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Abstract
Purpose Topography-soil relationships usually vary with cli-
mate, vegetation type, degree of human disturbance, type of
parent material, and the scale being studied. In this paper, we
studied the topography-soil relationship in a hilly forest in
subtropical China.
Materials and methods The influence of topography on soil
properties (soil moisture, organic carbon (C), total nitrogen
(N) and total phosphorus contents, C:N ratio, and pH) was
evaluated using a recursive partitioning conditional inference
tree (CIT) as well as a multiple linear regression (MLR)
method.
Results and discussion The CIT models generally performed
better than MLR in describing the topography-soil relation-
ships. Topographic parameters chosen by the CIT models,
which indicate the mechanisms at play for the spatial variation
of the soil properties, varied with the soil property of concern.
The soil moisture, organic C, and total N models contained

only primary terrain attributes, the soil C:N ratio and pH
models contained both primary and secondary terrain attri-
butes, while the total phosphorus model contained mostly sec-
ondary terrain attributes.
Conclusions The CIT method worked well for exploring the
topography-soil relationships in the studied undisturbed hilly
forest. We conclude that (1) soil moisture, organic C, and total
N were strongly affected by location-specific topographic fea-
tures such as gravitational potential, the amount of precipita-
tion, temperature, and vegetation type; (2) total phosphorus
was affected by catchment-related hydrological activities and
soil C:N ratio; and (3) pH was affected by location-specific
topographic features and catchment-related hydrological
activities.

Keywords Conditional inference tree . Hill forest . Primary
and secondary terrain attributes . Spatial variation

1 Introduction

The formation and evolution of soils over time are influ-
enced by environmental factors such as topography, parent
material, climate, and biota (Chen et al. 1997; McKenzie
and Ryan 1999; Buol et al. 2011). Among these factors,
topography influences the distribution of soils and their
properties not only by controlling regional water flow and
material transport, but also by changing the local climate,
vegetation composition, and other conditions (Moore et al.
1993; (Florinsky et al. 2002; Gessler et al. 2000). The
relationship between topographic characteristics and soil
properties, in the form of a catena, has been widely studied
in ecosystems ranging from boreal to tropical (Seibert et al.
2007; Barthold et al. 2008; Sumfleth and Duttmann 2008;
Dlugoß et al. 2010; Liu et al. 2013). Some studies showed
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that topography has a strong influence on soil properties.
For instance, slope and topographic wetness index (TWI)
significantly influenced A horizon thickness, soil organic
matter content, pH, extractable phosphorus, and soil particle
size composition in an agricultural landscape in Colorado
(Moore et al. 1993). Topographic parameters derived from
digital elevation models were found to be significantly cor-
related with soil organic layer and E horizon thicknesses,
pH, and carbon (C) to nitrogen (N) ratio (CN ratio) in
boreal forests throughout Sweden (Seibert et al. 2007).
And elevation, slope, stream power index (SPI), and TWI
affected the spatial distribution of soil organic matter in the
suburb of Beijing (Zhang et al. 2012). On the other hand,
in a forested watershed in the Catskill Mountains of New
York, a single terrain attribute is not be sufficient to effec-
tively predict soil properties (Johnson et al. 2000), while in
a tropical moist forest in Panama, topographic attributes are
not key factors determining the spatial distribution of soil
properties (such as exchangeable K and Mg) (Barthold
et al. 2008). Inconsistencies among the studies indicate that
topography-soil relationships are usually regionally unique
and vary widely among biomes and land uses (Hancock
et al. 2010). Site-specific studies are therefore required to
further understand how soil properties are influenced by
topography (Garcia-Pausas et al. 2007).

A number of approaches, such as regression analysis, com-
putational intelligence, geostatistics, and decision trees, have
been applied to derive topography-soil relationships.
Regression analysis has been the most widely used method
for assessing topography-soil relationships (Moore et al. 1993;
Gessler et al. 1995, 2000), attributable to its simplicity in data
processing and model structure, and ease of interpretation.
However, they may not work well in some nonlinear cases,
and moreover, if the soils have been evolved independently in
different subregions of a study area, globally built regression
equations may not work in some locations (Ziadat 2005).
Computational intelligence such as artificial neural network
and geostatistical techniques such as ordinary kriging,
cokriging, and regression kriging were also popular in explor-
ing topography-soil relationships (Tso and Yau 2007;
Motaghian and Mohammadi 2011; Zhang et al. 2012). The
artificial neural network method is good at dealing with non-
linear problems or when the relationship is unknown, but it
does not provide p values for the significance test and is hard
to interpret due to hidden layers in the model (Tso and Yau
2007). Geostatistical approaches are mainly used for spatial
prediction rather than relationship extrapolation, and may lead
to overall inaccurate outputs due to the smoothing effect when
interpolation is used (Goovaerts 1999). Over the last decade,
decision tree methods such as classification and regression
tree, BID3,^ BC4.5,^ and BC5.0^ have been widely used for
exploring relationships between complex ecological data
(De’ath and Fabricius 2000), including relationships between

topography and soil properties (Mertens et al. 2002; Gmur
et al. 2012; Mage and Porder 2012).

