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Abstract
1.	 The Equilibrium Theory of Island Biogeography postulates that larger and closer 

islands support higher biodiversity through the dynamic balance of colonization 
and extinction processes. The negative diversity–isolation (i.e. the distance to 
the mainland) relationship is derived based on the assumption that the mainland 
is the only source pool for island biotas. However, nearby islands could also act 
as species sources for focal islands via a source effect. In this study, we move a 
further step and hypothesize that nearby islands may reduce bird colonizers of 
the focal island and diminish its biodiversity, resulting in a negative target effect.

2.	 To test our hypothesis, we assessed the effects of island area and isolation (met-
rics considering both the mainland and nearby islands) on taxonomic (i.e. spe-
cies richness), functional and phylogenetic diversity of terrestrial breeding birds 
on 42 islands in the largest archipelago of China, the Zhoushan Archipelago. 
Furthermore, we compared the predictive power of the distance to the large 
island under a set of relative area thresholds and the relative area of nearby 
islands on species richness under a set of distance thresholds to explore the role 
of nearby islands as a source and/or target island.

3.	 We found that island area had a positive effect on species richness, phyloge-
netic diversity and functional diversity, while the distance to the mainland had 
a negative effect only on species richness. Species richness on the focal island 
increased with increasing distance to the nearest larger island, indicating the 
negative target effect. Furthermore, the negative target effect depended on the 
area of nearby islands relative to the area of the focal island.

4.	 Our finding of the negative target effect suggests islands located between the 
mainland and the focal island can be not only sources or stepping stones, but 
also colonization targets. This result demonstrates the importance of consider-
ing multiple geographical attributes of islands in island biogeographic studies, 
especially the characteristics related to source and/or target effects.
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1  |  INTRODUCTION

The Equilibrium Theory of Island Biogeography (ETIB) postu-
lates that island area and isolation are the main determinants of 
insular biodiversity, yielding the positive diversity–area and neg-
ative diversity–isolation relationships (Lomolino & Brown,  2009; 
MacArthur & Wilson, 1967). The positive diversity–area relation-
ships on islands have been intensively examined (Lomolino, 1982; 
Matthews et al.,  2019). However, the diversity–isolation rela-
tionships have been less studied (Carter et al.,  2020; Weigelt & 
Kreft,  2013). The relatively few studies of diversity–isolation re-
lationships may be due to the complexity of choosing biologically 
meaningful measures of isolation for various insular taxa (Weigelt & 
Kreft, 2013). In most cases, isolation is calculated as the Euclidean 
distance between the source (i.e. the mainland) and the focal is-
land, evidenced by the studies of long-distance dispersal events 
from the mainland to remote islands (Alsos et al., 2007; Harbaugh 
& Baldwin, 2007).

However, species usually do not follow a straight pathway when 
they disperse between the mainland and islands or among islands. 
Instead, islands located between the mainland and the focal islands 
can act as stepping stones (Gilpin,  1980) to alter dispersal path-
ways, decrease energy loss and increase the colonization of species 
(Diaz-Perez et al.,  2008; Garb & Gillespie,  2006). This cumulative 
dispersal distance within a stepping-stone sequence is defined as 
stepping-stone distance (Gilpin, 1980). Landscape connectivity and 
geographic barriers have similar roles as stepping stones in influenc-
ing dispersal paths, such as the least cost distance (Etherington & 
Perry, 2016; Zeller et al., 2012), or electrical circuit theory (Chandra 
et al.,  1996; McRae,  2006; McRae & Beier,  2007). Thus, it is nec-
essary to consider the stepping stones in the studies of diversity–
isolation relationships.

