

AJB PRIMER NOTES & PROTOCOLS IN THE PLANT SCIENCES

A SET OF MICROSATELLITE PRIMERS FOR ZOSTERA JAPONICA (ZOSTERACEAE)¹

Kai Jiang², Hui Gao², Na-Na Xu², Eric Po Keung Tsang³, and Xiao-Yong Chen^{2,4}

²Department of Environmental Sciences, East China Normal University, Shanghai 200062, China; ³Department of Science and Environmental Studies, Hong Kong Institute of Education, Hong Kong, China

- Premise of the study. Polymorphic microsatellite primers were developed in the seagrass Zostera japonica to investigate genetic variation and to identify clonal structure.
- Methods and Results: Thirteen polymorphic loci and 23 monomorphic loci were developed in Z. japonica. Two to 13 alleles
 per locus were observed at the polymorphic loci across 57 individuals of two Z. japonica populations. The observed and expected heterozygosities within populations ranged from 0.0000 to 1.0000 and from 0.0000 to 0.8542, respectively.
- Conclusions: Our study showed high-level polymorphism at the polymorphic loci in Z. japonica. These primers would be a
 powerful tool to study genetic variation, clonal structure, and mating systems.

Key words: microsatellite primers; polymorphism; seagrass; *Zostera japonica*.

Zostera japonica Asch. & Graebn. (Zosteraceae), i.e., dwarf eelgrass or Japanese eelgrass, is a widespread monoecious seagrass native to the western Pacific. This species was introduced with oyster aquaculture to native eelgrass beds on the Pacific coast of North America and has become an invasive species (Williams, 2007). Like other seagrasses, this species can reproduce both sexually via seed production and vegetatively by rhizomatic growth. Clonal growth has significant impacts on genetic variation within and among populations, resulting in a presumption of low genetic diversity in seagrass populations as revealed by allozymes (Arnaud-Haond et al., 2005). However, recent studies adopting microsatellites have found high genetic variation in seagrasses comparable to those of nonclonal species (e.g., Arnaud-Haond et al., 2005). Although some primers developed in congeners might be cross-amplified in Z. japonica (Reusch, 2000; Coyer et al., 2004), the high possibility of null alleles limits their applications in Z. japonica (Coyer et al., 2004), especially in identifying clonal structure and estimating outcrossing rate. In this study, we isolated and characterized microsatellite primers for Z. japonica that will be useful in the analysis of genetic variation and mating system of this species.

METHODS AND RESULTS

Total genomic DNA was extracted from silica gel-dried leaves of one Z. *japonica* individual using Plant Genomic DNA Kit (Tiangen Biotech, Beijing, China) to construct a DNA library enriched for microsatellites. The enrichment

¹Manuscript received 16 June 2011; manuscript accepted 7 July 2011.

This work was supported by the National High-Tech Research and Development Program (2007AA09Z432), the Science and Technology Commission of Shanghai (10dz1210601), and the "211 Project" of East China Normal University to X. Y. Chen.

⁴Author for correspondence: xychen@des.ecnu.edu.cn

doi:10.3732/ajb.1100296

procedure followed the protocols of Liu et al. (2009) and Xu et al. (2010). About 300 ng of genomic DNA was digested with the enzyme *MseI* (New England Biolabs, Beverly, Massachusetts, USA) and ligated to an *MseI*-adapter pair (AdapF: 5'-TACTCAGGACTCAT-3' and AdapR: 5'-GACGATGAGTC-CTGAG-3'). This is followed by concentration of adapter-ligated fragments that were elevated through PCR amplification using *MseI*-N primer (5'-GATG-AGTCCTGAGTAAN-3'). The PCR products were denatured and hybridized to 5'-biotinylated (AC)₁₅ or (AG)₁₅ probes. Streptavidin-coated magnetic beads (Promega, Madison, Wisconsin, USA) were employed in capturing single-stranded DNA fragments containing microsatellites, and followed by PCR using *MseI*-N as the primer. The PCR products were ligated into pMD19-T vector (Takara, Dalian, China) and transformed into *E. coli* strain DH5α after they were purified with a multifunctional DNA Extraction Kit (Bioteke Corporation, Beijing, China).

