and Management 505 (2022) 119945

7

variables in predicting tree diversity, it is worth noting that a canopy 
height variable could have significantly varied effects on tree diversity 
across forest plots (Fig. 2). This context-dependent effect of different 
canopy variables is expected given that the five forests in our study vary 
considerably in canopy height, species composition (e.g., the pro
portions of evergreen tree species vary with latitudes and elevations 
among them) (Song et al. 2015) and disturbance history (this region is 
strongly influenced by the East Asian monsoon and the frequency and 
intensity of disturbances, e.g., typhoon, seasonal drought, and ice-storm 
are very different among these plots) (Wang et al., 2007; Song 2013). 
These variations speak for the complexity of canopy structure and its 
varied effects on tree species assembly. Without detailed information of 
forest disturbance history and plant interactions, our current work 
cannot disentangle the effects of different measures of canopy structure 

variables on plant diversity. Further studies are needed to directly link 
canopy structure measures with the key ecological processes, such as 
light availability and forest disturbance. For example, light availability 
and forest gap distribtuions could be mapped using high-resolution RGB 
images, although the accuracy of the drone-derived variables still needs 
to further evaluate in different ecosystems (Getzin et al., 2014; Jucker 
2021). In addition, the current study had only one-time snapshots of 
forest canopy in each forest, providing relatively limited insights into 
how forests may change over time. Long-term monitoring of forest 
canopy dynamics and ground resurveys in plant demographic changes is 
necessary to understand forest diversity and dynamics (Zhang et al., 
2015; Davies et al., 2021). To fill this knowledge gap, we are continuing 
to monitor the changes of canopy height distributions and gap charac
teristics in these forests. 

Fig. 3. The percentage of species number included the predictor variables in the “best” models of species distributions compared with total species number with at 
least 50 individuals. The “best” model of each species was selected by comparing all subsets of spatial simultaneous autoregressive models using Akaike’s Information 
Criterion (AIC). Plots: Tiantongshan (TTS), Baishanzu (BSZ), Chebaling (CBL), Heishiding (HSD), and Dinghushan (DHS). 

Fig. 4. The number of species included canopy 
structure related variables (dark-pink, green or yel
low circles in the left sides), topographic variables 
(darkblue, grey, or pink circles in the right sides), 
and their combinations interactions (the in
teractions union of two circles) in the “best” models 
of species distributions in each of the five plots. 
Species were grouped by growth forms (trees vs. 
shrubs) and leaf habits (evergreen vs. deciduous). 
Plots: Tiantongshan (TTS), Baishanzu (BSZ), 
Chebaling (CBL), Heishiding (HSD), and Ding
hushan (DHS).   
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4.2. Combined effects of forest canopy structure and topography 

Topography influences plant diversity and species abundance pat
terns by controlling environmental factors such as water drainage and 
the solar radiation regime. Topographic niche partitioning remains as a 
prominent hypothesis to partially explain tree community assembly in 
subtropical and tropical forests (Wang et al., 2009; Brown et al., 2013). 
Our findings at both community and species levels from the five species- 
rich subtropical forests partly support this hypothesis. Our findings also 
suggest that previous studies (above) in quantifying the importance of 
topography in plant diversity could be confounded with the effect of 
canopy structure variables which in turn vary with topography. 

Clearly, both canopy structure and topography were associated with 
species distributions in these forests, although their relative importance 
varied considerably across study sites and tree species. For tree com
munites across the entire forest layers, nearly 48% of the variation (on 
average) in richness, 43% in evenness, and 46% in Shannon diversity 
were statistically explained by their combined effects. One recent study 
in the 50-ha BCI plot also reported canopy height and topography 
explained 48% of the variations in plant richness at 1.0-ha scale (Wolf 
et al., 2012). In addition, topographic variation could influence forest 
canopy structure by mediating light availability, soil nutrient cycling, 
microclimate, and the distribution of herbivores (Tateno & Takeda 
2003; Rüger et al., 2009; Ledo et al., 2013). Therefore, it would be 
necessary to disentangle the separate effects of topographic variables on 
the related ecological processes for a further understanding how the 
variation in topography would redistribute abiotic and biotic resources 
for maintaining the complex network of biodiversity. It is worth 
mentioning that, for species-level analysis, we only selected the species 
with at least 50 individuals to reduce samle sample size bias, which may 
ignore the effects of canopy structure and topography in some extremely 
rare species. Condit et al. (2000) analyzed the spatial patterns of six 
tropical CTFS-ForestGEO plots and reported that rare species were more 
aggregated than common species, but the drivers of rare species spatial 
distributions are still unclear. Considering the importance of rare species 
in community assembly, further studies are needed to quantively eval
uate how canopy structure, topography and dispersal limitation shape 
the distributions of rare species. In addition, our current analyses only 
focused on one spatial scale (20-m grid scale). Although this spatial scale 
is commonly used in forest community ecology, it can only capture 
several ecological processes and may have some uncertainties in esti
mating canopy heights because the crowns of large trees may across the 
boundaries of the 20-m grids. Considering that the importance of most 
ecological and evolutionary processes varies with spatial scales (Levin 
1992), multiple-scale studies on canopy structure and topography will 
be useful to evaluate spatial scale effects in plant community assembly. 