Apart from their role as stepping stones, islands can also be po-
tential sources for species colonization (Bellemain & Ricklefs, 2008; 
Carter et al., 2020; Keppel et al., 2009). The rationales are that, on 
one hand, nearby islands can be closer to the focal island than the 
mainland, and may reduce the energy cost of species' colonization 
process. On the other hand, environmental conditions tend to be 
more similar (i.e. similar climates and/or habitats) between close 
islands, so well-adapted species on these islands may also persist 
on the focal island after a dispersal event (Price, 2004; Steinbauer 
et al., 2012). If islands are extremely isolated from the mainland, the 
metrices of the distance to the mainland will not be applicable be-
cause all islands will have relatively similar measures (Price, 2004). 
As a result, the distance from focal islands to nearby islands can be a 
suitable metric for measuring isolation (Bellemain & Ricklefs, 2008; 
Carter et al.,  2020; Keppel et al.,  2009). For example, Borges and 
Hortal  (2009) found that the number of single-island endemics of 

Azorean cavernicolous arthropods shows a strong negative relation-
ship with the distance to nearby islands.

Colonization is not only affected by isolation, but also by the 
area of nearby islands (Taylor, 1987). Accordingly, metrics reflect-
ing the impact of the area of nearby islands have been proposed, 
such as the neighbour index weighted by the areas (Kalmar & 
Currie,  2006; Thornton,  1967) and the area of surrounding land-
masses within a defined buffer around the focal island (Diver, 2008; 
Si et al.,  2014). The principle of the above metrics has the basis 
that the potential colonizers increase with the area of the source 
(Taylor, 1987), known as the source effect. Conversely, the nearby 
island can also act as a colonization target instead of a coloniza-
tion source if the nearby large island is larger and/or more suit-
able for the species. Larger islands may potentially receive more 
colonizers because they are more discoverable, which is known 
as the target effect (Brown & Kodric-Brown, 1977; Johnson, 1980; 
Lomolino, 1982, 1990). The target effect was proposed based on 
the focal island and the subsequent researches mainly focused on 
the target effect of the focal island on its own biodiversity (Carter 
et al.,  2020; Fattorini,  2010; Hauffe et al.,  2020; Mendez-Castro 
et al., 2021; Stracey & Pimm, 2009). However, to the best of our 
knowledge, no studies have considered the target effect from 
nearby islands. Here, we propose a new hypothesis that nearby is-
lands would lures away the colonizers from focal islands because 
of the negative target effect, which would reduce biodiversity on 
focal islands (Figure  1b). The negative target effect (for focal is-
lands) would become stronger with the increasing area of nearby 
islands and the decreasing distance between the focal island and 
nearby islands (Figure 1c). Therefore, the impacts of nearby islands 
on the biodiversity of the focal islands could be either positive or 
negative, depending on the existence of the nearby large island, 
and the distance between the focal and nearby islands.

The classic colonization–extinction dynamics from ETIB as-
sumes that all species are ecologically similar with the same prob-
ability of colonizing or becoming extinct for a particular island 
(MacArthur & Wilson, 1967). However, species have distinct func-
tional traits and evolutionary histories (Cadotte et al.,  2019). If 
these functional and phylogenetic differences affect species' ex-
tinction or colonization processes, island geographical attributes 
may influence biodiversity patterns through species traits and/or 
phylogeny. In fact, isolation could act as a filter where only the 
species with high dispersal abilities could reach remote islands, 
leading to a negative relationship between isolation and functional 
diversity (Carter et al.,  2020; Ross et al.,  2019; Si et al.,  2022). 
Meanwhile, low extinction rates on large islands and low gene flow 
to remote islands can both change their phylogenetic diversity 
(Heaney, 2000; Losos & Schluter, 2000; Tong et al., 2021). Thus, 
considering species richness, functional diversity and phylogenetic 

K E Y WO RD S
bird, functional diversity, island biogeography, phylogenetic diversity, target effect, Zhoushan 
Archipelago
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diversity simultaneously can provide fresh insights in the under-
standing of the diversity–isolation relationship (Carvajal-Endara 
et al., 2017; Weigelt et al., 2015).