A decision tree is a recursive partitioning method that
explores the relationship between a response variable and
several input variables by splitting the dataset into subsets
based on an attribute value test. Different algorithms use
different metrics for choosing a variable that best splits the
dataset at each partition and deciding when the recursion
should be completed. These algorithms have advantages of
having flexible data input, simple model assumptions for
complicated relationships, intuitive results, robustness with
respect to outliers, and the ability to deal with missing
values, and these algorithms have already been applied to
predict soil types and soil properties (Tittonell et al. 2008;
Vega et al. 2009; Gmur et al. 2012; Mage and Porder 2012).
In these methods, Gini index or information gain were used
as splitting measures; however, they have limitations such as
overfitting and biased predictor selection (Shih 2004;
Bramer 2007). The conditional inference tree (CIT) method
is a recently developed decision tree method that overcomes
overfitting and biased predictor selection problems by using
multiple testing as the splitting measure rather than the Gini
index or information gain used in other decision tree
methods (Hothorn et al. 2006). The CIT method has gradu-
ally gained popularity (Hu and Cheng 2013).

The Southeast Coastal Hill Region in China is one of the
most prosperous regions in the country and is also one of the
areas severely affected by human activities due to rapid devel-
opment and the increasing population. The mountainous ter-
rain, high annual precipitation, and long-term intensive land
use resulted in specific topography-soil relationships and di-
verse soil properties, sometimes associated with serious soil
erosion and land degradation problems that impede rural de-
velopment (Chen and Wang 2003; Yang et al. 2010). The
objective of this study was to apply the CIT as well as a
multiple linear regression (MLR) method to evaluate how soil
properties were influenced by topography in a natural ever-
green hilly forest in the region. The effects of seven topo-
graphic parameters (elevation (m), slope (β, °), plan (Ch,
m−1), profile curvature (Cv, m

−1), TWI, SPI, and length-slope
factor (LS)) on soil properties (volumetric water content
(VWC), soil organic C (SOC), total N (TN), CN ratio, pH,
and total phosphorus (TP)) have been evaluated, and the per-
formances of the CIT and MLR methods have also been
compared.

2 Materials and methods

2.1 Study area and soil sampling

The study was carried out in an evergreen broad-leaf
forest in the core area of Tiantong National Forest Park
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(29° 48.696′∼29° 48.938′ N, 121° 46.953′∼121° 47.278′
E) in Zhejiang Province, China, and about 240 km south
of Shanghai. Tiantong has a sub-tropical monsoon climate
with hot and humid summers and cool winters. Annual
average air temperature, precipitation, and evaporation
were 16.2 °C, 1374.7 mm, and 1320.1 mm, respectively
(Song and Wang 1995).

The study area is located on a hillslope that spans three
small catchments with a total area of 37.6 ha. Most of this area
was occupied by a long-term ecological monitoring plot,
which is 400 m from north to south and 500 m from east to
west and has 500 quadrats (grids) of 20 × 20m in size (Fig. 1).
The area has hardly been disturbed by human activity (Wang
2011), and is representative of natural hill forests in southeast
China. Within the catchments, the parent material is uniform.
Mesozoic sediment forms the bedrock of the hill and is also
the parent material for the soil developed at the surface. Soil
depth in the study area varies but averages about 1 m (Song
and Wang 1995). Evergreen broad-leaved plants are the dom-
inant species and deciduous plants are found in canopy gaps,
and the land surface is generally covered with a litter layer.

Soils were all sampled following the existing 20 × 20 m
grid of the ecological monitoring plot to locationally match up
with the topographic data, which was treated in a 20 × 20 m
grid-based format. In the study, samples were collected only
within the ecological monitoring plot and a total of 471 grids
were sampled considering both the practical operability at the
locations and labor limitation (Fig. 1). In each grid, soil prop-
erties were represented by samples collected within the grid.
One samplewas collected at the center of each grid, and one or
two more samples were randomly collected in most grids at
the distance of 2, 5, or 8 m from the grid center to improve the
representative of the sampling. All samples within a grid were

averaged to represent the property of the grid. Sampling was
finished in a short period of time in March 2011. During the
sampling, there was no significant precipitation, and air tem-
peratures mostly ranged between 5 and 15 °C.

