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ABSTRACT

It has been well documented that nitrogen (N)

additions significantly affect soil respiration (Rs)

and its components [that is, autotrophic (Ra) and

heterotrophic respiration (Rh)] in terrestrial

ecosystems. These N-induced effects largely result

from changes in plant growth, soil properties (for

example, pH), and/ or microbial community.

However, how Rs and its components respond to N

addition gradients from low to high fertilizer

application rates and what the differences are in

diverse land-use types remain unclear. In our

study, a field experiment was conducted to exam-

ine response patterns of Rs to a N addition gradient

at four levels (0, 15, 30, and 45 g N m-2 y-1) in

four types of land-use (paddy rice–wheat and

maize–wheat croplands, an abandoned field grass-

land, and a Metasequoia plantation) from December

2012 to September 2014 in eastern China. Our

results showed that N addition significantly stimu-

lated Rs in all four land-use types and Rh in crop-

lands (paddy rice–wheat and maize–wheat). Rs

increased linearly with N addition rates in crop-

lands and the plantation, whereas in grassland, it

exhibited a parabolic response to N addition rates

with the highest values at the moderate N level in

spite of the homogeneous matrix for all four land-

use types. This suggested higher response thresh-

olds of Rs to the N addition gradient in croplands

and the plantation. During the wheat-growing

season in the two croplands, Rh also displayed lin-

ear increases with rising N addition rates. Interest-

ingly, N addition significantly decreased the

apparent temperature sensitivity of Rs and in-

creased basal Rs. The different response patterns of

Rs to the N addition gradient in diverse land-use
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types with a similar soil matrix indicate that vege-

tation type is very important in regulating terres-

trial C cycle feedback to climate change under N

deposition.

Key words: carbon cycle; climate change; het-

erotrophic respiration; land-use types; nitrogen

addition; soil respiration.

INTRODUCTION

Atmospheric nitrogen (N) deposition, largely orig-

inating from fertilizer application and fossil fuels

combustion (McPhee and others 2015; Morillas

and others 2015), has increased by three- to five-

fold in the past century and is likely to continue to

increase in the near future (Basto and others 2015;

Galloway and others 2008). Increased N deposition,

together with excess application of fertilizers in

farmlands, has induced N enrichment in the bio-

sphere, which may substantially influence ecosys-

tem structure and function, especially the carbon

(C) and N cycles (Chen and others 2016; Janssens

and others 2010; Lu and others 2011a, 2011b). The

C and N cycles are highly coupled in terrestrial

ecosystems (Thornton and others 2007). Specifi-

cally, N deposition-induced effects on the ecosys-

tem C cycle will affect the build-up of atmospheric

CO2 concentrations and then impact global climate

change (Gruber and Galloway 2008). One of the

most important C processes affected by N deposi-

tion is CO2 release from the soil (that is, soil res-

piration, Rs).

Rs refers to carbon dioxide (CO2) efflux from the

soil surface, including heterotrophic respiration

(Rh) during the decomposition of litter and soil

organic matter (SOM) and autotrophic respiration

(Ra) from live roots and their symbionts (Wang and

Yang 2007). As the largest CO2 efflux from terres-

trial ecosystems to the atmosphere (Luo and Zhou

2006; Wang and others 2014), Rs is an important

regulator of climate change, as well as a determi-

nant of net ecosystem C balance (Hopkins and

others 2013). It is well known that a complex array

of biotic and abiotic factors affects Rs, such as

temperature, precipitation, soil moisture, oxygen,

and substrate supply (Reynolds and others 2015).

Global change (for example, elevated CO2, warm-

ing, N deposition) may also substantially mediate Rs

and its components (Carol Adair and others 2011;

Lu and others 2011b, 2013).

Currently, a number of manipulative experi-

ments have been carried out to examine the effects

of N addition on Rs and its components in terrestrial

ecosystems. However, the results are controversial,

showing positive (Tu and others 2013), negative

(Mo and others 2008), and nonsignificant changes

(Allison and others 2008) in Rs in response to N

addition. In grassland and farmland, significant

positive effects of N addition on Rs were more

common than decreasing and nonsignificant

changes (Graham and others 2014; Jia and others

2012; Zhang and others 2014aa), whereas most

studies found that Rs had negative responses to N

addition in forests (Janssens and others 2010; Ra-

mirez and others 2010; Zhou and others 2014). On

one hand, increased N availability under N addition

can enhance plant growth and litter input to the

soil, and thus Rh (Craine and others 2001).