A total of 1436 clones were selected and tested by PCR with (AC)₁₀ or (AG)₁₀ and primers M13+/M13-. Two hundred seventy-two positive clones were isolated and sequenced on an ABI 3730 DNA Sequence Analyzer (Applied Biosystems, Foster City, California, USA). We obtained 270 sequences, of which 136 contained simple sequence repeats. Some sequences were discarded because they lacked a flanking region or contained few repeats. Finally, 64 sequences containing at least seven simple repeats were used to design primers using Premier 5.0 (Lalitha, 2000). Among the 64 primers, 15 failed to obtain products, 13 produced multiple bands that were difficult to interpret, and 36 produced clear bands with expected sizes on agarose gel. To test the polymorphism, we randomly selected 10 individuals collected from Beigang and 10 collected from Dongjiao, Hainan Province, China (Appendix 1), for PCR using the 36 primers; 13 loci appeared polymorphic in 8% polyacrylamide gel electrophoresis. Subsequently, the forward primers of these 13 primers were labeled with fluorescent dye (5'6-FAM, 5'HEX, or 5'ROX). With the labeled primers, polymorphism was further tested in 28 individuals collected from Beigang and 29 from Dongjiao. Microsatellite loci were amplified under the following conditions: 5 min denaturation at 94°C; 30 cycles of 30 s at 94°C, 30 s at 53–65°C, and 30 s at 72°C; and a final 10 min extension at 72°C. The products were scanned by an ABI 3130 automated sequencer (Applied Biosystems) using an internal lane standard (GS500(-250LIZ)). Allele binning and calling were conducted using GeneMapper 4.0 (Applied Biosystems).

Characteristics of the microsatellite loci of *Z. japonica* are shown in Table 1. Each polymorphic locus had two to 13 alleles, with a mean of 5.1 alleles. At the population level, the observed and expected heterozygosities ranged from 0.0000 to 1.0000 and from 0.0000 to 0.8542, respectively (Table 2), calculated by the software TFPGA v1.3 (Miller, 1997).

Table 1. Characteristics of 36 pairs of microsatellite primers developed for *Zostera japonica*. Forward and reverse primers, fluorescent dye labels of polymorphic loci, repeat motif, allele size range (bp), annealing temperature (T_a), and GenBank accession numbers are shown. Polymorphic loci are shown in bold.