In this study, we surveyed birds on 42 islands in the largest ar-
chipelago of China (Zhoushan Archipelago) to examine the effects 
of area and isolation on bird diversity. Birds are an ideal taxon 
for the study of island biogeography due to their relatively high 
abilities to disperse, and the availability of information on birds' 
traits and phylogenies (Crouch & Tobias, 2022; Jetz et al., 2012). 
Specifically, we tested the following questions: (1) How do island 
attributes (area and isolation) affect species richness, phylogenetic 
diversity and functional diversity? (2) How do nearby islands affect 
bird diversity of the focal island, through the source effect or the 
target effect?

2  | MATERIALS AND METHODS

2.1  |  Study area

This study was carried out in the Zhoushan Archipelago, Zhejiang 
Province, China (29°31′–31°04′N, 121°30′–123°25′E) (Figure 2). We 
selected this region because Zhoushan Archipelago comprises 1390 
inshore islands and islets (hereafter ‘islands’ for simplicity) of varying 
area and isolation, which is the largest archipelago of China. Among 
these islands, 58 islands have an area larger than 1 km2, representing 
ca. 10% of the total island area in this region.

The Zhoushan archipelago was formed during the late 
Pleistocene, separating from the Tiantai Mountains of Zhejiang 
Province 7000–9000 years ago (Li et al., 1998). This region belongs 

F IGURE  1 Schematic representation of the negative target effect. (a) When there is no larger island around the focal island, all colonizers 
would stay on the focal island. (b) When there is a nearby large island, colonizers on the focal island may fly to that island, a phenomenon 
defined as the negative target effect in this study, which can diminish biodiversity of the focal island. (c) When the large island is farther, 
fewer colonizers will be attracted to this large island. As a result, species richness on the focal island depends on the existence of the nearby 
large island, and the distance between the focal and nearby islands. The number imbedded in the figure indicates different species.

F IGURE  2 The 42 study islands (in green) in the Zhoushan 
Archipelago, Zhejiang, China. Islands are labelled according to the 
decreasing order of areas from Island 1 to Island 42.
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to the subtropical ocean monsoon zone and has strong seasonal 
climate (Zhang et al., 2016). Subtropical evergreen broad leaf for-
est dominates the natural vegetation (Yu et al., 2019). Although the 
climate of the archipelago is similar to the mainland, species rich-
ness of fauna and flora is lower on the islands, with no endemic 
animal species (Huang, 1990; Li et al., 1998; Zhou, 1987; Zhuge & 
Gu, 1990).

We selected 42 islands encompassing as much variations in area 
and isolation as possible (Table S1). Islands are labelled in order of 
decreasing areas from Island 1 to Island 42. For each island, we 
measured 12 island geographical attributes by considering various 
sources, stepping stones and surrounding landmass (Table S1). The 
area of study islands in the Zhoushan Archipelago ranges from 0.05 
to 515.37 km2, and the distance to continental shores ranges from 
4.2 to 81.2 km (Figure 2, Table S2).

2.2  |  Bird survey

We surveyed bird assemblages on the study islands in the breeding 
season of 2020 (from April to June). We set up transects on each 
island to cover various habitat types for birds except highly urban-
ized regions (i.e. cities and towns). For the largest island (Island 1: 
Zhoushan Island), we set eight transects. For the rest of the study 
islands, we set one, two or four transects, where the number of tran-
sects was based on island area and land-use types (Table S2). We 
used Global Positioning System (GPS) to record the position and the 
length of each transect. The transect length was 2 km on most study 
islands. However, the transect length was restricted to 1 km for sev-
eral small islands, as the steep terrain (e.g. cliffs near the edges) did 
not allow us to set a 2-km transect.

For bird surveys, at least two well-trained surveyors walked at 
a constant speed (ca. 1.5 km/h) along transects and recorded the 
identities and abundance of all birds heard and seen. Bird surveys 
were conducted 2 h after sunrise and 1 h before sunset, and the 
overall surveying time was restricted to 1.5 h in each survey. We 
only conducted bird surveys on days with good weather conditions, 
excluding heavy raining or strong windy days. All transects were 
surveyed twice, which is the maximum survey effort we could af-
ford due to the large region of the Zhoushan Archipelago, the limited 
transportations in this region, and the relatively short period of the 
breeding season (April–June). Surveyors walked the transects in a 
random order by inversing the starting point to avoid survey biases. 
Our study did not require ethical approval because we did not catch 
birds during the survey.