Soil moisture content, bulk density, SOC, TN, pH, and TP
were analyzed for the samples. Soil bulk density and gravi-
metric water content (GWC) were determined by oven-drying
and weighing the core samples, and VWC was derived from
the measured GWC and bulk density. Soil pH was determined
using glass and calomel electrodes after extraction with deion-
ized water with a soil to water ratio of 1:2 (w:w). Soil organic
C and TN contents were determined using an elemental ana-
lyzer (vario MICRO cube, Elementar, Germany). Since inor-
ganic C in the studied acidic soils was negligible, the total soil
C was the same as SOC, and soil CN ratio was calculated as
SOC divided by TN. Soil samples were digested with concen-
trated sulfuric acid and a copper sulfate pentahydrate-sodium
sulfate catalyst for 3 h, and the solution was diluted and used
for TP measurement. Soil TP content was determined using
the digested soil samples on a continuous flow injection ana-
lyzer (SAN++, Skalar, Netherlands).

2.2 Topographic parameters

In this study, elevations were measured using a total station
(SET2110, SOKKIA Corporation) following the 20-m grid of
the ecological monitoring plot. The elevation measurement
covered all three catchments from the divides to the outlets,
and the digital elevation model grid nodes within the plot were
overlapped with the soil sampling points. All the other topo-
graphic parameters, i.e., slope,Ch, andCv, and three secondary
terrain attributes: TWI, SPI, and LS, were computed from the
sampled digital elevation model at the catchment scale (Fig. 2)

Fig. 1 Elevation map and
sampling points in the study area
(dashed line internal catchment
divide)
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using a terrain analysis tool called DigitalHydro, which is a
GIS-based tool for elevation interpolation, topographic pa-
rameter calculation, and flow vector matrix and digital chan-
nel determination (Liu 2012).

Elevation determines the gravitational potential. Moreover,
elevation not only contains geographic information but also
reflects meteorological and vegetational conditions.
Meteorological factors such as temperature and precipitation
have clear trends with elevation in a hilly terrain
(Montgomery 2006), and these changes further influence veg-
etation cover (Qiu and Zhong 2013). This means that if a soil
property is influenced by elevation, it can be the result of grav-
itational substance flow, change in soil moisture content, tem-
perature, vegetation, or all of them. Slope measures the topo-
graphic gradient along the steepest path on the land surface, and
Cv and Ch represent the curvatures in the direction of the max-
imum slope and transverse to the slope, respectively. They rep-
resent location-specific influences on substance flows. Slope is
the first-order derivative of elevation (O’Callaghan and Mark
1984). It determines local velocity of surface substance flows.
A soil property correlated to slope means it is sensitive to
changes in drainage. Profile and plan curvatures are second-
order derivatives of elevation in the direction of maximum
slope and transverse to the slope, respectively (Moore et al.
1993). They reflect the concave/convex nature of the land sur-
face (Evans 1972; Schmidt et al. 2003). Flow tends to accelerate
when Cv > 0 and decelerate when Cv < 0, and diverge when
Ch > 0 and converge when Ch < 0 (Florinsky et al. 2002). A
combination of slope and curvature features can influence the
capacity for water, solute, and sediment conservation in a loca-
tion: slight slope and negativeCh and/or Cv can hold substance,
resulting in its accumulation, while steep slope and positive Ch

and/or Cv are poor for substance conservation (Kirkby and
Chorley 1967; Burt and Butcher 1985).

Secondary terrain attributes integrate the concepts of spe-
cific catchment area (As, m

2 m−1) and slope, and are capable of
characterizing the spatial variability of specific processes oc-
curring in the landscape (Beven and Kirkby 1979;Moore et al.
1993; Sumfleth and Duttmann 2008). Their definitions are:

TWI ¼ ln
As

tanβ

� �
ð1Þ

SPI ¼ As � tanβ ð2Þ

LS ¼ As

22:13

� �0:6 sinβ
0:0896

� �1:3

ð3Þ

Secondary terrain attributes are not location-specific but
catchment-related, because they integrate the concepts of spe-
cific catchment area and slope. Among secondary terrain at-
tributes, TWI is an indicator of soil moisture distribution and
the extent of flow accumulation at a location, SPI is directly
proportional to the erosive power of overland flow, and LS is

indicative of the erosion and deposition processes, especially
the effect of topography on soil loss (Beven et al. 1984;Moore
et al. 1991; Moore et al. 1993). Soil properties correlated to
secondary terrain attributes should be sensitive to soil erosion
and substance transport processes.

