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Long-term ecological monitoring has contributed substantially towards advancements in theoretical and applied
ecology. However, the costs tomaintain a long-termmonitoring site are enormous. Lightweight unmanned aerial
vehicles (UAVs or drones) have been rapidly emerging as a new tool for local-scale monitoring. To evaluate the
value of drone applications in long-term ecological studies, we combined drone-derived canopy variables,
detailed ground-based stem-mapping data and topographic and edaphic variables from a 20-ha forest dynamics
plot in a species-rich subtropical forest. Specifically, we evaluated the relative importance of these variables in
explaining local-scale variation in forest stand and species measures. We found that drone-derived canopy var-
iables contributed substantially towards explaining local patterns of biodiversity and more specifically in
supporting a gap dynamics hypothesis in structuring observed forest biodiversity. Stand basal areawas positively
related with canopy closure, indicating the importance of protecting old-growth forests as carbon sinks. The
importance of topographic and edaphic variables was also demonstrated, supporting a niche differentiation hy-
pothesis in structuring patterns in biodiversity. Species-level analyses illustrated that light-demanding species
were more strongly correlated with canopy variables than shade-tolerant species. We provide convincing
evidence that drones can add substantial value to long-term ecological monitoring by providing low cost, high
resolution data. Drones should be included in the ecologist's toolbox to complement traditional field surveys.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

High-quality biodiversity data on species' distributions and its
integration with environmental variables are critical for addressing
basic research questions in ecology, tracking biodiversity changes, and
developing effective conservation actions. Although we gain a wealth
of knowledge by spending an enormous amount of time and energy
in the field, traditional field surveys can be exhausting and costly
(Lawton et al., 1998; Gardner et al., 2008). For example, a field team of
12 to 14 individuals took ~3 years to complete the first tree census for
a 50 ha forest dynamics plot in Barro Colorado Island, Panama.
Costs to establish similar plots are estimated at about US$100,000
to US$500,000 (Condit, 1998). Additional measurements and moni-
toring of tree height, canopy openness, forest disturbance and other
forest parameters are limited by available human labor and financial
resources. Due to these limitations, ground-based surveys are not as
ironmental Sciences, East China
frequent as required for analysis and monitoring of short-term
change. Therefore, a key challenge remains on how to collect forest
attribute data in a timely and cost effective manner.

Remote sensing techniques are increasingly being used to assess
changes in forest cover (Hansen et al., 2013; Nijland et al., 2015), tree
density (Crowther et al., 2015), species distributions (Cord et al.,
2013), canopy height (Simard et al., 2011; Nijland et al., 2015; Zhang
et al., 2016), and carbon stocks (Saatchi et al., 2011; Zhang et al.,
2014). However, satellite and airborne sensors can be expensive and
inaccessible for most researchers, requiring trade-offs between resolu-
tion, scale, and frequency (Anderson and Gaston, 2013). For ecological
studies at local and regional scales, satellite and airborne data are not
often well-suited to the scale of the study (Wulder et al., 2004). Small
unmanned aircraft systems, also known as lightweight unmanned aerial
vehicles (UAVs) or drones, provide “a promising route to responsive,
timely, and cost-effective monitoring of environmental phenomena”
(Anderson and Gaston, 2013). Although drones in military applications
have a relatively long history, civilian applications have only recently
emerged (Koh andWich, 2012; Anderson and Gaston, 2013). Pioneering
ecologists and conservation biologists have recently been using drones to
monitor wildlife and plant populations (Jones et al., 2006; Chabot and
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Bird, 2012; Vermeulen et al., 2013), wildlife poachers (Schiffman, 2014),
vegetation structure (Getzin et al., 2012; Dandois and Ellis, 2013; Puliti
et al., 2015), and mapping of land cover change (Rango et al., 2009).
Compared with satellite and airborne remote sensing techniques, drones
can fly at low altitudes and at slow speeds, allowing them to take ultra-
high spatial resolution (1–20 cm) imagery and thereby collect near-
earth data of plant and wildlife populations and biophysical variables
(Rango et al., 2009; Koh and Wich, 2012; Whitehead and Hugenholtz,
2014). Using drones also avoidsmany limitations associatedwith satellite
data, including the lack of sufficient spatial resolution to detect and mea-
sure certain critical biophysical properties (e.g., forest canopy gaps and
single-tree identification), the lack of sufficient temporal resolution data
to detect changes in phenology and stand structure bydisturbance events,
and long-duration cloud contamination over many types of tropical and
subtropical forests (Paneque-Gálvez et al., 2014; Whitehead et al.,
2014). Additionally, the cost of one camera-equipped drone is relatively
low (Koh and Wich, 2012). Despite these advantages, current cost-
effective drones have relatively limited spatial extent per flight, small
payloads and low spectral resolution (Paneque-Gálvez et al., 2014;
Whitehead et al., 2014), and therefore this technology has yet to receive
much attention by field ecologists, especially for long-term ecological
studies.

