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Abstract
Soil respiration, the major pathway for ecosystem carbon (C) loss, has the potential to enter a positive feedback loop with 
the atmospheric  CO2 due to climate warming. For reliable projections of climate-carbon feedbacks, accurate quantification 
of soil respiration and identification of mechanisms that control its variability are essential. Process-based models simulate 
soil respiration as functions of belowground C input, organic matter quality, and sensitivity to environmental conditions. 
However, evaluation and calibration of process-based models against the long-term in situ measurements are rare. Here, we 
evaluate the performance of the Terrestrial ECOsystem (TECO) model in simulating total and heterotrophic soil respiration 
measured during a 16-year warming experiment in a mixed-grass prairie; calibrate model parameters against these and other 
measurements collected during the experiment; and explore whether the mechanisms of C dynamics have changed over the 
years. Calibrating model parameters against observations of individual years substantially improved model performance in 
comparison to pre-calibration simulations, explaining 79–86% of variability in observed soil respiration. Interannual varia-
tion of the calibrated model parameters indicated increasing recalcitrance of soil C and changing environmental sensitivity 
of microbes. Overall, we found that (1) soil organic C became more recalcitrant in intact soil compared to root-free soil; (2) 
warming offset the effects of increasing C recalcitrance in intact soil and changed microbial sensitivity to moisture conditions. 
These findings indicate that soil respiration may decrease in the future due to C quality, but this decrease may be offset by 
warming-induced changes in C cycling mechanisms and their responses to moisture conditions.
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Introduction

Responses of the carbon (C) cycle to warming are associ-
ated with large uncertainty (Friedlingstein et al. 2006), 
indicating an insufficient understanding of the mecha-
nisms controlling the storage and movement of C within 
ecosystems. A substantial portion of this uncertainty is 
attributed to the belowground C dynamics: the majority of 
ecosystem C is stored in litter and soil (Sun et al. 2004), 
and  CO2 emissions from root respiration and microbial 
decomposition of organic matter constitute a major C flux 
in terrestrial ecosystems. Therefore, improving our under-
standing of belowground C dynamics will likely reduce 
the uncertainty associated with model projections (Hanson 
et al. 2000; Heimann and Reichstein 2008; Subke et al. 
2006; Wan et al. 2002). To accurately estimate below-
ground fluxes and their responses to climate change, it is 
important to improve our understanding of the processes 
regulating decay rates and their sensitivities to changing 
climate (Bond-Lamberty and Thomson 2010; Clark et al. 
2001; Luo et al. 2011).

Field warming experiments are the primary approach 
for understanding the long-term temporal patterns in soil 
respiration and its response to elevated temperature (Carey 
et al. 2016; Luo et al. 2011; Melillo et al. 2017). Results 
from experimental studies reveal a wide range of responses 
to warming, but there is a unifying trend of a warming-
induced increase in soil respiration (Lu et al. 2013; Rustad 
et al. 2001; Wu et al. 2011). Despite the uniform direc-
tion in this trend, the magnitudes of the warming effect on 
soil respiration are highly variable and depend on soil C 
quality and environmental conditions (Knorr et al. 2005; 
Melillo et al. 2002; Wan et al. 2007). Soil C quality is 
dependent on C input rates as well as stabilization/desta-
bilization dynamics of soil organic C, which in turn is 
controlled by biotic activity (Torn et al. 2009). Changes in 
biotic activity are partly in ecosystem responses to envi-
ronmental changes; thus, the dynamic of biological activ-
ity need to be examined over long-term periods due to the 
slowness of ecosystem responses to climate change (Luo 
et al. 2011; Post et al. 2008; Savage and Davidson 2001). 
While an analysis based on empirical observations is typ-
ically simpler, having mechanism implicit, the process-
based model approach involves more comprehensive and 
mechanism explicit based on our knowledge and empiri-
cal observations (Adams et al. 2013). Therefore, to better 
understand ecosystem responses to the changing climate, 
the long-term empirical observations and their implicit 
mechanisms need to be incorporated into a process-based 
model.