Simultaneously, N-induced stimulation of root

biomass and rhizosphere exudation also increase Ra

(Deng and others 2010). On the other hand, pos-

sible soil acidification caused by N addition may

inhibit microbial activity, reduce microbial bio-

mass, and thus decrease Rs (Phillips and Fahey

2007). The responses of Rs to N addition thus de-

pend on the combined effects of the two opposing

mechanisms, which may be related to climate,

ecosystem type, and duration of the experiment.

Previous studies have found that fertilization

regimes (for example, N application rate) signifi-

cantly affected plant performance and soil micro-

bial activities and thus Rs and its components

(Hossain and others 1995; Iyyemperumal and Shi

2007). Along N addition gradients from low to high

N application rates, the responses of Rs showed

diverse patterns among ecosystems or individual

studies, including increasing, decreasing, and

nonlinear trends (Supplementary Figure S1; Zhong

and others 2016; Zhou and others 2014). For

example, Lee and Jose (2003) found that Rs de-

creased linearly with N application rate in planta-

tions, whereas the opposite pattern was observed in

Tu and others’ (2009) study in a bamboo

(Pleioblastus amarus) forest. In addition, Song and

Zhang (2009) demonstrated a nonlinear response

of Rs to a N addition gradient with positive effects at

low N levels and negative ones at high N levels in a

cropland. It should be noted that these studies were

located in different regions of the world with

heterogeneous backgrounds. The different re-

sponses of Rs to N addition gradients in diverse

ecosystems or land-use types may largely be related

to site-specific differences (for example, climatic
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condition, soil properties, Zhou and others 2014).

However, how Rs responds intrinsically to a N

addition gradient in different ecosystems or land-

use types in the same soil matrix remains un-

known, which limits our ability to explore the re-

sponses of the ecosystem C cycle to N fertilization

or deposition (Gruber and Galloway 2008).

To probe the response patterns of Rs to a N addi-

tion gradient in different types of land-use with a

similar soil matrix, a field experiment was carried

out on Chongming Island in Shanghai, China,

where the natural N deposition rate is

25.6 kg N ha-1 y-1 (Lü and Tian 2007). The N

addition gradient included four levels (0, 15, 30,

and 45 g N m-2 y-1), which were applied to the

four land-use types (a paddy rice (Oryza sativa L.)–

wheat (Triticum aestivum L.) cropland, a maize (Zea

mays L.)–wheat cropland, an abandoned field

grassland, and a Metasequoia plantation) from

December 2012 to September 2014 in eastern Chi-

na. The Rs in different land-use types was measured

on diel, seasonal, and annual scales under the same

background conditions. In this study, our objectives

are (1) to examine the response of Rs to four N

addition rates, (2) to investigate the effects of land-

use type on the response patterns of Rs to the N

addition gradient, and (3) to explore the responses

of Rs to soil temperature under N addition.

METHODS

Site Description

The experiment was conducted on Chongming

Island (121�09¢–121�54¢E, 31�27¢–31�51¢N) in

Shanghai, China. This is an alluvial island formed

by deposited sand and other sediments in the

Yangtze River delta. The study site has a flat terrain

and low spatial heterogeneity, which eliminates

the confounding effects of soil properties and geo-

logical processes on Rs. According to the meteoro-

logical record from 1956–2000, the mean annual

temperature was 15.2�C, with the monthly air

temperature ranging from 2.8�C in January to

27.5�C in July. The mean annual precipitation was

1025 mm, with the majority occurring from April

to September. The soil is sandy loam characterized

by low organic matter content and water-holding

capacity, and preservation of fertility (Yang and

others 2012).