2.3 Conditional inference tree and multiple linear
regression methods

A CIT is one of the forms of the decision tree method, which
generates tree-structured regression models in a conditional
inference framework using binary recursive partitioning. It
uses multiple testing to determine when the recursion will stop
and overcomes the problem of overfitting. This method is also
able to select variables in an unbiased way based on the con-
ditional distribution of statistics measuring the association be-
tween response and covariates (Hothorn et al. 2006).

The CIT model could intuitively tell us which topographic
parameter has the highest influence on the tested soil property
in a dataset (as the root node) and find out a threshold in the
selected topographic parameter to optimally split the tested
soil property into two disjoint subsets with the largest discrep-
ancy (as two branches). Each internal (non-terminal) node
represents a test on the selected soil property, the branches
represent the binary partitioned outcomes of a test, and each
terminal node represents a class of the response variable show-
ing common influences from some input variables.

The procedure for establishing a topography-soil property
CIT model is as follows: (1) the global null hypothesis of
independence between each input topographic parameter and
a soil property is tested, and the topographic parameter most
strongly associated with the soil property is selected if the
hypothesis is rejected, or stop splitting if the hypothesis cannot
be rejected; (2) the optimal split for the selected topographic
parameter is determined using permutation tests, and the op-
timal split is determined to separate the dataset into two dis-
joint subsets with the most significant discrepancy; and (3)
steps 1 and 2 are repeated until no input topographic parame-
ter can be selected to reject the null hypothesis. A more de-
tailed description of the CIT algorithm can be found in
Hothorn et al. (2006). In this study, the CIT-related analyses
were conducted in R (R Core Team 2013), using the Bparty^
package (Hothorn et al. 2006). The type of test statistic applied
was Bquadratic,^ and the minimum criterion for splitting was
set at 0.95.

In this study, the CIT method was adopted to evaluate the
degree of influence of topographic parameters (elevation,

�Fig. 2 Topographic parameters calculated from a digital elevation model
(with a 20-m grid) using DigitalHydro: panels a to f represent the spatial
distributions of slope, plan curvature (Ch), profile curvature (Cv), topo-
graphic wetness index (TWI), stream power index (SPI), and length-slope
factor (LS), respectively
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Fig. 2 continued.
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slope, Ch, Cv, TWI, SPI, and LS) on soil properties (VWC,
SOC, TN, CN ratio, pH, and TP), and a MLR method was
also used to compare or validate the performance of the CIT
method. In the MLR analysis, the stepwise method was used
for independent variable selection, with the probability of the
F value for entry and removal as 0.05 and 0.10, respectively.

2.4 Evaluation of model performance

The dataset containing 471 data points (samples) was random-
ly divided into sub-datasets for model development (424 sam-
ples) and validation (47 samples). The CIT and MLR models
were derived from themodel developing sub-dataset, and their
performance was evaluated using the validation sub-dataset.
The accuracy of estimates was assessed by mean error (ME),
mean absolute error (MAE), and the root mean squared errors
(RMSE). They are defined as:

ME ¼ 1

n

X n

i¼1
zi−bzið Þ ð4Þ

MAE ¼ 1

n

X n

i¼1
zi;−;bzij j ð5Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X n

i¼1
zi−bzið Þ2

r
ð6Þ

where n is the number of validation points, zi is the observed
soil property, andbzi is the predicted soil property by the CITor
MLR models.

3 Results

3.1 Descriptive statistics of topography-soil relationships

The sampled soils, which were loam- to clay-textured Acrisols
according to the World Reference Base for Soil Resources
(2014), were generally moist, acidic, and rich in organic

matter and nutrients. The variation of soil pH values was
low, with the coefficient of variation (CV) ≤ 0.10, and the
variation of other soil properties at intermediate levels
(0.10 < CV ≤ 1.00). Of the six soil properties evaluated,
VWC, pH, and CN ratio were normally distributed, while
SOC, TN, and TP were lognormally distributed (Table 1).