C cycle models are mathematical implementations of 
theoretical knowledge about the mechanisms regulating 

C dynamics in the ecosystems. Simulated C dynamics 
depends on the model structure, driving variables (e.g., 
light, temperature, and water status), and model param-
eters. If the model structure and parameters accurately 
represent processes regulating C dynamics, forcing the 
model with the observed changes in the driving variables 
would result in an accurate representation of the observed 
changes in soil respiration (Luo et al. 2015; Trumbore 
2006). However, simulations with constant parameters for 
different scenarios fail to include biological adjustments 
against climate change such as changes in carbon use effi-
ciency (CUE) and C quality (Cox et al. 2000; Friedling-
stein et al. 2006; Schmidt et al. 2011). Importantly, con-
stant parameters of baseline turnover rates of SOC and 
their temperature sensitivities are impacting the accuracy 
of below-ground C loss under elevated temperature and 
various moisture conditions, leading to substantial differ-
ences in response to climate change (Liang et al. 2018; 
Post et al. 2008; Savage and Davidson 2001; Shi et al. 
2015a). Therefore, process implicit C cycle models with 
optimally estimated parameters based on the status of the 
ecosystem can be a key to generate reasonable projections.

Biological adjustment of the C cycle to warming can 
be detected through data assimilation, or calibration of the 
model parameters. Data assimilation is a powerful tool for 
improving model performance because it minimizes the 
error between model output and observations (Fox et al. 
2018; Keenan et al. 2013; Wang et al. 2009). The error 
is minimized through tuning model parameters and, as a 
result, the model performs to the best of its ability. This 
data assimilation property can be used to detect shifts in the 
mechanisms of C cycling in response to warming (Liang 
et al. 2018; Luo and Schuur 2020). Specifically, if the opti-
mal parameters for the model calibrated against the observa-
tions from the warmed plots do not differ from those cali-
brated against the control plots, the mechanistic changes 
in C dynamics would be unlikely. Conversely, a significant 
shift in optimal parameter values would indicate the pres-
ence of the emergent biological adjustments that are not 
represented in the model structure (Luo and Schuur 2020). 
Such analysis has shown that elevated  CO2 increases foliage 
turnover rate and reduces the turnover rate of the recalci-
trant fraction of the soil organic matter in a temperate forest 
(Xu et al. 2006b). A similar analysis revealed that warming 
increases biomass residence time and autotrophic respira-
tion in a mixed-grass prairie (Shi et al. 2015b). Although 
changes in model parameters in response to environmental 
manipulation do not reveal the underlying mechanisms caus-
ing the change, they can expose a gap in the model struc-
ture and inform future experiments aimed at revealing these 
mechanisms.

Here, we used observations from a long-term 
(2002–2017) ecosystem warming experiment in the Great 
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Plains, U.S.A., to investigate the patterns in soil respiration 
responses to warming and explore the presence of emergent 
biological adjustments in C cycling. First, we calibrated the 
parameters in the Terrestrial ECOsystem (TECO) model 
against the field observations of soil total and heterotrophic 
respiration, aboveground net primary production (ANPP), 
below-ground net primary production (BNPP), and soil 
organic C. Following parameter calibration, we examined 
the changes in parameter values to test whether (1) there 
were significant emergent biological adjustments in soil 
organic C decay over 16 years of observations and (2) warm-
ing affected these adjustments.

Materials and methods

Descriptions of the study site and the experiment

The study was conducted at the Kessler Atmospheric and 
Ecological Field Station (KAEFS) in central Oklahoma 
in the Great Plains, U.S. (34° 58′ 31.8″ N, 97° 31′ 19.6″ 
W). The site had remained continuously uncultivated and 
ungrazed for 40 years before the experiment began in 1999. 
The dominant plant species were  C4 grasses (Schizachyrium 
scoparium and Sorghastrum nutans) and  C3 forbs (Ambrosia 
psilostachya, Solidago nemoralis and Solidago rigida).

In 1999, 12 square plots of 2 × 2 m were established. 
The experiment used a paired design with a clipping treat-
ment nested within the main warming treatment. Continu-
ous warming was carried out via infrared heaters (Kalglo 
Electronics, Bethlehem, PA, U.S.) located 1.5 m above the 
ground level with a radiation output of 100 W/m2. Dummy 
heaters were installed in the control plots to create a simi-
lar shading effect. Each plot had four equal-sized subplots 
(1 m × 1 m). To avoid adjacent warming effects from the 
warming plots, the distance between the control and warmed 
plots was approximately 5 m. To mimic hay harvesting, 
plants in two diagonal subplots in each plot were clipped 
10 cm above the ground once a year at peak biomass, while 
the other two subplots were left unclipped. Clipped biomass 
was removed from the plots permanently.