Experimental Design

The N addition experiment was conducted in four

land-use types: a paddy rice–wheat cropland, a

maize–wheat cropland, an abandoned field grass-

land, and a Metasequoia plantation. Each land-use

type set one study site, which was surrounded by

buffer strips wider than 3 m. The N addition

treatments contained four N levels with an annual

added rate of 0 (control), 15 (N1), 30 (N2), and 45

(N3) g N m-2 y-1, respectively, which were evenly

applied four times per year (March, May, July, and

September in 2012 and 2013) using solid granules

of urea (CO(NH2)2). Each treatment had four

replicates. There were a total of 16 plots at each

site. The plots were randomly assigned to the four

treatments (that is, a completely randomized de-

sign).

In the paddy rice–wheat rotation cropland, six-

teen 5 9 5 m2 plots were randomly assigned to the

four N treatment levels. Buffer strips surrounding

each plot were wider than 2 m. At the beginning of

the experiment, plots were separated from each

other by plastic shelves inserted into soil to avoid

water circulating in the rice growing season. Con-

ventional tillage management practices such as

rotation, plowing, sowing, irrigation, and harvest-

ing were conducted on October 16 and 22, 2013

and May 6, 2014 under both control and N addition

treatments. Straw and wheat stems were not

incinerated in the field. In the maize–wheat rota-

tion cropland, experimental operations were the

same as in the paddy rice–wheat cropland. In the

abandoned field grassland, sixteen 3 9 3 m2 plots

were randomly assigned to the four N treatment

levels. The buffer strips surrounding each plot were

wider than 3 m. In the Metasequoia plantation,

sixteen 15 9 15 m2 plots were randomly assigned

to the four N treatment levels. The buffer strips

surrounding each plot were wider than 5 m.

Measurement Protocols

To measure Rs, a PVC collar (20 cm in inner

diameter and 11 cm in height) was inserted 5–6 cm

into the soil permanently at the center of each plot.

Each PVC collar had 24 8-mm holes distributed

evenly in its pipe wall below ground level to allow

the roots in and surrounding the collar to grow

normally. To eliminate aboveground plant respi-

ration from the measurements, living plants inside

the soil collars were clipped at the soil surface at

least 24 h before measurements were taken. The

clipped plant materials were left in the collars. The

rate of Rs was measured monthly from January

2013 to September 2014 in the days when rain was

absent, using a LI-8100 portable monitoring system

(LI-COR, Lincoln, NE, USA) with the Rs measure-

ment chamber being firmly placed on each collar.

Measurements were carried out between 9:00 and
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16:00. Each of the measurements usually took

2 min and the data were recorded per second by

the data logger and then transmitted to a notebook

computer. Standard procedures were applied to

compute the Rs rate (Zhou and others 2006).

To detect the responses of Rh to different N

addition levels in the croplands, PVC shelves

(0.6 cm in thickness, 50 9 50 cm2) were inserted

50 cm into the soil in the four directions to prevent

new roots from growing inside the collar and then a

PVC collar was inserted into the soil in the middle

of the trenching area. The measurement procedure

for Rh was the same as that for Rs. Rh was measured

only in the wheat-growing season for the two

croplands, which were referred to as ‘paddy rice–

wheat (wheat) cropland’ or ‘maize–wheat (wheat)

cropland’ hereafter.

Soil temperature at a depth of 5 cm was moni-

tored adjacent to each PVC collar using a measur-

ing probe connected to the LI-8100 at the same

time as we measured the Rs rate. In addition, soil

temperature and moisture were measured with a

Oneset HOBO system (S-SMD-M005, Onset Com-

puter Corporation, Bourne, MA, USA) with the

data loggers buried at 5 cm depth to record tem-

perature and moisture every 30 min. The air tem-

perature and precipitation data were obtained from

China’s meteorological data network (http://202.

96.202.174/Index.aspx).