In this study, we only considered terrestrial birds, so we excluded 
water birds, such as diving birds, shorebirds and seagulls, whose 
habitats are associated with water. To test the sampling efforts for 
each island, we calculated the sampling completeness using the 
iNEXT function in the ‘iNEXT’ package in r (Hsieh et al., 2016). The 
sampling completeness curves showed that the survey effort was 
sufficient (Figure S1, Table S3).

2.3  |  Island geographical attributes

We used ArcGIS Desktop v9.4.1 to calculate island area and isola-
tion metrices. Landmass polygons were extracted from the GADM 
database of global administrative areas (https://gadm.org/), which 
were used to calculate the island area (Area) of the 42 study islands. 
The distance metrics were then calculated based on the Universal 
Transverse Mercator map (UTM map) for all islands in the Zhoushan 
Archipelago, including 42 study islands. We considered a landmass 
as a life-supporting island when the area of a landmass was larger 
than 0.05 km2 (Russell & Clout, 2004).

We also calculated 10 additional isolation metrics (Table S1), but 
we only kept five of them, because the removed metrics were highly 
correlated with the chosen ones (Spearman ρ ≥ 0.60, Figure  S2). 
These chosen isolation metrics are the distance to the mainland 
(DM), the mean distance to the five nearest islands (DN5), the dis-
tance to the nearest large island (DNL), the neighbour index of all 
islands (NI) and the proportion of landmass within 1 km (B1) (see the 
summary of isolation metrics in Table 1 and Table S1).

To estimate these metrics, we first calculated the shortest 
shore-to-shore distance between each pair of all islands (i.e. a total 
of 847,320 pairs for all islands) and the shortest shore-to-shore dis-
tance between each island and the nearest mainland using ‘Generate 
Near Table’ tool in ArcGIS. Based on the above data, we calculated 
the first three isolation metrices (DM, DN5 and DNL) for each study 
island. The neighbour index (NI) was calculated as the sum of the 
area of all nearby islands that are closer than the nearest continental 
shores, and weighted by the squared distances of each pair of focal 
islands and nearby islands (Kalmar & Currie, 2006). Additionally, we 
used the buffer-based distance metrices to reflect the proportion of 
landmass (B1). We calculated the surrounding area around the focal 
island by ‘Buffer’ tool in ArcGIS. The optimal buffer radius for mea-
suring isolation depends on the spatial scale of the study (i.e. 1 km 
in our study region) (Weigelt & Kreft, 2013). NI and B1 thus reflect 
the effect of surrounding landmasses on the focal island (Kalmar & 
Currie, 2006).

In consideration of that the negative target effect is also a func-
tion of the area of the nearby islands, we calculated the relative area 
of nearby islands (RAD). This index was estimated as the area of 
nearby islands divided by that of the focal island. We used distance 
thresholds to separate nearby islands and the focal island by a spe-
cific distance value.

2.4  | Diversity indices

For phylogenetic data, we obtained the phylogenetic tree by pruning 
the recorded terrestrial species in this study from the global phylo-
genetic tree of birds from Bird Tree (http://birdt​ree.org) under the 
option of ‘Hackett All Species: a set of 10000 trees with 9993 OTUs 
each’. We then sampled 9999 pseudo-posterior distributions and 
constructed the Maximum Clade Credibility tree using the mean 
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node heights by the software Tree Annonator v1.8.2 of the beast 
package (Drummond & Rambaut, 2007). We used this phylogenetic 
tree for further analyses (Figure S3a).