Long-term ecosystem monitoring is the keystone of ecological re-
search and management (Callahan, 1984; Likens, 1989; Condit, 1995;
Lindenmayer et al., 2012) because these data provide important insights
to complex ecological systems. There are a number ofwell-known long-
term ground-based monitoring programs, such as International Long
Term Ecological Research Network (ILTER, http://www.ilternet.edu),
North American Breeding Bird Survey (BBS, https://www.pwrc.usgs.
gov/bbs), United States Forest Inventory and Analysis National Program
(FIA, http://www.fia.fs.fed.us), Amazon Forest Inventory Network
(RAINFOR, http://www.rainfor.org), and the Center for Tropical Forest
Science and Forest Global Earth Observatory (CTFS-ForestGEO, http://
www.forestgeo.si.edu). Using the CTFS-ForestGEO network as an exam-
ple, this network comprises over 60 plots from 24 countries across the
Americas, Africa, Asia, and Europe, on over 10,000 woody plant species,
and more than 6 million living individuals (Anderson-Teixeira et al.,
2015). Since the first 50-ha forest dynamics plot was established at
Barro Colorado Island in Panama in 1980, over 200 researchers have
published over 1000 scientific articles using CTFS-ForestGEO data.
These publications have had a substantial impact across a large variety
of science and policy issues (e.g., Hubbell et al., 1999; Harms et al.,
2000; Hubbell, 2001; Condit et al., 2006; John et al., 2007; He and
Hubbell, 2011; Stephenson et al., 2014). Likewise, remote-sensing-
based long-termmonitoring, such as the National Ecological Observato-
ry Network (NEON, http://www.neoninc.org) and NASA's Moderate
Resolution Imaging Spectroradiometer (MODIS) platform, have contrib-
uted substantially to our understanding of a variety of ecosystems at re-
gional and global scales (Kerr and Ostrovsky, 2003).

Despite the tremendous value of these long-term data sets, many
data gaps remain. First, ground-based monitoring sites only cover a
small fraction of the Earth's surface and are not representativewith sev-
eral geographic biases. Martin et al. (2012) analysed the distributions of
2573 terrestrial ecological sites, and found that these sites overrepre-
sented protected areas and wealthy countries, and were rarely distrib-
uted in the 75% of the terrestrial world where humans live. One main
reason for the paucity of these ground-based sites is their highmonitor-
ing and maintenance costs. Second, challenges remain between linking
broad-scale remote sensing data with local-scale ground data (Kerr and
Ostrovsky, 2003;Wulder et al., 2004). The problem of mismatch of spa-
tial scales results in limitations to monitoring and predictions of species
distributions and dynamics (e.g., Saveraid et al., 2001). Likewise, mis-
matches in temporal scales also occur. Broad-scale remote sensing
data are not generally as frequent as required to address a number of
pressing ecological questions. For instance, human and natural distur-
bance events at local and/or regional scales, such as forest harvesting,
windfall and drought, may not be captured by satellite remote sensors
(Wulder et al., 2004). Therefore, drone-based ecosystem monitoring
that can be applied at the temporal and spatial scales relevant to ground
measures will greatly benefit long-term studies of ecological properties,
potentially “revolutionizing spatial ecology” (Anderson and Gaston,
2013).

In this study, we explore the utility of using lightweight drones as a
flexible, cost-effective, and accurate method for mapping forest stand
characteristics in a 20-ha CTFS-ForestGEO subtropical forest plot in
China. By combining aerial photographs collected by the drone with
photogrammetry and using detailed ground survey data on species
distribution, topography and edaphic variables, wemapped forest canopy
structure, and analysed the relative contribution of drone-derived canopy
attributes, topography and edaphic variables to observed patterns of
biodiversity and tree regeneration. Specially, we assess: (1) the feasibility
of usingdrone technology to collect high resolution aerial photographs for
mapping three-dimensional (3D) forest canopy structure; (2) to what
extent drone-derived canopy attributes contribute to our understanding
of local-scale patterns in biodiversity and biomass storage; and (3) how
species with different life history strategies (i.e., light-demanding vs.
shade-tolerant species) respond to drone-derived canopy attributes and
other environmental variables.

2. Materials and methods

2.1. Ground inventory data

This studywas conducted in a 20-ha (500m×400m) forest dynam-
ic plot in the Dinghushan (DHS) National Nature Reserve (23°09′–
23°11′N, 112°30′–112°33′E) in Southern China (Fig. 1). The DHS
reserve, which was established in 1956 as China's first nature reserve,
encompasses approximately 1155 ha of forests with elevations ranging
from 14.1 m to 1000.3 m above sea level. This reserve joined the In-
ternational Man and Biosphere Reserve Network (MAB) as a global
conservation hotspot in 1979. The region is characterized by a south sub-
tropical monsoon climate, with mean annual temperature of 20.8 °C, and
monthly mean temperatures varying between 12.6 °C in January to 28 °C
in July (Huang et al., 1998). Mean annual precipitation is 1929 mm, with
most precipitation occurring between April and September. Mean annual
evaporation is 1115 mm with relative humidity averaging 80% (Huang
et al., 1998). The vegetation ismainly covered bywell-protectedmonsoon
evergreen broadleaved forest. In contrast to the surrounding disturbed
forests, the reserve contains rare primary forests of at least 400 years of
age that were conserved by monks at the Buddhist temple near the plot
(Fig. 1c).

The 20 haDHS plot was established in 2004–2005 (Fig. 1). Following
the protocols from the CTFS-ForestGEO network (Condit, 1998), all
stems with ≥1 cm diameter at breast height (DBH) were tagged,
georeferenced, and identified to species. The first inventory of this plot
was completed in 2005, and has been re-censused at five-year intervals
ever since. Data for the 2010 census were used for the current analysis
which includes 60,015 living individual stems with ≥1 cm DBH
representing 177woody plant species. Among these species, 47% (84 spe-
cies) are considered rare as defined as being less than one individual per
hectare (Ye et al., 2008). Based on importance values, Chinese chestnut
(Castanopsis chinensis, Fagaceae), Chinese gugertree (Schima
superba, Theaceae), and yellowbasket-willow (Engelhardtia roxburghiana,
Juglandaceae) are the three most dominant species.