Statistical Analysis

The effects of the N addition treatments (0, 15, 30,

and 45 g N m-2 y-1) on Rs and Rh were tested by

one-way analysis of variance with N addition levels

as a fixed factor. The sensitivity of Rs to soil tem-

perature was estimated by fitting an exponential

equation with the Rs rate against temperature from

each treatment:

Rs ¼ R0Q
T
10

10; ð1Þ

where Rs is soil respiration rate (lmol m-2 s-1), T is

soil temperature (�C) at 5 cm depth, and R0 is the Rs

rate when the temperature is 0�C (that is, the basal

respiration rate). Q10 represents the temperature

sensitivity of Rs, which describes the change in

respiration rate over a 10�C increase in soil tem-

perature. The differences in the parameters (that is,

R0 and Q10) among N addition levels were assessed

by the t test according to the method presented by

Toutenburg (2002) and Zhou and others (2006).

Briefly, the t value was calculated for the difference

between any two treatments of the four via equa-

tion (2).

t ¼ x2 � x1
ffiffiffiffiffiffiffiffiffi

P

S2
ij

4

q i; j ¼ 1; 2ð Þ: ð2Þ

The annual Rs for each treatment was estimated

by summing the products of the mean daily Rs and

the number of days between samples. Total Rs and

Rh during the wheat-growing season in croplands

were also estimated from the accumulated Rs and

Rh within this period (Figure 6e, f). All analyses

described above were performed in SPSS 17 (In-

ternational Business Machines Corporation) and

SigmaPlot 10.0 (SYSTAT Software) for Windows.

The significance level (a) was 0.05.

RESULTS

Microclimate

During the study period, the seasonal dynamics of

air and soil temperature were similar (Figure 1a, b),

with less fluctuation for soil temperature. The

maximum monthly air and soil temperature oc-

curred in July 2013 with values of 31.20 and

26.91�C, respectively, whereas the minimums oc-

curred in January 2013 with values of 3.71 and

3.32�C, respectively.
Unlike soil temperature, soil moisture at the

depth of 5 cm fluctuated greatly over the period

with a range from 16.5 to 80.3%. The higher values

appeared in February–April 2013 and February–

April 2014 and June 2014, when precipitation was

usually high (Figure 1b).

Effects of N Addition on Diel and
Seasonal Variability in Rs and Its
Components

The diel dynamics of Rs at four N levels followed a

unimodal curve in the paddy rice–wheat (wheat)

cropland, the abandoned field grassland, and the

Metasequoia plantation, with high values during the

daytime and low values at night (Figure 2). The Rs

rate was 4.18–11.95 and 4.05–10.35 lmol m-2 s-1

in the paddy rice–wheat (wheat) cropland and the

abandoned-field grassland, respectively (Figure 2a,

b). In both of the two land-use types, the peak Rs

appeared at 12:00 under the control and N1

(15 g N m-2 y-1) treatments and at 14:00 under

the N2 (30 g N m-2 y-1) and N3 (45 g N m-2 y-1)

treatments, respectively. Rs in the Metasequoia

plantation ranged from 1.22 to 4.28 lmol m-2 s-1,

with the diel variability being much smaller than

that in the paddy rice–wheat cropland and grass-

land. The peak Rs appeared at 14:00 in the plan-
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tation for the four treatments (Figure 2c). On

average, Rs rates under all four N treatments were

higher than those in the control. The N3 treatment

in the paddy rice–wheat cropland and N2 in

grassland significantly increased Rs, with the high-

est average rate being 8.84 and 7.53 lmol m-2 s-1,

respectively (P < 0.05). The other N treatments

did not significantly affect Rs either in the paddy

rice–wheat cropland or grassland (Figure 2d, e). In

the plantation, N addition had a significant effect

on Rs under the N2 and N3 treatments, with the

average rates being higher than 2.52 lmol m-2 s-1

(P < 0.05, Figure 2f).

The seasonal dynamics of Rs followed the sea-

sonality of soil temperature, with high rates in

summer and low rates in winter. The seasonal

variability substantially differed among the four

land-use types, with the plantation having the

lowest range of variation. The point-in-time max-

imum and minimum Rs under the four N treat-

ments were 7.73–11.43 and 2.22–5.37 lmol m-2

s-1 in the paddy rice–wheat cropland, respectively

(Figure 3a), whereas these values were 8.55–12.18

and 0.57–3.93 lmol m-2 s-1 in the maize–wheat

cropland (Figure 3b), 9.27–12.58 and 0.83–

4.17 lmol m-2 s-1 in the abandoned field grass-

land (Figure 3c), and 5.17–7.15 and 1.43–

4.13 lmol m-2 s-1 in the Metasequoia plantation

(Figure 3d), respectively. The average Rs across the

study period increased along the N gradient in

croplands and the plantation, but in the abandoned

field grassland, the largest Rs was seen under the N2

treatment (Figure 3e–h).