Field measurements and sample collection

Climatic data

The air temperature was measured by sheltered thermocou-
ples at a height of 25 cm above the ground in the center 
of control and warmed plots. Soil temperature was meas-
ured by thermocouples at a depth of 2.5 cm in the center 
of unclipped and clipped subplots. Gaps due to mechanical 
issues of the data logger or the thermocouples were filled 
through regression between the available measurements and 

the reference data from the Washington Station of Okla-
homa Mesonet (Brock et al. 1995; McPherson et al. 2007), 
which was located 200 m away from the study site (r2 > 0.98 
and P < 0.01). Soil volumetric water content (VWC) was 
simulated by soil water dynamic module based on the 
bucket method from the Terrestrial ECOsystem (TECO) 
model (Weng and Luo 2008). Simulated soil VWC was vali-
dated (r2 > 0.71 and P < 0.01) using the observed soil VWC 
which was measured manually at a 0–12 cm depth using 
time domain reflectometry (TDR) equipment (Soil Moisture 
Equipment Corp., CA, U.S.). VWCs in the intact soil collars 
and soil collars with root exclusion had similar seasonality 
and there was no significance between them (Zhou et al. 
2018). Therefore, we forced the TECO model with the same 
soil VWC when simulating intact soils and soils with root 
exclusion treatment.

The annual precipitation data from 2002 to 2017 were 
retrieved from the Washington Station of Oklahoma Mes-
onet. To determine dryness, we used the standardized pre-
cipitation-evaporation index (SPEI), which was estimated 
using precipitation and potential evapotranspiration (PET) 
which was estimated by the Thornthwaite method (Begue-
ría et al. 2014; Vicente-Serrano et al. 2010). Although the 
Penman‐Monteith method estimates more realistic the 
atmospheric demand as affecting PET than the Thornth-
waite method, there is no significant difference between 
calculations of SPEI based on either the Thornthwaite or 
the Penman‐Monteith methods (McEvoy et al. 2013; Van 
der Schrier et al. 2011). Therefore, we used the Thornthwaite 
method for estimating PET to calculate SPEI at a 3-month 
time interval. SPEI was calculated by ‘SPEI’ package in R 
(Beguería et al. 2017). These monthly SPEI values were 
averaged annually to use for further analysis.

Soil respiration measurements

To measure soil respiration, we installed polyvinyl chloride 
(PVC) collars (10 cm in diameter) at a 2–3 cm depth in the 
center of each subplot for total soil respiration in 1999 and 
at about 70 cm depth for heterotrophic soil respiration in 
2001 (Zhou et al. 2007). The insertion of the deep collars 
(70 cm) cut off existing plant roots and prevented the new 
growth of roots into the collars. To exclude the decomposi-
tion of the dead roots, the soil respiration rates in deep col-
lars were measured after 5 months of insertions (Zhou et al. 
2007). We removed small living plants at the soil surface 
inside the collars, whereas plant litter that fell into the col-
lars were not removed. Soil respiration was measured once 
or twice a month between 10:00 and 15:00 using a LI-8100 
portable soil  CO2 flux system with a 10 cm survey chamber 
(8100-102, LI-COR Inc., Lincoln, NE, U.S.). In this study, 
we considered the soil  CO2 flux measured from the collars 
installed down to 3 cm depth to be total soil respiration and 
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soil  CO2 flux measured from the deep collars – soil hetero-
trophic respiration.

Soil carbon content measurements

To measure soil carbon content, soil samples were taken 
from the outside (unclipped plots: 2002–2008, 2012, and 
2015; clipped plots: 2012 and 2015) and inside of deep col-
lars (unclipped plots: 2002 and 2009) using a soil core (4 cm 
in diameter, 0–15 cm in depth). Soil organic carbon (SOC) 
concentration and bulk density were used to estimate soil 
organic carbon stock. Inorganic C was removed by hydro-
chloric acid before measuring the concentration of C with 
a Shimadzu TC analyzer (Shimadzu Corporation, Kyoto, 
Japan) at the Soil, Water and Forage Analytical Laboratory 
at Oklahoma State University.

Above‑ and below‑ground net primary production

ANPP was measured using two methods—direct measure-
ments of clipped plants (the clipping treatment) and indirect 
estimates of unclipped plants with a pin-contact method (the 
unclipped treatment) as described in Frank and McNaughton 
(1990). To determine ANPP, the clipped plants were sepa-
rated into  C3 and  C4 plants, dried in an oven (65 °C for 
72 h) and weighed. The detailed procedures of the pin-con-
tact method for estimating ANPP in unclipped plots was 
described in a previous study (Sherry et al. 2008). Briefly, 
we counted the numbers of  C3 and  C4 plants that touched 
pins. Then, we estimated ANPP from the unclipped plot 
through a linear regression with clipped ANPP (r2 > 0.6).