2.2. Topographic and edaphic variables

Topography of the study plot was measured by four variables:
elevation, slope, aspect, and convexity. Elevation was surveyed on
a 20 m × 20 m grid within the 20-ha plot using an Electronic Total
Station with elevation values averaged from the four corner of
each 20 m × 20 m quadrat (Ye et al., 2008). Slope was defined as
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Fig. 1.Geographic location of the study area in DinghushanNational Nature Reserve, Southern China. (a) Aerial photography of our study area. The dotted blue lines represent the bound-
ary of the 20-ha (400m× 500m) forest dynamics plot. (b) Point cloudmap for DSM of the region covered by the aerial survey using the drone. (c) This image shows the Buddhist temple
used for takeoff and landing. (d) This image illustrates a small area with close canopy occupied by multiple species, while (e) illustrates an area with open canopy. The two red circles in
(e) highlight the locations of two ground-level seed traps.
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the mean angular deviation from the horizontal of each of the
four triangular planes formed by connecting three of the corners of
each 20 m × 20 m quadrat. Aspect was defined as the compass direc-
tion in which a slope faces. Convexity of each 20 m × 20 m quadrat
was calculated as the elevation of the focal quadrat minus the mean
elevation of eight surrounding quadrats. For the edge quadrat, convexity
was the elevation of the center point minus the mean of its four corners
(Harms et al., 2001; Wang et al., 2009). The landform of this plot is com-
plex,with a 230mrange in elevation (240–470m), resulting innumerous
extremely steep slopes ranging from 30° to 50° (Wang et al., 2009). The
elevation of each 1 × 1 m2 point was interpolated by ordinary kriging
from the 20 m × 20m base grid. The ordinary kriging interpolation tech-
nique has been used in many CTFS-ForestGEO plots (e.g., Harms et al.,
2001; John et al., 2007) and recent drone study by Dandois and Ellis
(2013). The accuracy of this technique was judged by the mean error
(ME) and the root mean square error (RMSE) between estimations
and observations. The values of ME and RMSE were 0.04 m and 4.28 m
respectively.

Edaphic variables were collected using a standard protocol de-
veloped by the CTFS-ForestGEO (John et al., 2007). Specifically, we
collected topsoil samples (0–10 cm depth) by using a regular grid
of points at each 30 m interval within the 20-ha plot. Each sampling
point was paired with two additional sampling locations at 2, 5, or
15 m in a random compass bearing from the point to capture fine-
scale variation in soil properties (John et al., 2007). In total, 710
samples were collected with eight edaphic variables measured for
each sample. These variables included soil organic carbon (SOC),
available potassium (AK), total potassium (TK), available phosphorus
(AP), total phosphorus (TP), available nitrogen (AN), total nitrogen
(TN), and soil pH (Lin et al., 2013). Soil values for each 20m×20mquad-
rat were calculated using ordinary kriging, and the accuracy of these esti-
mations was reported in Lin et al. (2013).
2.3. Aerial drone survey

The Microdrones MD4-1000 small drone (https://www.microdrones.
com)was used for aerial survey of the 20-ha plot (Appendix A). This UAV
weighed2.65 kg, had a cruising speed of 12m/s,maximumflight duration
of 88 min without payload under optimal weather conditions, and maxi-
mum payload mass of 1.2 kg. This quadcopter (four brushless battery
powered motors) drone can fly by remote control or autonomously
with the aid of its GPS receiver and its waypoint navigation system. A
Sony NEX-5 still-photograph camera was mounted to the bottom of the
drone to acquire aerial imagery. Our team member (J.H.) has used this
system for over 200 successful missions investigating land cover changes
and vegetation dynamics.

The flight mission was planned with the mdCockpit software that
came with the drone. The flight route was planned using orthoimages
and a digital elevation model (DEM) of the flight area (Appendix A).
To keep the pixel size of the orthoimages relatively constant, the flight
could not be horizontal (as with traditional fixed-wing planes) because
of the large elevational difference (230m) in this study site. The vertical
distance between the drone and the ground surface was kept at about
240 m. Total flight time was nearly 28 min with the speed of 5 m per
second to cover the whole study plot (Fig. 1 & Appendix A). In total,
we collected 312 images with about 70% average overlap and the aver-
age pixel size was 4.3 cm.

Aerial photographswere processed into georeferenced orthoimages,
a digital surface model (DSM), and point clouds using the photogram-
metric software “Pix4dmapper” (http://pix4d.com), which has been
widely used for UAV photogrammetry. Based on the aerial images
collected from the drone, we selected 9 ground control points (GCPs)
to geocorrect the point cloud. The XYZ locations of each GCP were
measured using a Trimble RTK (Real-Time Kinematic) GPS within 1 m
accuracy (UTM Zone 49 N, WGS84 horizontal datum). We followed a
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standard workflow in photogrammetry to extract the DSM and ortho-
mosaic from images (McGlone, 2013). Thenwe evaluated the spatial ac-
curacy using the RMSE by comparing digitized and known coordinates
from ground. Finally, we generated the DSM with a resolution of 5 cm.
The RMSEs were 32 cm in X (east), 44 cm in Y (north), and 69 cm in Z.

2.4. Canopy height model (CHM) generation and canopy height metrics

We generated a canopy heightmodel (CHM)with a pixel size of 1m
by subtracting theDEM from theDSM.We then developed a suite of for-
est canopy metrics across the 20-ha plot at three spatial scales (5 m,
10 m, and 20 m) by aggregating the CHM data with 1 m resolution to
three raster grids consisting of cells of 5 m × 5 m, 10 m × 10 m and
20 m × 20 m, respectively. In total, there were 8000, 2000 and 500
cells at the scales of 5 m, 10 m and 20 m, respectively. These metrics
included canopy height (the average of three highest values), mean
height, skewness of the heights, standard deviation of heights, vertical
distribution ratio (VDR; Goetz et al. (2007)), and canopy closure. We
calculated VDR using the equation: VDR ¼ HT max�HTmed

HT max
, where HTmax and

HTmed were maximum and median values of canopy height at each
grid cell. We quantified canopy closure by the percentage of 1 × 1 m
pixels with N10 m height. Values of canopy closure ranged from 0 to
100 with higher values indicating close canopy and lower values indi-
cating open canopy.