The seasonal dynamics of Rh in croplands also

followed the changes in soil temperature, with the

lowest value in January 2014 and the highest in

May 2014. Rh during the wheat-growing season

increased with the increasing N rate in the two

croplands (Figure 4). The peak Rh was 5.61–6.83

and 5.61–6.46 lmol m-2 s-1 along the N addition

gradient from the control to N3 in the paddy rice–

wheat and maize–wheat croplands, respectively

(Figure 4).

N-induced Effects on the Apparent
Temperature Sensitivity of Rs (Q10)

In our study, there were no significant relation-

ships between Rs and soil moisture under the dif-

ferent treatments (Supplementary Figure S2), but

the significant relationships between Rs and soil

temperature were found. Our regression analysis

showed that Rs increased exponentially with soil

temperature in all four land-use types, with ex-

plained variances (r2) of more than 78, 74, 81, and

66% for Rs in the paddy rice–wheat cropland, the

maize–wheat cropland, the grassland, and the

plantation, respectively, for the four N treatments

(Figure 5). For all the land-use types, the R0 (Rs at

0�C) under N addition was significantly higher than
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that in the control (P < 0.05). Along the N addi-

tion gradient, R0 increased in all the land-use types

except for the abandoned field grassland, in which

the largest R0 was seen under the N2 treatment

(Table 1). N addition decreased the Q10 of Rs in the

four land-use types. Significant effects of N addition

on Q10 were found for all three N addition treat-

ments in the paddy rice–wheat cropland and

abandoned field grassland, whereas significant ef-

fects only occurred under the N2 and N3 treat-

ments in the maize–wheat cropland and the N3

treatment in the Metasequoia plantation. In addi-

tion, the response of Q10 to the N addition gradient

was opposite to that of R0 in the maize–wheat

cropland and the Metasequoia plantation. In the

paddy rice–wheat cropland and the abandoned

field grassland, Q10 exhibited a minimum value

under the N2 treatment, but there was no signifi-

cant difference between the N2 and N3 treatments

(P > 0.05, Table 1).

Responses of Annual Rs to the N
Addition Gradient

The annual Rs in the two croplands was signifi-

cantly stimulated by N addition as well as the total

Rs during the wheat-growing season (P < 0.05).

The magnitude of the response increased with the

N addition rate (Figure 6a, b, e, f). For total Rh

during wheat-growing season, a significant in-

crease was only found under the N2 and N3

treatments (Figure 6e, f). N addition also signifi-

cantly enhanced the annual Rs in the abandoned

field grassland (P < 0.05), with the maximal

stimulation being seen under the N2 treatment

(Figure 6c). In the Metasequoia plantation, the re-

sponse of annual Rs increased with the N addition

rate, although there was no significant difference

between the control and N1 treatments (Fig-

ure 6d).

DISCUSSION

Positive Effects of N Addition on Rs in
the Four Land-Use Types

Diverse effects of N addition on Rs have been ob-

served in different ecosystems, commonly being

positive in farmlands and grasslands and negative

in forests (Zhou and others 2014). Our results

showed that N addition significantly increased Rs

and the R0 (that is, Rs when soil temperature is 0�C)
in all four land-use types (that is, paddy rice–wheat

and maize–wheat croplands, the abandoned-field

grassland, and the Metasequoia plantation). The

positive responses of Rs to N addition might be as-

cribed to several factors. First, additional N input

increased the content of inorganic N in the mineral

soil layer (Lu and others 2011bb), inducing greater

N uptake and assimilation by plants as well as leaf

photosynthesis and biomass (Chapin and others

2011aa; Lu and others 2011aa). In our study, N

addition stimulated aboveground biomass in crop-

lands and grassland, having a similar response

trend to Rs (Supplementary Figure S3). Moreover,

root biomass may also increase with N addition,

which has been supported by several meta-analyses
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(Liu and Greaver 2010; Lu and others 2011b; Xia

and Wan 2008). Second, root metabolic rate may

increase under N addition due to its close rela-

tionship with root N concentration, resulting in

high specific root respiration, including both

growth and maintenance respiration (Burton and

others 1998). The N-induced stimulation of specific

root respiration and root biomass could positively

contribute to an increase in Ra (Cleveland and

Townsend 2006; Zhang and others 2014a, 2014b).