For functional traits, we chose body mass, wing length and tail 
length to calculate functional diversity. Body mass is widely con-
sidered as one of the single most informative traits of animal spe-
cies (Cadotte & Tucker,  2017), while morphological differences in 
wings and tails are related to the dispersal ability of birds (Cooney 
et al.,  2017). Because of the significant correlation among these 
traits (Figure S4a), wing length and tail length were divided by body 
length to correct for species body size (i.e. relative wing and tail 
length) (Diaz et al., 2016). Body mass, relative wing length and rel-
ative tail length were log10-transformed before analyses to reduce 
heteroscedasticity (Figure S4b,c). All trait data were extracted from 
a published trait dataset of all birds in China (Wang et al., 2021).

We calculated species richness (SR; the number of species on 
an island), richness-controlled Faith's phylogenetic diversity (PD) 
and richness-controlled Petchey and Gaston's functional diver-
sity (FD) as taxonomic, phylogenetic and functional diversity re-
spectively. Faith's phylogenetic diversity is the sum of the branch 
length of species within a community (Faith, 1992), and Petchey and 
Gaston's functional diversity is the total branch length of the func-
tional dendrogram where species are clustered based on selected 
traits (Petchey & Gaston,  2002). However, the raw phylogenetic 
diversity and functional diversity are all correlated with SR, so we 
used null models to control for the effects of species richness (Ding 
et al., 2021). Null model was run 999 times by randomly selecting 
species from all the birds on the study islands, keeping species rich-
ness constant (Jarzyna et al., 2021).

We calculated PD using the function ‘ses.pd’ in the ‘picante’ 
package (Kembel et al., 2010), with ‘null.model’ argument setting as 

‘richness’. We calculated the FD following the same way of PD, where 
the trait-based dendrogram was used instead of the phylogenetic 
tree (Ding et al., 2021). The trait-based dendrogram (Figure S3b) was 
generated with a Gower dissimilarity distance matrix from trait val-
ues, using the algorithm of the unweighted pair group method with 
arithmetic mean (UPGMA) (Kembel et al., 2010).

2.5  | Data analyses

We used model averaging methods to compare the effects of island 
area (Area) and five isolation metrics (DM, DN5, DNL, NI and B1) on 
bird diversity (SR, PD and FD). We first used linear models with all 
combinations of multiple predictors to test whether SR, PD and FD 
were related to island area and isolation metrics. RAD was highly 
correlated with DNL (Spearman |ρ| > 0.70, Figure  S2). In addition, 
the full model incorporating RAD (R2

adj = 0.68) had a lower adjusted 
R2 than the full model with DNL (R2

adj = 0.74). We thus included 
DNL in the model averaging. We selected all models and performed 
model averaging with ΔAICc <2 using the function ‘model.avg’ in the 
‘MuMIn’ package (Gross et al.,  2017). Area was log10-transformed 
to improve the normality. To reduce the effect of collinearity, isola-
tion metrics were standardized by calculating the regression residu-
als between them and area. Both island geographical attributes and 
diversity indices were scaled by the mean centring and divided by 
the standard deviation prior to the analysis to make the standardized 
regression coefficients comparable.

The predictive power (R2) of DNL is affected by the area of is-
lands because larger islands are frequently known to have a stron-
ger target effect (Johnson,  1980; Lomolino,  1990). If the nearby 
island is too small, they would have limited effects on the focal 

Island geographical 
attribute Abbreviation Definition

Island area Area The area of the focal island

The distance to the 
mainland

DM The shortest Euclidean distance to continental 
shores

The mean distance to 
nearby islands

DN5 The mean distance to a fixed number (five in the 
analysis) of nearest islands

The distance to the 
nearest large island

DNL The distance to the nearest island larger than 
the relative area of the focal island (i.e. 
relative area threshold, 100% in the analysis)

Neighbour index NI The sum of nearby islands' area weighted by the 
squared distances of each pair of the focal 
and nearby island. Those islands were all 
islands closer to the continental shores

Proportion of landmass B1 Proportion of surrounding landmass in the 
buffers for the focal island. Buffer radius was 
applied in 1 km

Relative area of nearby 
islands

RAD The area of the nearby islands divided by that of 
the focal island. The nearby islands were less 
than 1 km distance from the focal island (i.e. 
distance threshold, 1 km in the analysis)

TABLE  1 The definitions and 
abbreviations of isolation measures and 
the relative area of nearby islands for the 
focal island
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island, indicating that these islands could be ignored if their area was 
smaller than a certain relative area threshold. If DNL had significant 
effects on any diversity metrics, we would further use linear models 
to test R2 of DNL with different relative area thresholds on diversity 
metrices.