4.3. Drones and other remote sensing techniques as the tools for forest 
canopy monitoring 

The rapid development of drones and other remote sensing tech
niques (e.g., aircraft LiDAR and terrestrial laser scanning) has greatly 
improved our ability to acquire data that were previously not possible 
and as such offers exciting opportunities for addressing questions 
important to the understanding of biodiversity and conservation 
(Anderson & Gaston 2013; Koh & Wich 2012; Nakamura et al., 2017; 
Randin et al., 2020). Fine-scale drone mapping provides high-quality 
data in canopy structure attributes that are less known and have been 
little explored at fine spatial scales (Getzin et al. 2014). Furthermore, 
drone surveys take only 1–2 days to cover >20 ha at a given forest site, 
including the survey of ground control points, mission planning and the 
actual aerial drone survey. If traditional ground-based surveys were 
used, it would take several months to collect one or several forest canopy 
attributes. For example, to map canopy gaps and their changes over 
time, the researchers in the 50 ha BCI plot in Panama measured forest 
height using fiberglass measuring poles in each 5 m × 5 m quadrat, and 

it took one person eight months to complete one census (Condit 1998; 
Hubbell et al., 1999). Due to the practical difficulties in measuring 
canopy structure directly from the ground in large areas, most previous 
studies have been based on a rough estimation of canopy height and the 
light environment (Larjavaara & Muller-Landau 2013; Rüger et al., 
2009), but the uncertainty associated with the use of such approximate 
techniques is not well known. In the current study, we used the topo
graphic variables from ground-based surveys on 20 m × 20 m grids using 
digital total stations, which did not distinguish topographic variations 
within the grain scale that was used and may miss out the importance of 
fine-scale topographic niche differentiaon. 

Recent development in light-weight LiDAR sensors, terrestrial laser 
scanning, and the simultaneous localization and mapping (SLAM) 
techniques show large potential for forest mapping based on combined 
ground and airborne surveys (Bauwens et al., 2016; Roşca et al., 2018; 
Disney 2019; Rahman et al., 2022). These new technologies could 
certainly reduce the uncertainties in data collection and analysis, espe
cially in forests with complex vegetation structure. As we mentioned 
before, the terrain data we collected from the field did not spatially 
match the digital surface model generated from the drone, since the 
topographic variables were measured at the 20-m scale following the 
standard protocols of the CTFS-ForestGEO network (Condit, 1998; 
Zhang et al., 2016b). The use of LiDAR techniques will greatly improve 
the accuracy of terrain data. The combination of light-weight drones and 
other remote sensing techniques provide a high-quality measure of 
forest canopy structure, and could serve as a cost-effective and time- 
saving tool for monitoring canopy dynamics, especially in species-rich 
tropical and subtropical forests with complex mountainous topogra
phies (Koh & Wich 2012; Zhang et al., 2016b). 

5. Conclusions 

By combining drone-based photogrammetric data and detailed 
ground survey data, we provide a quantitative evaluation of the relative 
importance of forest canopy structure and topography in determining 
species richness, abundance, and plant community assembly in five 
subtropical forests. We conclude that forest vertical structure plays an 
important role in plant community assembly, and canopy structure 
variations and topography jointly shape species distributions in these 
forests. Moreover, our study shows that, as a complement to traditional 
field surveys, drones allow collection of a large volume of data with high 
spatiotemporal resolution and at low cost, while providing new data to 
advance our mechanistic understanding of species coexistence. 
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