Third, increased aboveground and belowground

biomass under N addition may increase organic C

input to the soil through litter and root deposits (Xu

and Wan 2008). N addition also improved litter

quality (low C:N ratio; Song and others 2011). As a

consequence, the elevated substrate supply and the

improved litter quality probably stimulated Rh and

then Rs, which was consistent with our results in

paddy rice–wheat and maize–wheat croplands

during the wheat-growing season (Figure 6e, f).

The positive effects in the croplands and grass-

land were comparable to those observed in many

analogous ecosystems (Craine and others 2001; Xu

and Wan 2008; Zhou and others 2014), whereas

the enhanced effects in the plantation were oppo-

site to those in most previous studies in forests

(Janssens and others 2010; Mo and others 2008).

The contrasting responses of Rs to N addition be-

tween our Metasequoia plantation and other forests

may largely result from the difference in N-induced

changes in soil pH (Liang and others 2013). In our

study, soil pH did not vary during the experimental

period (Supplementary Table S1). However, the

negative effects of N addition on Rs largely resulted

from the decreased pH in most relatively long-term

N addition experiments, which might inhibit root

biomass and microbial activity as well as extracel-

lular enzyme activity (Lu and others 2011bb; Rus-

sell and others 2006; Tian and Niu 2015) and thus

decreased Rs in those forests.

Different Response Patterns of Rs to the N
Addition Gradient in Four Land-Use
Types

Previous studies found that the response patterns of

Rs to a N addition gradient from low to high N

application rates were different in diverse envi-

Figure 3. Seasonal variability of soil respiration (A–D) and their mean values (E–H) in four land-use types: a paddy rice–

wheat cropland (A, E), a maize–wheat cropland (B, F), an abandoned field grassland (C, G), and a Metasequoia plantation

(D, H). CK, control; N1, N2, and N3: nitrogen (N) levels at 15, 30, and 45 g N m-2 y-1. Vertical bars represent the standard

error. Different lowercase letters above the bars show significant differences among the four N treatments.
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ronmental and soil conditions (Supplementary

Figure S1, Zhong and others 2016; Zhou and others

2014), which may confound the effects of vegeta-

tion type. In our study with a relatively homoge-

neous soil matrix, the effects of N addition on Rs

increased linearly from low to high N application

rates in three land-use types, but they showed

parabolic-like trends in the grassland, with an ini-

tial increase and then decrease after the maximum

(Figures 3e–h, 6a–d). The different response trends

occurred because the distinctive vegetation in four

land-use types usually leads to a varying quality

and quantity of C input and nutrient availability in

the soil as well as microbial communities and en-

zyme activity (Liu and Greaver 2010; Liu and

others 2006; Yang and Zhu 2015). Given the plant-

specific characteristics, it has been suggested that

the optimum N rate for plant growth and

microorganism activity varied across land-use

types, which was in line with our results (Allison

and others 2009; Bai and others 2010). The opti-

mum N rate that plants and microorganisms pre-

ferred in the abandoned field grassland might be

close to the N2 level, whereas in the croplands and

the plantation, the threshold for N requirements

might be beyond the N3 level (Figures 2, 3, 6).