The range and spatial distribution of topographic pa-
rameters are presented in Fig. 2. Of the seven topographic
parameters, only elevation followed normal distribution,
and TWI, LS, and SPI were strongly non-normal. Since
the majority of the soil properties and topographic param-
eters were in non-normal distribution, Spearman’s rank
correlation analyses were used to assess their interrela-
tions. All of the evaluated soil properties were significant-
ly correlated to at least one topographic parameter
(Table 2). Elevation was the topographic parameter with
the highest correlat ions with VWC (Spearman’s
r = −0.33; same below), SOC (0.33), and TN (0.25),
and was also significantly correlated with pH (−0.30)
and CN ratio (0.35); Ch had the highest correlations with
pH (−0.41) and CN ratio (0.49); and SPI was the most
significant topographic parameter for TP (0.38). The four
primary terrain attributes (elevation, slope, Ch, and Cv)
had similar effects on soil properties: negative on VWC
and pH, positive on SOC and CN ratio, while effects on
TN and TP were variable. Secondary terrain attributes
(TWI, SPI, and LS) also had similar effects on soil prop-
erties, but their influences were generally the opposite to
those of the primary attributes.

3.2 Conditional inference tree and multiple linear
regression models for soil properties

The MLR models were built up using the model developing
sub-dataset, after the non-normally distributed soil properties
were logarithmically transformed (Table 3). All MLR models
were significant, with the determination coefficients (R2) rang-
ing from 0.07 to 0.40. The same dataset was used for CIT
model development as for MLR, and the model structures
and the spatial distributions of the classifications (terminal
nodes) are shown in Fig. 3.

Table 1 Descriptive statistics for
sampled soil properties (n = 471) Soil property Mean Median Minimum Maximum STDEV CV Distribution

VWC (cm3 cm−3) 0.28 0.28 0.10 0.49 0.06 0.23 Normal

SOC (g kg−1) 46.50 42.26 13.25 185.44 20.73 0.45 Lognormal

TN (g kg−1) 3.29 3.05 1.06 11.35 1.21 0.38 Lognormal

CN ratio 14.17 13.99 9.68 20.77 2.10 0.15 Normal

pH 4.14 4.14 3.54 4.78 0.19 0.05 Normal

TP (g kg−1) 0.26 0.24 0.06 0.77 0.12 0.46 Lognormal

VWC volumetric water content, SOC soil organic carbon, TN total nitrogen content, TP total phosphorus content,
CN ratio C:N ratio, STDEV standard deviation, CV coefficient of variation
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3.2.1 Volumetric soil moisture content

The CIT and MLR methods selected the same topographic
properties, elevation and Ch, as input variables. The CIT mod-
el explained 14 % of the variation in soil VWC, while 12 % of
the variation was explained by the MLR model. Low soil
moisture contents were found in two types of terrains: high
elevation (node 5 in Fig. 3a, b, with a mean soil VWC of
0.23 cm3 cm−3) or low-elevation topographic locations with
apparently divergent flow (node 4 in Fig. 3a, b, with a mean
soil VWC of 0.23 cm3 cm−3).

3.2.2 Soil organic C and total N

The SOC and TN contents were highly correlated
(Table 2), and both showed similar distribution patterns
as VWC (Fig. 3d, f), while SOC was more strongly

influenced by topography than TN. In the study, 24 and
16 % of the variation of SOC explained by the CIT and
MLR models, respectively, compared to only 8 and 7 %,
respectively, of the variation of TN explained. The root
node in the CIT model for SOC indicated that the largest
difference in SOC content existed between the high- and
low-elevation locations (Fig. 3c, d). The CIT model for
TN only has two branches with elevation as independent
variable and exactly the same threshold as that in the
SOC model (508.01 m, Fig. 3e).

3.2.3 Soil CN ratio

The high percentage of the variation of soil CN ratio explained
by CIT (45 %) and MLR (40 %) indicates that the CN ratio
had the strongest relationship with topography in the area
(Tables 2 and 3). The CN ratio also had the most complex

Table 2 Spearman’s rank correlations between soil properties and topographic attributes (n = 471)

Soil/terrain attributes VWC pH TN TP SOC CN ratio Elevation Slope Ch Cv TWI LS SPI

VWC 1

pH 0.28** 1

TN −0.40** −0.22** 1

TP −0.09 0.024 0.39** 1

SOC −0.46** −0.41** 0.83** 0.18** 1

CN ratio −0.31** −0.47** 0.14** −0.31** 0.52** 1

Elevation −0.33** −0.30** 0.25** 0.05 0.33** 0.35** 1

Slope −0.14** −0.38** −0.02 −0.20** 0.20** 0.48** 0.31** 1

Ch −0.15** −0.41** −0.05 −0.37** 0.18** 0.49** 0.15** 0.49** 1

Cv −0.05 −0.17** −0.06 −0.15** 0.06 0.24** 0.11* 0.41** 0.30** 1

TWI 0.10* 0.41** 0.04 0.29** −0.16** −0.42** −0.19** −0.64** −0.75** −0.22** 1

LS 0.08 0.37** 0.14** 0.37** −0.06 −0.41** −0.11* −0.35** −0.78** −0.11* 0.80** 1

SPI 0.09 0.40** 0.14** 0.38** −0.08 −0.44** −0.14** −0.42** −0.80** −0.16** 0.83** 0.99** 1

VWC volumetric water content (cm3 cm−3 ), SOC soil organic carbon (g kg−1 ), TN total nitrogen (g kg−1 ), TP total phosphorus (g kg−1 ) contents, CN
ratio C:N ratio, Ch plan curvature, Cv profile curvature, TWI topographic wetness index, LS length-slope factor, SPI stream power index