To determine BNPP, we used the in-growth core method 
(Gao et al. 2008). We took soil samples from the following 
three depths: 0–15, 15–30, and 30-45 cm in both unclipped 
and clipped plots each year. We took the soil samples from 
each plot in the same place in the fall to estimate annual 
root growth. We backfilled the sampled spots using soils in 
similar layers from the adjacent area. Sampled roots were 
gently washed, dried at 70 °C for 48 h and weighed for cal-
culating plot-level BNPP. In this study, summed BNPP of 
total depths were used. There were no root samples collected 
in the 2002–2004 period and in 2011.

Model description and parameterization

Model description

To estimate the annual total and heterotrophic soil res-
piration under different treatments, we used the modi-
fied Terrestrial ECOsystem (TECO) model with a 6-pool 
compartmental structure (Fig. 1). In the model, C enters 

the ecosystem through the canopy photosynthesis which 
is then allocated to leaves  (X1) and roots  (X2). When 
leaves and roots senesce and die, dead leaves and roots 
become litter  (X3) and a fraction of this litter is respired 
by microbes. Litter that was processed by microbes, but 
not respired was partitioned to active  (X4), slow  (X5), and 
passive  (X6) soil C pools. Despite the exclusion of C input 
via roots in the deep collars, litter that originated from the 
aboveground biomass of plants that grew outside of the 
collars might have dropped into the collars and eventu-
ally become soil carbon (C). Gross primary production 
(GPP)—the source of C input into the ecosystem—is gen-
erated for each of the four treatments (unclipped-ambient, 
unclipped-warming, clipped-ambient and clipped-warm-
ing) with a canopy photosynthetic sub-model which has 
been calibrated previously for the same site (Weng and 
Luo 2008). Briefly, the canopy photosynthesis sub-model 
is based on a two-leaf photosynthesis model, which is sen-
sitive to leaf area index (LAI) (Wang and Leuning 1998). 
The LAI is derived by multiplying the leaf pool with a spe-
cific leaf area (SLA; 0.012  m2  g−1). The derived GPP was 
validated by available field observations before it was used 
for TECO simulations (Jung et al. 2019; Niu et al. 2013).

In the TECO model, change in the carbon pool is rep-
resented by the following first-order ordinary differential 
equation based on the matrix representation which has 
been validated by other earth system models (Huang et al. 
2018a, b):

dX(t)

dt
= A[�(t)K]X(t) + BU(t)

Fig. 1  Diagrams of carbon (C) pools and fluxes in the modified Ter-
restrial ECOsystem model (TECO). Soil respiration is the sum of 
fluxes from litter, active soil C, slow soil C, and passive soil C pools. 
GPP: gross primary production
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where A and K are 6 × 6 matrices, respectively given by

where aij in matrix A is the fraction of the decomposed jth 
pool entering ith pool. K is 6 × 6 diagonal matrix, the ele-
ments of which represent baseline turnover rates, or turnover 
rates when the temperature is 10 °C and soil water content is 
over 20%, of individual C pools. X(t) is a vector of C pools at 
the time t ; B = (b1, b2, 0, 0, 0, 0)T is a vector of partitioning 
coefficients that allocate fresh photosynthate to leaves and 
roots; U(t) is C input, or gross primary production (GPP), at 
time t, which is simulated by a canopy photosynthetic model 
(Weng and Luo 2008); �(t) is a diagonal matrix of values 
of a scaling function for temperature and moisture control 
on carbon decomposition: �(t) = FT (t)FW (t). FT (t) describes 
temperature effects on plant respiration and decomposition 
of litter and SOC: FT (t) = Q

(T(t)−10)∕10

10
 , where Q10 represents 

A =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−1 0 0 0 0 0

0 −1 0 0 0 0

1 1 −1 0 0 0

0 0 a43 −1 a45 a46
0 0 a53 a54 −1 0

0 0 0 a64 a65 −1

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

K =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

k1 0 0 0 0 0

0 k2 0 0 0 0

0 0 k3 0 0 0

0 0 0 k4 0 0

0 0 0 0 k5 0

0 0 0 0 0 k6

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

the intrinsic temperature sensitivity of SOC decomposition. 
Fw represents the soil water stress based on soil water con-
tent (W) as follows (Rodríguez-Iturbe and Porporato 2007):