Considering that the negative target effect may not only be due 
to a certain island, we also tested the predictive power of the relative 
area of the nearby islands (RAD) with a set of distance thresholds. 
RAD was log10-transformed to improve the normality before anal-
ysis. All the analyses were performed in R software v4.1.1 (https://
www.R-proje​ct.org).

3  |  RESULTS

A total of 119 terrestrial bird species were recorded on 42 study 
islands with a mean of 23.9 species per island, belonging to eight 
orders and 34 families. The most widely distributed species was 
Pycnonotus sinensis, which was found on all 42 islands. Zosterops 
japonicus (on 38 islands), Hirundo rustica (on 38 islands) and Cettia 
fortipes (on 37 islands) were also common in our study region.

3.1  |  The effects of area and isolation on 
bird diversity

Island area had a positive effect on species richness (SR), phyloge-
netic diversity (PD: richness-controlled Faith's phylogenetic diver-
sity) and functional diversity (FD: richness-controlled Petchey and 
Gaston's functional diversity) (Figure 3, Table S4). It indicated that 
larger islands would harbour more bird species and these species on 
larger islands would have more varied functional traits and evolu-
tionary histories. Species richness was mainly affected by distance 
to the mainland (DM) and distance to the nearest large island (DNL, 
Figure 3a, Table S4). The impact of DNL was positive, indicating the 
focal island that was farther away from the nearest large island sup-
ported more bird species. The impact of DM was negative, indicating 
fewer species on islands that were more isolated from the mainland. 
Phylogenetic diversity and functional diversity had no relationships 
with any of the isolation metrics (Figure 3b,c, Table S4).

3.2  |  The negative target effect on bird richness

DNL had a significant effect on SR, so we further tested its predic-
tive power (R2) on SR under a set of relative area thresholds. The 
predictive power of DNL increased with the relative area threshold 
of nearby islands at first, then reaching the peak when the thresh-
old was 50% (R2 = 0.374, p < 0.001) (Figure  4a, Table  S5). After 
that it decreased and tended to be stable after the threshold ex-
ceeded 120%. This result indicated that the focal islands would have 
lower species richness when the relative area of the nearest large 
island is larger. The relative area of the nearby islands (RAD) had a 

negative effect on SR, and its predictive power increased with the 
distance threshold (Figure 4b, Table S6), reaching the peak at 9.0 km 
(R2 = 0.474, p < 0.001).

4  | DISCUSSION

Our study explored the effects of island geographical attributes 
on bird diversity on islands in the Zhoushan Archipelago, China. 
We found positive diversity–area relationships for species richness 
(SR), richness-controlled phylogenetic diversity (PD) and richness-
controlled Faith's phylogenetic diversity (FD), as well as a negative 
relationship between distance to the mainland (DM) and SR, which 
are consistent with the Equilibrium Theory of Island Biogeography. 
We also found that the nearest large island could reduce bird rich-
ness on focal islands through the negative target effect (Figure 4). 
In contrast, bird richness on the focal islands was lower when the 
relative area of nearby islands was larger (Figure 4). Our results thus 
illustrated the importance to consider the effects of island geo-
graphical attributes, especially that related to nearby islands, to bet-
ter understand the biodiversity patterns on oceanic islands.