*statistically significant at p < 0.05 level; **statistically significant at p < 0.01 level

Table 3 Multiple linear
regression models describing
topography-soil property
relationships (n = 424)

Soil
property

Model R2 Significance

VWC VWC = −0.001 × elevation − 0.263 × Ch + 0.402 0.12 <0.001

SOC log(SOC) = 0.001 × elevation +0.731 × Ch + 1.237 0.16 <0.001

TN log(TN) = −0.002 × slope + 0.001 × elevation + 0.263 0.07 <0.001

CN ratio CN ratio =0.363 × TWI − 0.026 × LS + 0.002 × SPI + 0.117 × slope +
0.008 × elevation + 19.748 × Ch + 5.610

0.40 <0.001

pH pH = 0.0005 × elevation − 0.006 × slope − 1.354 × Ch + 4.575 0.26 <0.001

TP log(TP) = −0.003 × slope − 0.0001 × SPI + 0.002 × LS − 0.659 ×Ch − 0.588 0.14 <0.001

VWC volumetric water content (cm3 cm−3 ), SOC soil organic carbon (g kg−1 ), TN total nitrogen (g kg−1 ), TP
total phosphorus (g kg−1 ) contents, CN ratio C:N ratio, Ch plan curvature, Cv profile curvature, TWI topographic
wetness index, LS length-slope factor, SPI stream power index
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CIT model structure with 13 nodes including 7 terminal nodes
(Fig. 3g). Soils with high CN ratios were found in two dispa-
rate terrains: one had parallel or convergent flow (Ch ≤ 0.006),
high elevation (>510 m), and small TWI (≤4.07) (node 7 in
Fig. 3g, h, with a mean CN ratio of 17.1), while the other had
apparently divergent flow (node 13 in Fig. 3g, h, Ch > 0.049,
with a mean CN ratio of 17.3).

3.2.4 Soil pH

Soil pH also showed a close relationship to topography with
31 and 26 % of its variation explained by the CIT and MLR
models, respectively. Both models used the same topographic
parameters: Ch, slope, and elevation. The same as soil CN
ratio, the root node in the CIT model for soil pH was Ch

(threshold 0.007). Low soil pH values were found in two types
of topographic locations: locations with apparently divergent
flow (node 11 in Fig. 3i, j, with a mean soil pH of 3.90), or
locations with both divergent flow and steep slope (node 10 in
Fig. 3i, j, with a mean soil pH of 3.86).

3.2.5 Soil TP

The TP model contained more secondary than primary
terrain attributes (Fig. 3k, l). The CIT model (22 % of
the variation explained) also had a better fit than the
MLR model (14 % of the variation explained). The
CIT model selected TWI as the root splitting factor
(threshold 6.08). Soils with high TP generally distribut-
ed in locations with large TWI (node 7 in Fig. 3k, l,
with a mean TP content of 0.33 g kg−1) or with large
LS (node 6 in Fig. 3k, l, with a mean TP content of
0.31 g kg−1).

3.3 Model performance

As described above, the CIT models established on the sub-
dataset (424 samples) generally explained the topography-
soil relationships better than the MLR method. The R2 of
CIT models for various soil properties ranged from 0.08 to
0.45, which are generally higher than those of the MLR
models (Table 3). The predictability of the CIT and MLR

Fig. 3 Conditional inference tree (CIT) models and the spatial
distribution of the subsets for a and b soil volumetric water content
(cm3 cm−3), c and d organic matter content (g kg−1), e and f total

nitrogen (g kg−1), g and h C:N ratio, i and j pH, and k and l total
phosphorus (g kg−1). In each model, n is the number of samples in a
subset
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models for various soil properties in unknown locations
was validated using the validation sub-dataset (47 sam-
ples). It showed that the CIT method generally had smaller
ME, MAE, and RMSE than the MLR method (Table 4).