2.5. Variables generated from ground inventory data

Since we had the detailed georeferenced locations of each individual
treewith ≥1 cmDBH in the entire 20-haplot from the ground inventory,
we assigned each of individuals to three raster grids (5 m × 5 m,
10 m × 10 m, and 20 m × 20 m) to match with drone-driven variables.
Both community- and species-level biodiversity metrics were calculat-
ed at these three spatial scales.

2.5.1. Community-level metrics
At each of three spatial scales, we calculated species richness (S),

Shannon diversity index (H), species evenness, and stand basal area
for each subplot for two tree size groups: all stems (≥1 cm DBH) and
saplings (1 cm ≤ DBH b 5 cm). Shannon diversity index (H) accounts
for both abundance and evenness of the species present, and is calculat-
ed as follows: H= -∑i=1

s (pi)ln(pi), where pi is the proportion of total
individuals represented by species i. Species evenness was calculated
as the Shannon diversity index divided by the natural logarithm of spe-
cies richness (Pielou, 1975).

2.5.2. Species-level metrics
Considering possible species-specific requirements for growth and

reproduction, we selected two light-demanding species and two
shade-tolerant species to compare how these species respond to their
environment measured by the drone-derived canopy metrics, topogra-
phy, and soils. The two light-demanding species were fissure chestnut
(Castanopsis fissa; Fagaceae; CAFI) and panicled Mallotus (Mallotus
paniculatus; Euphorbiaceae; MAPA), and two shade-tolerant species
were willow-leaf Acmena (Acmena acuminatissima; Myrtaceae; ACAC)
and fleshy nut tree (Sarcosperma laurinum; Sapotaceae; SALA). For
each species, the abundance for each subplot and for different tree
size groups was calculated.

2.6. Statistical analysis

We first used Pearson correlations to analyse pair-wise relationships
among different variables to identify multicollinearity and we used
Dutilleul's (1993) modified t-test to calculate statistical significance
accounting for spatial autocorrelation. To avoid multicollinearity
problems (Dormann et al., 2013), we excluded variables with high
correlations (coefficient N 0.7). After collinearity assessments, we kept
four drone-derived canopy variables (canopy height,mean height, stan-
dard deviation of heights, and canopy closure), three topographic vari-
ables (elevation, convexity and slope), and four edaphic variables (soil
organic carbon, available potassium, total potassium, and total phos-
phorus). Considering the spatial accuracy of topographic and edaphic
predictor variables, we primarily limited our statistical analysis to the
20-m scale (grain resolution). This spatial scale is also widely used for
field sampling in forest communities. It is worth mentioning that the
further analyses at finer scales can shed light on many important eco-
logical questions, such as forest regeneration and phenology, and there-
fore should explore deeply depending on research questions and overall
data quality of available attributes.

Spatial simultaneous autoregressive error models (SARs), which
allow the inclusion of residual spatial autocorrelation in data (Kissling
et al., 2008), were used to evaluate the relative importance of each var-
iable to forest stand and species patterns. For each analysis, all possible
combinations of 11 predictor variables were used to fit the models.
Among all the 2047 (211-1) combinations, the best combination of var-
iableswas selected by comparing all model subsets using Akaike's Infor-
mation Criterion (AIC) (Burnham and Anderson, 2002). Then, for the
‘best’ model, we calculated the relative importance of predictor vari-
ables by using the standardized partial regression coefficients of all pre-
dictor variables (cf. Kissling et al., 2008; Zhang et al., 2013). The Akaike
weight (w) for each variable based on all possible combinations of pre-
dictor variables was also calculated.

All statistical analyses were carried out using R 3.1.2 software
(R Core Team, 2014). Pearson correlation coefficients after accounting
for spatial autocorrelation were calculated with the R package
‘SpatialPack 0.2–3′ (Osorio and Vallejos, 2014), and SARs were calculat-
ed using the R package ‘spdep 0.5–88′ (Bivand et al., 2015). The spatial
weightmatrices of the SARswere calculatedwith the nearest neighbour
and a row-standardized coding style (Kissling and Carl, 2008).

3. Results

3.1. Stand-level analysis

Drone-derived canopy variables, stand-level attributes, and topo-
graphic and edaphic variables varied greatly at the three spatial scales
(Fig. 2). At the 20-m scale, species richness ranged from 12 to 49 species
with stand basal area varying from 5.5 m2 ha−1 to 64.9 m2 ha−1

(Table 1). For thedrone-derived canopy variables, canopyheight ranged
from 7.0 m to 44.3 m with canopy closure varying from open canopy
(0%) to completely close canopy (100%) and averaging overall 73.5%.
Comparing spatial patterns of these variables at three spatial scales
(Fig. 2), we detected similar patterns between canopy height and cano-
py closure: tall and close canopies were found in the northwest corner
of the plot, while low and open canopies occurred in the southeast cor-
ner. Patterns in abundance and species richness differed (Fig. 2) with
higher abundance and species richness in low to open canopies with
abundance and richness lower in tall and close canopies.