4.1  |  The effects of area and isolation on 
bird diversity

SR, PD and FD of bird assemblages on study islands increased 
with island area (Figure 3). This positive relationship between area 
and SR has been recognized since the 19th century that is widely 
acknowledged today, termed as the species–area relationship 
(Lomolino, 1982; Matthews et al., 2019). This pattern could be ex-
plained by the ETIB (MacArthur & Wilson, 1967): extinction rates de-
crease with island area, resulting in higher species richness on larger 
islands. In addition to species richness, there is also a similar phylo-
genetic diversity–area pattern based on extinction and speciation 
processes (Eme et al., 2020; Matthew & Anthony, 2012). However, 
speciation should be negligible in the Zhoushan Archipelago, because 
the archipelago separated from the mainland only ca. 9000 years ago 
and has no endemic animal species on the islands (Li et al., 1998). As 
a result, low extinction rates on large islands would lead to high phy-
logenetic diversity. Larger islands also tend to have richer resources, 
higher ecosystem productivities and more diverse habitat types 
(Wardle et al., 2003), so larger islands could support diverse species 
with distinct functional traits and evolutionary histories.

We also found that distance to the mainland (DM, standard-
ized by area) had a negative impact on bird richness (Figure  3a, 
Table  S4). Many empirical studies have verified this negative 
species–distance relationship (Kalmar & Currie,  2006; Kreft 
et al., 2008; Lomolino, 2000; Whitehead & Jones, 1969). This pat-
tern could be explained by the lower colonization rate on remoter 
islands (MacArthur & Wilson,  1967). However, unlike the prevail-
ing species–area relationship, the significant effects of DM on SR 
were rarely reported (Abbott, 1978; Price, 2004). Indeed, previous 
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studies on other taxa revealed that DM had limited effects on spe-
cies richness, such as amphibians (Li et al., 1998), butterflies (Zhang 
et al., 2016), and bryophytes (Liu et al., 2019; Yu et al., 2019) in the 
Zhoushan Archipelago. We speculated that some species of these 
taxa may have limited abilities to disperse from the mainland directly 
to remote islands, but species with relatively better dispersal abili-
ties made the dispersal events from the mainland directly to remote 
islands, which may be more common in birds.

The isolation metrics considering the nearby island (e.g. DN5, 
DNL, NI and B1) had no significant negative impacts on bird di-
versity, compared with distance to the mainland. This finding sug-
gested that the nearby island, instead of the mainland, might be the 
direct source pool for a focal island. Many studies have considered 
the nearby island as the source (Carter et al., 2020; Mendez-Castro 

et al., 2021; Weigelt & Kreft, 2013), which could be a typical case in 
island systems that are far from the continent, such as the Hawaiian 
Islands (Cardoso et al., 2010; Price, 2004; Weigelt & Kreft, 2013). 
However, the Zhoushan Archipelago is close to the mainland (the 
farthest study island is 81.2 km from the mainland, Table S2). Taken 
together, our results indicated that the mainland acted as the source 
of birds in our study region as predicted by ETIB (MacArthur & 
Wilson, 1967).

4.2  |  The target effect of the nearby islands

The positive impact of DNL on SR indicated that these islands might 
have a target effect rather than a source effect on the bird diversity 

F IGURE  3 The parameter estimates 
(standardized regression coefficients) 
of island area (Area), the proportion of 
landmass within 1 km (B1), the distance 
to the mainland (DM), the mean distance 
to the five nearest islands (DN5), the 
distance to the nearest large island (DNL) 
and the neighbour index of all islands (NI) 
on (a) species richness (SR), (b) richness-
controlled Faith's phylogenetic diversity 
(PD) and (c) richness-controlled Petchey 
and Gaston's functional diversity (FD) 
of bird assemblages on 42 islands in 
the Zhoushan Archipelago, China. The 
isolation metrics were standardized by 
area. A predictor is considered statistically 
significant when the 95% confidence 
interval does not cross zero. The scatter 
plots on the right indicate the significant 
relationships. Bird diversity indices are 
shown on the y-axis, while predictors are 
shown on the x-axis.
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of the focal island. Large islands could be a better target for birds 
to arrive (Gilpin & Diamond,  1976; Lomolino,  1990; Whitehead & 
Jones, 1969). As mentioned above, the mainland acted as the source 
of birds in our study region, so we predicted that nearby islands 
could attract colonizers and reduce the colonization rate of the focal 
island, like the dilution effect (Delm, 1990).