Locus		Primer sequence (5'-3')	Motif	Size range (bp)	$T_a(^{\circ}\mathrm{C})$	GenBank Accession No.
ZJ5	F: R:	<6-FAM>TGATGGGAGGTTCTTGGT AAGCTCACAAAGGTAGACAT	(TC) ₁₁	144–152	65	JN052166
ZJ11	F:		(CT) ₈	154	65	JN052167
ZJ48	F:	<hex>tagaggaagcaaggacg</hex>	$(AG)_7$	140–142	65	JN052168
ZJ56	R: F:	GCCAATAGAAGAAATGGAAACC	(GA) ₇	299	65	JN052169
ZJ134	R: F:		(TG) ₆ AC(TG) ₇	325	65	JN052170
ZJ178	R: F:	TGCCATTATGCCAACGATA <6-FAM>TCAACAATCCACAGCAAG	(AC) ₇	215–219	65	JN052171
ZJ198	R: F:	TCGGCTTGAAGTATCTAAAC	$(AT)_8(CA)_6$	200–204	65	JN052172
LJ190	R:	GAGCGTTGATGGTATCTATT	(A1) ₈ (CA) ₆	200-204	05	JN052172
ZJ207	F: R:		$(TG)_8$	211–217	61	JN052173
ZJ397	F:	<6-FAM>ATTATCCATACCCACGA	$(CA)_7$	172–178	53	JN052174
ZJ415	R: F:	CAGCACTAACCTGTGATTTC	$(CA)_9$	175	64	JN052175
ZJ419	R: F:		(AC) ₈	168	65	JN052176
77.7.5.40	R:	AAGTCATTAGTGGCGAAGA <6-FAM>AGAGCGGAAGATGGAGAA	(01)	110 124	(2)	13/052155
ZJ542	R:		$(GA)_{18}$	118–134	62	JN052177
ZJ574	F: R:		$(GA)_9$	278	64	JN052178
ZJ649	F:	GAGTGAAAAGCAATCAGGAA	(AG) ₉	129	64	JN052179
ZJ693	F:	GTGTTGAGACCATTGAAGAC	(AG) ₁₉	223	56	JN052180
ZJ706	R: F :		(TC) ₇	180–186	65	JN052181
ZJ799	R: F:		$(GA)_8$	133	65	JN052182
77014	R:	CTGGTATAGAACGAAACCCT	(01)	245 255		TN:052102
ZJ812	F: R:	TTCTAGCCCAAATCAAC	$(GA)_7$	247–255	56	JN052183
ZJ816	F: R:		$(CT)_{16}$	159	54	JN052184
ZJ827	F: R:	GGTTCACCAATGACAAGTC GAGAAGAGGAATACTGTAACG	$(TC)_6TTTC(TC)_9$	179	65	JN052185
ZJ892	F:	TTCTGTTCTTCCACCTCT	$(GA)_7$	144	61	JN052186
ZJ896		CTCACTCGAAATGATGAC <6-FAM>ATCACGCCCTCCACTAT	(CT) ₁₉	94–122	61	JN052187
ZJ906	R: F:		$(GA)_7$	112	65	JN052188
ZJ966		AAAATGTCCACGACGTGCC AGTCGGAGACGCTTTATTG	$(AG)_7(GA)_6$	290	64	JN052189
23700	R:		(110)/(011)6	270	01	311032107
ZJ1069	F: R:	<pre><rox>AAGAAGACGCAGGAGACA CAGTGAAACAGTTAGGGATT</rox></pre>	(AG) ₉	220–234	61	JN052190
ZJ1089	F: R:		$(GA)_9$	223	61	JN052191
ZJ1159	F:	GTTCCATACTCGGTCAAT	$(GA)_8$	204	61	JN052192
ZJ1202	R: F:	AAACTGGAAGAGGCAAA ATGCTTGCTAGAGGAT	$(GA)_9$	240	56	JN052193
	R:	CTTGATAGGGAGGTTT				
ZJ1235	r: R:	AGGGACATCAGATACCGA CATGACAATTTCCGCTTC	(TC) ₉	231	64	JN052194
ZJ1258	F: R:	ACAACTACATCCCCTTTT TCCTGTCATTGCTATTCTC	$(GA)_7$	149	56	JN052195
ZJ1285	F: R:	GGGATAGATAGATGTGAAAGC	$(GA)_8(GA)_9$	278	65	JN052196
ZJ1314	F:	GCAAAATACAGCAAGAG	(TC) ₁₁	180	63	JN052197
ZJ1345	R: F :	CCACTCAGCTAACCTTA <6-FAM>AAGTCCTGCTAAGGTGTTGAGA	$(AG)_{21}$	216–234	65	JN052198
	R:		(230)21	#10-#0T	35	g: 1002170

Table 1. Continued.

Locus	Primer sequence (5′–3′)	Motif	Size range (bp)	$T_a(^{\circ}\mathrm{C})$	GenBank Accession No.
ZJ1364	F: GAGGAGAAGTGGACGAGAAAT R: GTCGTGCCTGAATCAACTCTA	$(GA)_5(GA)_8$	290	65	JN052199
ZJ1368	F: <hex>ACTTCAGCCACTCGTCTAACC R: CAAGTAGAAAGAGGGCAAAGC</hex>	(CT) ₇	119–123	65	JN052200
ZJ1382	F: TCCTGTCATTGCTATTCTC R: AACAACTACATCCCCTTTT	(TC) ₇	150	61	JN052201

Table 2. Characteristics of 13 polymorphic microsatellite loci tested in two *Zostera japonica* populations. Number of samples genotyped (N), number of alleles per locus (N_a), and observed heterozygosity (H_o) and expected heterozygosity (H_e) at each locus are shown.