After accounting for spatial autocorrelation, negative correlations
with canopy closure and skewness of the height (ht_skewness) were
found for all stems and only the saplings, species richness, Shannon
index and evenness, while weak correlations with ground measures
were found for canopy height (ht_canopy) and standard deviation
of the heights (ht_sd) (Tables 2 and 3). Among three topographic
variables, slope and convexity were significantly related with species
richness and the Shannon index, but not for evenness. Among four se-
lected edaphic variables, soil organic carbon (SOC)was positively corre-
lated with species richness for all stems and the saplings and Shannon
index for the saplings, while total potassium (TK) was negatively corre-
lated with species richness for all stems and the saplings and positively
related with the evenness for the saplings. For stand basal area (BA),
canopy closure was the most important explanatory variable at the



Fig. 2.Maps for drone-derived canopy height and closure, and woody plant abundance and species richness generated from ground inventory data at three spatial scales, 5 m, 10m, and
20m, respectively. Canopy height at each scale was calculated by averaging the three tallest canopies of 1 m × 1 m pixels. Canopy closure was measured by the percentage of 1 m × 1 m
pixels with heights N10m as estimated by the drone. Canopy closure values range from0 to 100; higher values indicatemore close canopy, while lower values indicatemore open canopy.
Note that the maps at 5-m and 10-m scales are presented to show the potential applications of drones as a tool for forest monitoring but were not used for analyses in this study.
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20-m scale, following by convexity, total potassium (TK) and total phos-
phorus (TP) (Table 3).

3.2. Species-level analysis

Species abundance distributions for the four selected species
showed individual patterns, while similar patterns were detected for
all stems and only the saplings of the same species (Fig. 3). For all living
stems of each species, the abundance of CAFI, one light-demanding
species, was positively related to elevation and convexity, and negatively
related to canopy closure (Tables 4 and 5). For CAFI saplings, abundance
was only related to elevation and convexity. However, for another light-
Table 1
Descriptive statistics of drone-derived canopy variables, stand-level attributes, and topographi

Variables

Stand-level attributes Species richness
Shannon diversity index
Species evenness
Stand basal area (m2 ha−1)
Species richness for saplings
Shannon diversity index for saplings
Species evenness for saplings

Drone-derived canopy variables Canopy height (m)
Mean height (m)
Standard deviation of heights (m)
Canopy closure (%)

Topographic variables Elevation (m)
Slope (°C)
Convexity (m)

Edaphic variables Soil organic carbon (g kg−1)
Available potassium (g kg−1)
Total potassium (g kg−1)
Total phosphorus (g kg−1)
demanding species,MAPA, the abundance had significantly negative rela-
tionships with canopy closure, ht_sd, and ht_skewness, and positive rela-
tionships with canopy height, but weak relationships with all selected
topographic and edaphic variables. Abundance of MAPA saplings also
showed a negative relationship to canopy closure and a positive relation-
ship to canopy height.

For two shade-tolerance species, ACAC and SALA, the correlations
between abundance of all stems and drone-derived canopy variables
were quite weak (Table 4). In contrast, elevation and several edaphic
variables showed relatively strong relationships with abundance. Simi-
lar trends were observed when analyzing only saplings of these two
species (Table 4).
c and edaphic variables at the 20-m scale.

Abbreviation Mean ± SD Min Max

Richness 26.41 ± 6.45 12 49
Shannon 2.66 ± 0.29 1.38 3.23
Evenness 0.82 ± 0.06 0.50 0.94
BA 26.98 ± 0.35 5.50 64.87
Richness_S 19.12 ± 5.91 5 40
Shannon_S 2.32 ± 0.38 0.80 3.09
Evenness_S 0.80 ± 0.09 0.38 0.97
ht_canopy 23.56 ± 4.21 7.02 44.26
ht_mean 13.90 ± 5.01 0 25.97
ht_sd 4.60 ± 1.60 1.61 10.62
Closure 73.45 ± 28.02 0 100
elev 339.23 ± 50.83 237.12 466.16
slope 32.59 ± 7.96 8.54 57.91
Conv 0.47 ± 6.51 −13.98 17.67
SOC 60.98 ± 11.21 42.61 98.05
AK 18.15 ± 3.41 8.45 31.22
TK 54.99 ± 19.58 30.11 121.18
TP 1.80 ± 1.43 0.41 4.87



Table 2
Pearson correlation coefficients between stand plant measures (species richness, Shannon diversity index, species evenness, and stand basal area) and drone-derived canopy measures,
terrain variables, and edaphic variables. p valueswere calculated after accounting for spatial autocorrelation using Dutilleul's (1993)method: *** p b 0.001; ** p b 0.01; * p b 0.05. The cor-
relation coefficients with p b 0.05 are marked in bold. Abbreviations of predictors are explained in Table 1.

All stems Saplings

Richness Shannon Evenness BA Richness Shannon Evenness

ht_canopy −0.154 −0.134 −0.027 0.133 −0.154 −0.189 −0.102
ht_sd 0.152 0.086 −0.032 −0.231** 0.168 0.170 0.085
ht_skewness 0.151 0.125 0.045 −0.230*** 0.162 0.244* 0.220*
Closure −0.248 −0.191 −0.029 0.409*** −0.263 −0.338* −0.238
elev 0.364 0.193 −0.075 0.131 0.357 0.143 −0.153
conv 0.268*** 0.166* −0.036 0.315*** 0.261*** 0.161* −0.042
slope 0.450** 0.289** −0.027 −0.145 0.422** 0.377** 0.120
SOC 0.397 0.204 −0.094 −0.165 0.441 0.420* 0.170
AK 0.099 0.079 0.004 −0.145 0.138 0.230 0.197
TK 0.019 −0.017 −0.045 −0.362*** 0.086 0.226 0.235
TP −0.317 −0.159 0.077 0.15 −0.371 −0.316 −0.097
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4. Discussion