In croplands, agricultural exports of food or feed

may make the ecosystem need more N to ensure a

balanced nutrient cycle (Brentrup and others 2004)

and thus the N threshold would be larger. In

plantations, trees generally have a higher N uptake

efficiency to sustain the rapid and massive growth,

which would lead to a higher N requirement than

that for herbaceous plants (Bredemeier and others

2015). In our croplands and plantation, N addition

rates did not reach the threshold for its organisms,

as gradually increasing N input enabled microor-

ganisms to immobilize and plants to absorb more N

(Tu and others 2009) and thus Rs increased with

the N addition gradient. These positive linear re-

sponses were consistent with those in a winter

wheat field (Shao and others 2014) and a

Pleioblastus amarus plantation in China (Tu and

others 2010). However, the N demand rate in the

grassland was smaller than that in the croplands

and the plantation, as the field was not being har-

vested and little biomass was produced. Applying N

at the N3 level exceeded the optimal N dose for

organisms in grasslands and the effects of N addi-

tion decreased (Harapiak and others 1992). Thus in

our grassland, Rs on diel, seasonal, and annual

scales reached their maximal values under a mod-

erate N level (N2) rather than at the highest level

(N3, Figures 2e, 3g, 6c). This result was supported

by Li and others’ (2015) study in a temperate

grassland in China, which also showed that the

responses of Rs to increasing N rates followed a

parabolic trend along the N addition gradient, as

did soil microbial biomass C. Aside from the two

response patterns mentioned above, Rs also dis-

played a linearly decreasing response trend to

increasing N rates in a natural tropical forest (Mo

and others 2008), largely resulting from the

excessive N addition rate, which surpassed the

threshold for plants and microorganisms in this

ecosystem.

The diminishing positive effects or gradually

increasing negative effects with increasing N rates

can be largely ascribed to soil pH and abiotic

interactions. As mentioned earlier, soil acidification

might considerably inhibit fine root growth and

microbial activity, which were closely related to

decreases in Rs and its components under N addi-

tion. Although soil pH was not altered by N addi-

tion at modest rates (Hogberg and others 2007), it
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Figure 4. Seasonal variability of heterotrophic respiration

in a paddy rice–wheat (wheat) cropland (A) and a maize–

wheat (wheat) cropland (B). CK, control; N1, N2, and N3:

nitrogen (N) levels at 15, 30, and 45 g N m-2 y-1. Vertical

bars represent the standard error of the mean. The ‘wheat’

in parentheses means that heterotrophic respiration was

measured only in the wheat-growing season for the two

croplands.
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declined with an increasing N rate when the N dose

was superfluous (that is, beyond the threshold for

the organisms, Biederbeckl and others 1996). In

addition, the abiotic reaction might partially ac-

count for the negative effects of N addition on CO2

emissions other than changes in soil pH (Chapin

and others 2011bb; Du and others 2014). N addi-

tion complicated the molecular architecture

through the polymerization of simple C compounds

and inorganic N and retarded the mineralization of

soil organic carbon (SOC, Ouyang and others

2008). This resulted in more SOC being seques-

trated and thus less CO2 being released (Ja-

gadamma and others 2007), which could offset the

positive effects of N addition on Rs to a certain ex-

tent.

Responses of Apparent Q10 to N Addition

Soil temperature typically exhibits diel and sea-

sonal variations, which mainly account for the

temporal variations of Rs, especially in temperate

zones (Zhou and others 2015). Our results followed

this trend for Rs in all land-use types, as did Rh in

croplands (Figures 2, 3, and 4). The relationship

between Rs and soil temperature was often repre-

sented by an exponential equation (Rs ¼ R0Q
T
10

10) to

show its temperature sensitivity (Q10) in most
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control; N1, N2, and N3: nitrogen (N) levels at 15, 30, and 45 g N m-2 y-1. The P values of all curves fitted in the four

subfigures were less than 0.01.
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ecosystems (Boone and others 1998; Deng and

others 2010; Schlesinger and Anderws 2000; Fig-

ure 5). Although Q10 has been affected by global

climate change (for example, warming, Luo and

others 2001) and some modern models have

adopted a variable Q10, other land surface models

still used a constant Q10 (often equal to 2, Kick-

lighter and others 1994; Makita and others 2012) to

simulate the effects of environmental changes with

large uncertainty despite the different values of Q10

seen across ecosystems (Burke and others 2003;