Locus		Beigang (20°00'44.0"N, 110°33'38.8	Ε)	Dongjiao (19°31′33.6″N, 110°51′14.5″E)				
	\overline{N}	N_a	H_o	H_e	\overline{N}	N_a	H_o	H_e
ZJ5	28	4	0.4643	0.4968	29	5	0.8276	0.6703
ZJ48	28	2	0.1786	0.1656	29	1	0.0000	0.0000
ZJ178	28	1	0.0000	0.0000	29	3	0.3103	0.2789
ZJ198	28	2	0.6071	0.5084	29	3	0.7241	0.5451
ZJ207	28	3	0.3571	0.6130	29	3	0.4483	0.5390
ZJ397	28	3	1.0000	0.5266	29	3	1.0000	0.5420
ZJ542	28	7	0.9643	0.7383	29	9	0.8966	0.8421
Z706	28	2	0.4286	0.3818	29	2	0.6207	0.4356
ZJ812	28	2	0.3929	0.3630	29	2	0.3448	0.3339
ZJ896	28	7	0.8929	0.7974	29	9	0.8621	0.8542
ZJ1069	28	5	0.8214	0.6649	29	4	0.7421	0.6382
ZJ1345	28	10	0.7143	0.7935	29	9	0.7586	0.7629
ZJ1368	28	3	0.0714	0.2539	29	2	0.0345	0.0345
Mean	28	3.9	0.5302	0.4849	29	4.2	0.5809	0.4982

CONCLUSIONS

In the current study, we have successfully developed 13 polymorphic loci in *Z. japonica*. Although 23 loci were found to be monomorphic in the two studied populations, they might be polymorphic in other regions. These polymorphic microsatellites provide a powerful tool in microevolutionary studies of this species. For example, polymorphic microsatellites can be used to identify clonal structure of seagrasses and to estimate seed and pollen dispersal at a fine geographical scale. Furthermore, the developed microsatellites can be applied to *Z. japonica* populations in both invasive and native ranges to locate the origin and invasive route, both of which provide important information in the control and management of alien species.

LITERATURE CITED

Arnaud-Haond, S., F. Alberto, S. Teixeira, G. Procaccini, E. A. Serrao, and C. M. Duarte. 2005. Assessing genetic diversity in clonal organisms: Low diversity or low resolution? Combining power and cost efficiency in selecting markers. *The Journal of Heredity* 96: 434–440.

COYER, J. A., T. B. H. REUSCH, W. T. STAM, E. A. SERRAO, G. PEARSON, G. PROCACCINI, AND J. L. OLSEN. 2004. Characterization of microsatellite loci in the dwarf eelgrass *Zostera noltii* (Zosteraceae) and cross-reactivity with *Z. japonica*. *Molecular Ecology Notes* 4: 497–499.

Lalitha, S. 2000. Primer Premier 5. Biotech Software & Internet Report 1: 270–272.

LIU, M., M.-M. SHI, M.-H. LIU, AND X.-Y. CHEN. 2009. Isolation and characterization of microsatellite loci in *Fagus longipetiolata* Seem. (Fagaceae). *Conservation Genetics* 10: 1981–1983.

MILLER, M. P. 1997. Tools for Population Genetic Analyses (TFPGA). A Windows program for the analysis of allozyme and molecular population genetic data, version 1.3. Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona.

REUSCH, T. B. H. 2000. Five microsatellite loci in eelgrass *Zostera marina* and a test of cross-species amplification in *Z. noltii* and *Z. japonica. Molecular Ecology* 9: 371–373.

WILLIAMS, S. 2007. Introduced species in seagrass ecosystems: Status and concerns. *Journal of Experimental Marine Biology and Ecology* 350: 89–110.

Xu, N. N., S. Yu, J. G. Zhang, P. K. E. Tsang, and X. Y. Chen. 2010. Microsatellite primers for *Halophila ovalis* and cross-amplification in *H. minor* (Hydrocharitaceae). *American Journal of Botany* 97: e56–e57.

APPENDIX 1. Information on voucher specimens deposited at East China Normal University. Information presented: voucher specimen; collection locality.

Zostera japonica:

N. N. Xu et al. BG (HSNU); Beigang, Hainan, China.

N. N. Xu et al. DJ (HSNU); Dongjiao, Hainan, China.