4.1. Effects of drone-derived canopy variables on stand attributes

By combining data from lightweight drones and ground-based sur-
veys on species distribution, topography and edaphic variables, we
found that drone-derived canopy variables contributed substantially
to explaining patterns of biodiversity in this species-rich subtropical for-
est plot. For both all living stems and saplings, forest canopy closure and
skewness of canopy heights, which are directly related to canopy light
heterogeneity, hadmuch stronger relationships (negative) with species
richness and Shannon diversity than the average and standard deviation
of canopy heights. This suggests that local light availability plays a crit-
ical role on determining biodiversity patterns (Grubb, 1977; Denslow,
1987). Local disturbances, such as gaps formed by treefall and standing
dead alders, increase heterogeneity in light conditions and may pro-
mote the coexistence of species by providing opportunities for niche
differentiation (Denslow, 1987). Rüger et al. (2009) evaluated the influ-
ence of light gap disturbances on tree recruitment in a 50-ha tropical
forest plot in Barro Colorado Island, which was the first established
plot of the CTFS-ForestGEO network, concluding that nearly all species
increased in recruitment with increasing light. These findings by
Rüger et al. (2009) were contrary to the early work by Hubbell et al.
(1999). Due to the practical difficulties in measuring canopy structure
directly, both of the studies were based on a rough estimation of the
light environment in the forest, which may affect their results (Rüger
et al., 2009). Compared with traditional ground-based surveys, light-
weight drones provide a high-qualitymeasure of forest vertical structure,
and could serve as a cost-effective and time-saving tool for monitoring
canopy dynamics.
Table 3
Spatial simultaneous autoregressive models of response variables (species richness, Shannon d
variables. Standardized coefficients (Coef) for the model with the highest Akaike weight (w) for
on all possible combinations of predictor variables. Pseudo r2 of each model was in bold. *** p

All stems

Richness Shannon Evenness BA

Coef w Coef w Coef w Coe

ht_canopy 0.319 0.477 0.374
ht_sd 0.293 0.419 0.362
ht_skewness −0.110** 0.911 −0.065 0.422 0.365
Closure −0.111* 0.619 −0.144* 0.579 −0.097 0.495 0.4
elev 0.202* 0.777 0.183 0.526 0.347
conv 0.090* 0.789 0.120** 0.879 0.441 0.1
slope 0.273*** 1.000 0.192*** 0.995 0.317
SOC 0.336** 0.935 0.506 0.294
AK 0.369 0.350 0.288
TK −0.265* 0.887 0.490 0.289 −0
TP 0.439 0.286 0.307 −0
Pseudo r2 0.537 0.430 0.357 0.3
Stand basal area, which has frequently been used as a surrogate for
forest biomass and carbon stocks (Houghton et al., 2009), was signifi-
cantly related to canopy closure in our study forest. This positive rela-
tionship indicates that forests with undisturbed close canopy store
higher aboveground biomass and carbon than disturbed open forests,
supported by Liu et al.'s (2007) finding on biomass allocation in five
forest types in Dinghushan Nature Reserve. It also highlights the impor-
tance of protecting old-growth forests as carbon sinks (Luyssaert et al.,
2008), especially in this highly fragmented region packed with intense
human activities.

4.2. Effects of topographic and edaphic variables on stand attributes

After accounting for the effects of edaphic variables and drone-
derived canopy variables, topographic variations in this plot were
among the most important factors relating to biodiversity patterns for
both all living stems and saplings. With a 230-m elevation range in
this 20-ha plot, the DHS plot has high microhabitat heterogeneity lead-
ing to topographic niche differentiation among species (Brown et al.,
2013). The importance of habitat heterogeneity is supported by previ-
ous studies in DHSwhere habitat conditions affected species abundance
distributions for 83% of all woody species (Wang et al., 2009) and signif-
icantly influencing on intraspecific variation of one common species
C. chinensis (Wang et al., 2012). In contrast, there was little evidence
for habitat heterogeneity affecting species in a 50-ha tropical forest plot
in Barro Colorado Island with only 40 m in elevation range (Harms
et al., 2001). Our finding confirms the niche differentiation hypoth-
esis in this species-rich forest (Brown et al., 2013).

Among the four selected edaphic variables, soil organic carbon ex-
plained additional variation in species richness and Shannon diversity
iversity index, species evenness, and stand basal area) against combinations of predictor
a given variable group are given, as well as the Akaike weight (w) for each variable based

b 0.001; ** p b 0.01; * p b 0.05. Abbreviations of predictors are explained in Table 1.

Saplings (1 cm ≤ DBH b 5 cm)

Richness Shannon Evenness

f w Coef w Coef w Coef w

0.285 0.341 0.498 0.502
0.276 0.328 0.391 0.351
0.270 −0.108** 0.959 −0.074 0.464 0.422

21*** 1.000 0.431 −0.121* 0.509 −0.117 0.550
0.351 0.192 0.795 0.353 0.469

35** 0.953 0.087* 0.806 0.106* 0.830 0.401
0.277 0.230*** 1.000 0.178*** 0.992 0.316
0.384 0.338** 0.952 0.294*** 0.947 0.381
0.285 0.310 0.443 0.413

.173* 0.688 −0.219 0.764 0.328 0.217* 0.635

.159* 0.592 −0.154 0.503 0.336 0.286
34 0.538 0.435 0.401



Fig. 3. Spatial distribution at the 20-m scale of species abundance for two light-demanding species (Mallotus paniculatus (MAPA) and Castanopsis fissa (CAFI)) and two shade-tolerant
species (Acmena acuminatissima (ACAC) and Sarcosperma laurinum (SALA)). Patterns for all individuals (a–d) and saplings (e–f) are shown here.
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for both all living stems and saplings, but explained less for the evenness
and stand basal area. Zhou et al. (2006) analyzed soil carbon dynamics
from 1979 to 2003 in the same forest and found that old-growth forests
accumulated atmospheric carbon at an unexpectedly high rate, but they
did not give a clear explanation for the potential mechanisms and pos-
sible consequences for biodiversity and ecosystem functioning. The re-
lationships we found between soil organic carbon and biodiversity
and stand basal area give some insight to this question.