4 Discussion

By virtue of the intuitive form of the CITmodels, they provide
more information on soil-topography relationships than the

Fig. 3 continued.
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MLR method; meanwhile, the CIT models also provide topo-
graphic thresholds that have practical meanings and make the

results more easily interpreted (Fig. 3). For elevation, the op-
timal splitting values were consistently between 500 and

Fig. 3 continued.
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510 m in the VWC, SOC, TN, and CN ratio models, indicat-
ing that the largest differences in soil properties existed above
and below this elevation. Referring to the local average eleva-
tion of 493.34 m, this height should be the division for high
and low elevation. For slope, the consistent split value of
about 45° in the SOC and pH models represents the divide
for moderate and steep terrains, and correspondingly, the splits
of about 30° to 35° in the pH and CN ratio models represent
the divides for mild, mild-moderate, and moderate terrains,
respectively. And for Ch, some splitting values in the SOC,
CN ratio, and pH models were found close to 0
(−0.01 ≤Ch ≤ 0.01). Plan curvatures in this range are expected
to result in parallel flow. Larger and smaller than it will cause
convergent and divergent flow, respectively.

From the CIT and MLR results, it can be easily discovered
that soil VWC, SOC, and TN were significantly influenced by
primary terrain attributes, soil CN ratio and pHwere affected by
both primary and secondary terrain attributes, and soil TP was
markedly affected by secondary terrain attributes. The different
model structures indicate that the mechanisms for topography
to affect soil properties vary with each soil property.

4.1 Mechanisms affecting soil VWC, SOC, and TN

There are two possible mechanisms for elevation to affect soil
moisture content: (1) in hilly areas, usually precipitation in-
creases and temperature decreases (reducing evaporation)
with elevation, resulting in high soil moisture content in
high-elevation sites and (2) downslope flow and gravitational
redistribution of water tend to result in a decreasing pattern of
soil moisture content with elevation, especially in humid re-
gions (Zhu and Lin 2011). The negative correlation between
VWC and elevation and the strong relationship between VWC
and primary terrain attributes in the area suggest that the sec-
ond mechanism was more important to influence the spatial
pattern of soil water content (Table 2). The low soil moisture
content along the ridges (with positive Ch) is attributed to the
poor water conservation capacity of the ridges (Kirkby and
Chorley 1967; Burt and Butcher 1985; Qiu et al. 2001).

Soil organic C content is the balance between C input and
output (Schimel et al. 1994; Stallard 1998; Polyakov and Lal
2004). In this study, soils in high-elevation sites generally had
higher SOC, associated with lower soil moisture content and
temperature, and thus lower organic matter decomposition
rates (Fig. 3c, d). The stronger correlation of SOC content
with primary than with secondary terrain attributes (Table 2)
indicates that SOC in the area was not strongly affected by
catchment-related erosion processes, but by local conditions
such as moisture availability, temperature, and plant species
composition; the amount of soil C lost through runoff should
be much less than the loss through decomposition.

There is no consensus as to how SOC content is impacted by
topographic features (Moore et al. 1993; Terra et al. 2004;
Zehetner and Miller 2006; Chai et al. 2008; Hancock et al.
2010; Feng et al. 2011; Zhang et al. 2012); however, human
disturbance or changes in land uses may play a deterministic
role. Frequent disturbance increases SOC decomposition rates
and soil erosion in cultivated lands (Pennock et al. 1994;
Shukla and Lal 2005). In undisturbed systems (forest and grass-
land, either in boreal or tropical areas), as the result in this study,
SOC is typically positively correlated with elevation (Schimel
et al. 1985; Johnson et al. 2000; Luizão et al. 2004; Tsui et al.
2004; Umali et al. 2010), and more strongly affected by primary
terrain attributes (especially elevation) (Hancock et al. 2010;
Zhang et al. 2012). However, the opposite is true in cultivated
systems: SOC was generally less related to elevation (and other
primary terrain attributes) butmore to secondary terrain attributes
such as TWI (Moore et al. 1993; Florinsky et al. 2002; Terra et al.
2004; Sumfleth and Duttmann 2008; Dlugoß et al. 2010).

The weaker correlation between TN (as compared to SOC)
and topographic parameters (Fig. 3e, f and Table 2) suggests
that biophysical factors such as vegetation, microbial activi-
ties, and soil texture but not topography were the major con-
trol on soil TN (Luizão et al. 2004).