Peng and others 2009; Tang and Riley 2014). Our

study found that the Q10 of Rs was reduced by N

addition in the four land-use types, whereas R0 was

Table 1. The Parameters (Mean ± SE) of the Exponential Equation Quantifying the Relationship Between
Soil Respiration and Soil Temperature

Land-use types Parameters CK N1 N2 N3

Paddy rice–wheat cropland R0 2.10 ± 0.10d 3.11 ± 0.10c 4.01 ± 0.16b 4.63 ± 0.16a

Q10 1.75 ± 0.05a 1.53 ± 0.03b 1.42 ± 0.03d 1.45 ± 0.03cd

Maize–wheat cropland R0 2.11 ± 0.18c 2.87 ± 0.21b 3.89 ± 0.27a 4.30 ± 0.29a

Q10 1.79 ± 0.08a 1.70 ± 0.06ab 1.60 ± 0.06b 1.56 ± 0.05b

Abandoned field grassland R0 1.55 ± 0.12c 2.99 ± 0.17b 4.36 ± 0.21a 3.38 ± 0.18b

Q10 2.02 ± 0.07a 1.67 ± 0.05b 1.53 ± 0.04c 1.62 ± 0.04bc

Metasequoia plantation R0 1.58 ± 0.14c 2.00 ± 0.13b 2.34 ± 0.14b 3.96 ± 0.13a

Q10 1.91 ± 0.12a 1.76 ± 0.08a 1.70 ± 0.07a 1.33 ± 0.03b

R0, rate of soil respiration when the temperature is 0�C; Q10, the temperature sensitivity of soil respiration, described by the change in respiration rate over a 10�C increase in
soil temperature; CK, control; N1, N2, and N3: nitrogen (N) levels at 15, 30, and 45 g N m-2 y-1.
Different lowercase letters next to the standard errors indicate a significant difference among the four nitrogen treatments (P < 0.05).
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stimulated (Table 1; Karhu and others 2014; Luo

and others 2001; Zhou and others 2006). The in-

creases in R0 may partly result from elevated sub-

strate supply under N addition, which was

supported by the close correlation between R0 and

photosynthesis (Sampson and others 2007). These

results indicate that the increases in Rs with rising

temperature (that is, the slope in Figure 5) were

slower under the N addition treatments than those

in the control, which was similar to that of other

studies (Mo and others 2008; Sun and others

2014).

The decreased Q10 under N addition may also be

attributed to the changes in the soil environment

with additional N input (Sun and others 2014).

Specifically, the reduction in Q10 might be more

closely related to the responses of Rh to N addition

(Li and others 2015; Thurgood and others 2014).

The decomposition of SOM is modified by the

physicochemical properties of the soil (Doetterl and

others 2015). The environmental constraints on

decomposition were responsible for the decrease in

the apparent Q10 under N addition. The soil meta-

bolism was regulated as a result of additional N

input (Lu and others 2011aa). SOM could be ad-

sorbed onto mineral surfaces through electrostatic

or covalent bonds, resulting in chemical protection,

which may obscure the intrinsic temperature sen-

sitivity for decomposition (Davidson and Janssens

2006; Doetterl and others 2015). Through organic–

inorganic interactions, thus, the apparent Q10 for Rh

decreased under N addition.

CONCLUSIONS

Our study demonstrated that N addition stimulated

Rs and Rh. More importantly, our research revealed

different response patterns of Rs along the N addi-

tion gradient in four different land-use types with a

relatively homogeneous background. In particular,

in the croplands and the plantation, the increase in

Rs exhibited a linear trend with increasing N addi-

tion rates. However, in the grassland, Rs showed a

parabolic-like trend with the highest values under

a moderate N level. Rs showed distinct seasonal

patterns, with higher values observed in warmer

seasons and lower ones in colder seasons in the

four land-use types, which was primarily driven by

fluctuations in soil temperature. Our results also

showed that the Q10 values for Rs were reduced by

N addition in the four land-use types. It is yet to be

examined whether this finding can be generalized

across environmental zones, especially in the long-

term. Chronic N addition experiments in combi-

nation with modeling may work efficiently in the

future to examine the underlying mechanisms

controlling CO2 efflux from soil.
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