4.3. Species-specific responses to their environment

The results of the species-specific analyses of abundance dis-
tributions support the hypothesis that different habitat requirements
among species result in the coexistence of diverse species in one com-
munity (Levine andHilleRisLambers, 2009). The abundance distribution
of the light-demanding speciesM. paniculatus (MAPA)wasmarkedly af-
fected by canopy closure when considering all stems and only saplings,
supporting traditional gap dynamics theory (Oliver and Larson, 1996).
In contrast, shade-tolerant species had only weak relationships with
canopy variables. Species-specific responses to topography and edaphic
variables found in this study have been documented previously (e.g., Li
et al., 2009; Lin et al., 2013; Wang et al., 2009). By combining drone-
derived variables with other biotic and abiotic variables, future studies
Table 4
Pearson correlation coefficients of four selected species' abundances and drone-derived canopy
lation. CAFI (Castanopsis fissa; Fagaceae) and MAPA (Mallotus paniculatus; Euphorbiaceae) ar
(Sarcosperma laurinum; Sapotaceae) are shade-tolerant species. The results that are statistica
explanations are as in Table 1.

All stems

CAFI MAPA ACAC SAL

ht_canopy −0.105 −0.077 −0.138 −0
ht_sd −0.047 0.187 0.270 0
ht_skewness 0.063 0.241* 0.244 0
Closure −0.065 −0.358** −0.399* −0
elev 0.387* −0.060 −0.296 −0
conv 0.226** −0.095 −0.162* −0
slope 0.193 0.206 0.286 0
SOC 0.206 0.268 0.329 0
AK −0.099 0.183 0.277 0
TK −0.091 0.408** 0.474* 0
TP −0.104 −0.237 −0.362 −0
of all species across different tree life stages will provide important
evidence for how and why species respond to their environment in
different ways.

4.4. Drone ecology and long-term ecosystem monitoring

We demonstrate an example of how drone-derived variables can
contribute to our understanding of biodiversity maintenance and spe-
cies coexistence for a diverse subtropical forest plot. Clearly, drones
hold great potential for providing advancements in mapping and mon-
itoring of forest dynamics. Comparedwith satellite and airborne remote
sensing techniques, drones collect the data with ultra-high spatial reso-
lution (e.g., nearly 5 cm in our study) in a cost-effective manner, which
can be used to measure some key stand attributes that have been
demonstrated by a few recent drone studies in forest ecosystems
(Getzin et al., 2012; Dandois and Ellis, 2013; Puliti et al., 2015; Zahawi
et al., 2015; this study). Our analyses also showed that the drone imag-
ery of our study plot matched very well with ground reference points,
with the precision of 32–44 cm horizontal RMSE and 69 cm vertical
RMSE. High accuracy between drone imagery and ground data was
also reported in boreal (Puliti et al., 2015) and temperate forests
(Getzin et al., 2012; Dandois and Ellis, 2013). The mismatch between
most remote sensing data sources and ground inventory data has
measures, terrain variables, and edaphic variables, after accounting for spatial autocorre-
e light-demanding species, while ACAC (Acmena acuminatissima; Myrtaceae) and SALA
lly significant are typed in bold. *** p b 0.001; ** p b 0.01; * p b 0.05. Other symbols and

Saplings

A CAFI MAPA ACAC SALA

.110 −0.086 0.009 −0.026 −0.021

.098 −0.048 0.192* 0.127 0.041

.043 0.045 0.152 0.088 −0.013

.151 −0.033 −0.225* −0.153 −0.016

.310 0.394* −0.062 −0.184 −0.293

.055 0.203** −0.071 −0.084 0.005

.084 0.169 0.114 0.157 0.012

.113 0.171 0.168 0.169 0.029

.246 −0.096 0.138 0.135 0.205

.167 −0.105 0.304** 0.222 0.069

.121 −0.086 −0.179 −0.186 −0.042



Table 5
Spatial simultaneous autoregressivemodels of response variables (the abundance of each of four selected species) against combinations of predictor variables. *** pb 0.001; ** pb 0.01; * pb 0.05.
Other symbols and explanations are in Tables 3 and 4.

Groups Variables CAFI MAPA ACAC SALA

Coef w Coef w Coef w Coef w

All stems ht_canopy 0.304 0.260*** 0.950 0.381 0.425
ht_sd 0.281 −0.233** 0.950 0.334 0.296
ht_skewness 0.282 −0.094 0.592 0.275 −0.074 0.642
Closure −0.098 0.550 −0.475*** 0.999 0.337 0.301
elev 0.390*** 0.988 0.412 −0.274** 0.937 −0.348** 0.954
conv 0.106* 0.760 0.386 0.480 0.284
slope 0.321 0.296 0.096* 0.744 0.316
SOC 0.554 0.326 0.382 0.193 0.566
AK 0.438 0.287 0.338 0.136 0.656
TK 0.430 0.305*** 1.000 0.273** 0.871 0.348
TP 0.282 0.308 −0.185* 0.693 0.435
Pseudo r2 0.334 0.192 0.490 0.493

Saplings (1 cm ≤ DBH b 5 cm) ht_canopy 0.299 0.119* 0.691 0.287 0.284
ht_sd 0.310 0.362 0.296 0.301
ht_skewness 0.274 0.321 0.298 −0.070 0.565
Closure 0.367 −0.152* 0.703 0.293 0.349
elev 0.384*** 0.995 0.363 −0.211** 0.857 −0.383*** 0.952
conv 0.075 0.570 0.300 −0.069 0.527 0.286
slope 0.298 0.295 0.447 0.311
SOC 0.437 0.375 0.443 0.251* 0.548
AK 0.338 0.271 0.298 0.152 0.648
TK 0.362 0.229*** 0.998 0.365 −0.234 0.532
TP 0.277 0.284 −0.196* 0.580 0.395
Pseudo r2 0.315 0.109 0.225 0.384
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been documented and much debated in recent years (Kerr and
Ostrovsky, 2003; Turner et al., 2003). For example, the debates on the
accuracy of biomass estimation in Amazon forests (Mitchard et al.,
2014; Saatchi et al., 2015) and the quality of global forest cover change
maps (Hansen et al., 2013; Tropek et al., 2014). Considering their high
accuracy, drone surveys provide an effective solution for this issue at
local or regional scales.