4.2 Mechanisms affecting soil CN ratio and pH

Soil CN ratio and pH were strongly correlated with both pri-
mary and secondary terrain attributes, suggesting that both

Table 4 Validation results for the
conditional inference tree and
multiple linear regression models

Method Evaluation index VWC SOC TN CN ratio pH TP

CIT ME −0.02 −2.16 −0.10 0.04 −0.02 −0.02
MAE 0.05 11.98 0.84 1.14 0.13 0.10

RMSE 0.07 16.75 1.22 1.40 0.17 0.13

MLR ME 0.02 4.42 0.28 0.03 0.01 0.03

MAE 0.05 11.32 0.78 1.19 0.13 0.09

RMSE 0.07 17.37 1.23 1.49 0.17 0.13

VWC volumetric water content (cm3 cm−3 ), SOC soil organic carbon (g kg−1 ), TN total nitrogen (g kg−1 ), TP
total phosphorus (g kg−1 ) contents, CN ratio C:N ratio, ME mean error, MAE mean absolute error, RMSE root
mean squared error
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location-specific properties and catchment-related hydrological
processes strongly affected their distribution on the landscape.

Soil CN ratio is an indicator of the degree of soil organic
matter decomposition (Garten et al. 1994), and is also influ-
enced by soil erosion (Seibert et al. 2007). In this study, soil
CN ratio showed a stronger correlation with topography than
with SOC and TN, similar to Garten et al. (1994), Tokuchi et al.
(1999), and Seibert et al. (2007). Soils with high CN ratios in
locations with non-divergent (node 7 in Fig. 3g, h) and diver-
gent (node 13 in Fig. 3g, h) flows could be explained by two
mechanisms: (1) a low degree of organic matter decomposition
leads to high CN ratio. The high CN ratios in locations belong-
ing to node 7, which usually had low soil temperature, moisture
content, and correspondingly low organic matter decomposi-
tion rate and high soil CN ratios, should be caused by this
(Yimer et al. 2006), and (2) soil CN ratio can also be increased
by heavy flux of water that washes away NH4

+ and NO3
−

(Seibert et al. 2007). Locations belonging to node 13 had the
greatest water loss and soil erosion potentials in the area. Soil
mineral N loss would be themain factor contributing to the high
CN ratios in these locations. The actual distribution of CN ratio
should be jointly affected by both mechanisms, and result in a
strong topography-CN ratio correlation.

Soil pH is influenced by several factors such as soil organic
matter content and decomposition rate, cation exchange and
leaching (Tokuchi et al. 1999; Seibert et al. 2007), and influ-
ence of the vegetation (Jung et al. 2011; Jung and Chang
2013). In this study, soils with high pH were often found in
locations with convergent flow, mild slope, or low elevation
(Fig. 3i, j), topographic features that tend to be associated with
high soil temperature and moisture content, where organic
matter decomposition tends to be fast and more complete,
resulting in low SOC content. As a result, the amount of H+

release to soils is reduced, decreasing soil acidity. Another
potential reason was that base cations taken up by the trees
from deeper soil layers were released to the soil through the
decomposition of plant residues, and increases soil pH
(Seibert et al. 2007).

4.3 Mechanisms affecting soil TP

Phosphorus is easier to migrate with water in suspended and
dissolved forms, and then it is more influenced by hydrolog-
ical processes at the catchment scale (Roberts et al. 1985;
Honeycutt et al. 1990; Gburek et al. 2002). The distribution
of soil TP in relation to topographic features in this study is
consistent with that reported by McDowell and Srinivasan
(2009), in which TP was more strongly correlated to second-
ary terrain attributes such as TWI and LS in some small catch-
ments. Therefore, the spatial distribution of soil TP is consid-
ered to be a reliable indicator of water movement in the land-
scape (Smeck and Runge 1971; Roberts et al. 1985; Gburek
and Sharpley 1998). However, the relationship between

topography and soil phosphorus status may be weakened by
other factors such as soil disturbance (Page et al. 2005).

5 Conclusions

We conclude that the CIT method not only provided better
fitted models for topography-soil relationships but also had
less prediction errors than the MLR method. Based on the
CIT analysis, soil properties were classified into three catego-
ries according to the way they were affected by topography:
those that were highly influenced by primary terrain attributes
(such as VWC, SOC, and TN), by secondary terrain attributes
(TP), or by both (CN ratio and pH). The distribution of VWC,
SOC, and TN on the landscape was more affected by location-
specific features such as differences in gravitational potential,
precipitation, temperature, and vegetation in association with
changes in topography. The spatial distribution of soil TP was
mostly affected by catchment-related hydrological processes,
while those of CN ratio and pH were affected by topography
in both location-specific and catchment-related ways,
resulting in the strongest topography-soil relationships in the
study. The topography-soil property relationships generalized
in this study should help us evaluate topography-soil property
relationships in similar regions and help with ecological health
evaluation and ecological restoration of degraded lands in the
southeast hilly region in China, a region that is severely dis-
turbed by anthropogenic activities.
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