The strength of the impact of DNL on SR first increased 
and then stabilized with the increasing relative area threshold 
of the nearest large island (Figure  4a, Table  S5). The predictive 
power of DNL on SR increased at first because target effect is 
also affected by island area (Carter et al.,  2020; Johnson,  1980; 
Lomolino,  1990; Mendez-Castro et al.,  2021). The predictive 
power was highest when the area threshold was 50%. This phe-
nomenon suggested birds might be attracted by islands smaller 
than the focal island in our study region. The negative target ef-
fect will be strongest when the area threshold reaches 50%. That 

suggested the islands with half area of focal islands seem to be a 
prior choice for birds in our study region. On one hand, predators 
frequently require large territories. So, they may be absent on the 
relatively smaller nearby island, leading to lower predation pres-
sures (Hanski & Gilpin, 1991; Woodroffe, 2000). For example, we 
only found species from Accipitriformes on larger study islands. 
On the other hand, larger islands usually have longer history of 
human activities, leading to resource constraints and high compe-
tition (McKinney, 2002, 2006). As a result, birds might favour the 
smaller nearby islands because of lower predation risks and com-
petition pressures. Notably, when the area threshold was higher 
than 120% (the nearest large island is 1.2 times large than the 
focal island), the predictive power tended to be stable because the 
nearest large island would not change with the increase in the area 
threshold. For example, the DNL of islands near Island 1 would 
become the distance to Island 1 in our study system. However, 
further studies are needed to test the generality of our findings on 
the area threshold for DNL.

DNL only represents the target effect of the nearest large is-
land. Target effect is only affected by the area of the focal islands 
(Carter et al., 2020; Johnson, 1980; Lomolino, 1990; Mendez-Castro 
et al., 2021), while the negative target effect should be affected by 
the relative area of all nearby islands. As a result, we also tested the 
predictive power of the relative area of the nearby islands (RAD), 
which estimated the negative target effect of all nearby islands. 
RAD had a negative impact on SR and had a higher R2 than DNL 
(Figure 4, Tables S5 and S6), further supporting the negative target 
effect. We also found the predictive power of RAD increased with 
the distance threshold, which meant that the negative target effect 
would be stronger with more nearby islands. Although we specu-
lated that the predictive power would keep increasing, there were 
more than a quarter of the study islands within a radius of 10 km 
from the mainland. Further studies are needed to test the generality 
of our findings beyond our study region. This result also supported 
our hypothesis of the negative target effect that this effect resulted 
from multiple islands, not from a certain island.

5  |  CONCLUSIONS

In this study, we found the positive effect of island area on taxo-
nomic (i.e. species richness), functional and phylogenetic diversity 
of terrestrial birds, as well as the negative effect of distance to the 
mainland on bird richness. Following our hypothesis, this study de-
tected the negative target effect that nearby islands will reduce bird 
colonizers of the focal island and diminish its diversity. Our results 
thus expanded the traditional target effect and provided a new in-
sight into the species distribution patterns across oceanic islands by 
explicitly considering both target and source effects of nearby is-
lands. We believe more similar studies would aid to unravel the gen-
eralization or idiosyncrasy of our observation, and to further enrich 
the theories in island biogeography.

F IGURE  4 The coefficients of determination (R2) of simple 
regressions between species richness (SR) and (a) distance to 
the nearest large island (DNL), and (b) the relative area of a fixed 
number of nearby islands (RAD). The R2 measures the predictive 
power of the model with different settings of parameters that 
are shown on the x-axis: (a) the relative area threshold represents 
the minimum area of the nearest large island used for calculating 
DNL; (b) the distance threshold represents the maximum distance 
between the focal island and nearby islands used for calculating 
RAD. The imbedded figures indicate the relationship with the 
highest R2 value, respectively.
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