Although our research has shown several applications of drone tech-
nology, there are an increasing number of potential ecological applica-
tions that we have not discussed (Koh and Wich, 2012; Floreano and
Wood, 2015). Here we list several potential applications, especially for
use in long-term monitoring networks. First, drones can be used to
monitor long-term ecosystem dynamics. Long-term ecological studies
are critical for understanding how biodiversity and ecosystem function
responds to natural and anthropogenic disturbances (e.g., Condit et al.,
2006; Hubbell et al., 1999; Zhang et al., 2015). Similar with several
other pioneering studies (e.g., Getzin et al., 2012; Zahawi et al., 2015),
our study had only a one-time snapshot of the forest canopy structure.
With increases in time of drone-derived variables, we will be able to
quantify how different ecosystems evolve under the changes in climate
and land use (Whitehead et al., 2014). Second, using drones to collect
multispectral and hyperspectral images will provide a biophysical and
biochemical approach for mapping ecosystems. These images can pro-
vide detailed information on plant chemical and structural properties,
such as canopy water content and leaf nitrogen concentration (Asner
et al., 2015;Malenovský et al., 2015) andNormalizedDifference Vegeta-
tion Index (NDVI) (Zarco-Tejada et al., 2013). These data can be used for
single individual tree detection, phenology monitoring, biomass map-
ping and so on (Whitehead and Hugenholtz, 2014).

Our use of drones in this study identified several caveats and practi-
cal challenges that need to be considered for further studies. First, ter-
rain data collected from the field may not spatially match the digital
surfacemodel (DSM) generated from the drone. Following the standard
protocols of the CTFS-ForestGEO network (Condit, 1998), nearly all of
over 60 plots had topographic variables measured at the 20-m scale.
Some errors of this approach exist, especially for the plots with large
ranges of topography. Although we selected 9 ground control points
to geocorrect the point cloud and the results showed high precision
for these control points, the estimation of canopy height data was still
affected by the relatively coarse ground-based DEM data (4.28 m in
RMSE when interpolating to 1-m scale). This concern has also been
raised by recent drone studies in temperate deciduous forests
(Dandois and Ellis, 2013) and tropical forests (Zahawi et al., 2015). De-
spite this limitation, our analyses at the 20-m scale were still robust to
explain local-scale variations in biodiversity and other stand attributes.
This spatial scale has been widely used for many studies in community
ecology and forest management (e.g., Dandois and Ellis, 2013; Zahawi
et al., 2015).We detected some inconsistencies when comparing spatial
variations of drone-derived canopy variables at three spatial scales
(Fig. 2), suggesting the importance of spatial scale in ecological studies
(Levin, 1992). Further analyses at finer scales (even the individual
level) could be used to address questions involving forest regeneration,
phenology, and others, and therefore it is worthwhile to continue
exploring when high-quality data on topographic and edaphic vari-
ables are available. To improve the quality of ground-based terrain
data, one ongoing development is to mount light detection and
ranging (LiDAR) systems onto drones (Lin et al., 2011; Wallace
et al., 2012), but the cost of aerial LiDAR sensors for drones is cur-
rently very high and specific technical expertise for expensive pro-
cessing softwares is required.

The second challenge is to accurately identify species and individuals
using drones, especially in subtropical and tropical forests with high
species richness and dense canopies. The application of hyperspectral
remote sensing may provide insight into this problem (Asner et al.,
2015). Third, although drones are becoming much easier to operate
than other types of remote sensing equipment, training is needed for
designing flight paths, operating drones, and image post-processing
(Dandois and Ellis, 2013; Paneque-Gálvez et al., 2014). Previous experi-
ence on over 200 successfulmissions by our teammembers ensured our
current achievement. Collaborations between ecologists and experts on
remote sensingwill advance the application of drones in ecology. Addi-
tionally, drones with high performance and flexibility, such as the
equipment used here, can be costly, although it is cheaper than the
cost of acquiring imagery from very high spatial resolution satellites
(e.g., Quickbird, WorldView, IKONOS, and RapidEye) or piloted aircraft
missions in most cases. Ongoing efforts to design inexpensive equip-
ment (e.g., http://conservationdrones.org) and open-source computer
vision software (e.g., http://ecosynth.org; http://ardupilot.com) will

http://conservationdrones.org
http://ecosynth.org
http://ardupilot.com
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advance the development of this field (Koh and Wich, 2012; Dandois
and Ellis, 2013).

In conclusion, our research provides one of the first tests of how light-
weight drones can be used for long-term ecological research programs.
We believe that drone technology, as a complementary tool of traditional
field surveys, offers the potential to collect a large volume of data with
high spatiotemporal resolution and at low costs (Anderson and Gaston,
2013). Further, the combining drone-derived variables and detailed
ground inventory data allows us to advance our understanding of key
processes in complex ecosystems in a changing world.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.biocon.2016.03.027.
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