Parameter estimation

We calibrated model parameters using a Bayesian probabilis-
tic inversion approach. Calibrated model parameters included 
allocation coefficients B, turnover rates K, transfer coefficients 
A, and temperature sensitivity of SOC decomposition (Q10). 
The Bayes’ theorem was described previously in (McCarthy 
2007; Xu et al. 2006a; Zhou et al. 2010). In brief, we set the 
prior probability density function (PDF) p(� ) of parameters 
� to be a uniform distribution with the ranges specified in 
Table 1. We assumed that errors between observed and simu-
lated values followed Gaussian distributions, and approxi-
mated the likelihood function p(Z|c) as

where Zi(t) and X(t) are observed and simulated values, 
respectively, and � is the standard deviation for each meas-
urement. � is used for mapping the simulated state variables 
(soil C) and fluxes (soil respiration, ANPP and BNPP) to 
observational variables. ANPP ( �1) = (1, 0, 0, 0, 0, 0); BNPP 
( �2) = (0, 1, 0, 0, 0, 0); heterotrophic soil respiration ( �3) =  

Fw(t) =

{
1.0 − 5 × (0.2 −W(t)) W < 0.2

1 W ≥ 0.2

p(Z�c) ∝ exp

⎧
⎪⎨⎪⎩

1

2�2

�
t∈obs(Zi)

�
Zi(t) − �iX(t)

�2
⎫⎪⎬⎪⎭

Table 1  Descriptions for model parameters in the Tettestrial ECO system (TECO) model and their prior ranges

Parameters Ranges Descriptions

b1 0.1–0.5 Allocation coefficient of GPP to leaves
b2 0.1–0.5 Allocation coefficient of GPP to root
k1 1.00 ×  10–6–1.50 ×  10–2 Turnover rate of C from “leaves” pool (X1)
k2 1.00 ×  10–7–8.70 ×  10–4 Turnover rate of C from “root” pool (X2)
k3 0.50 ×  10–5–6.50 ×  10–3 Turnover rate of C from “litter” pool (X3)
k4 0.10 ×  10–4–5.40 ×  10–3 Turnover rate of C from “active soil C” pool (X4)
k5 0.10 ×  10–6–4.50 ×  10–4 Turnover rate of C from “slow soil C” pool (X5)
k6 1.00 ×  10–9–1.00 ×  10–5 Turnover rate of C from “passive soil C” pool (X6)
a43 0.3–0.7 Fraction of C in “litter pool” transferring to “active soil C pool”
a53 0.05–0.15 Fraction of C in “litter pool” transferring to “slow soil C pool”
a54 0.2–0.7 Fraction of C in “active soil C pool” transferring to “slow soil C pool”
a64 0.10 ×  10–3–8.40 ×  10–3 Fraction of C in “active soil C pool” transferring to “passive soil C pool”
a45 0.1–0.6 Fraction of C in “slow soil C pool” transferring to “active soil C pool”
a65 1.00 ×  10–2–2.00 ×  10–1 Fraction of C in “slow soil C pool” transferring to “passive soil C pool”
a46 0.3–0.7 Fraction of C in “passive soil C pool” transferring to “active soil C pool”
Q10 0.6–5 Intrinsic temperature sensitivity of SOC decomposition
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(0, 0, 1 −a43 − a53 , 1 −a54 − a64 , 1 −a45 − a65 , 1 −a46 ); auto-
trophic soil respiration = 0.25 x (1 −b1 − b2 ) × GPP(t); total 
soil respiration, the sum of heterotrophic and autotrophic 
soil respiration; and total soil carbon ( �4) = (0, 0, 0, 1, 1, 1) 
were used for mapping.

Posterior PDFs were obtained using the Metropolis–Hast-
ings (M–H) algorithm and the Markov Chain Monte Carlo 
(MCMC) technique (Hastings 1970; Metropolis et al. 1953). 
The detailed processes of the M–H algorithm were described 
previously (Xu et al. 2006a). In brief, the M–H algorithm 
operates in three steps: proposing step, computing accept-
ance probability, and accepting or rejecting the candidate 
parameter. In the proposing step, �new is generated by previ-
ously accepted parameter set �old with a proposed distribu-
tion, which is uniform:

where �max and �min are the maximum and minimum val-
ues of a parameter, respectively (see Table 1); r is a random 
number between − 0.5 and 0.5; and D is a controlling fac-
tor of the proposing step size. In this study, we set D to 7 
so that the maximum step size is 7% of the range between 
the upper and lower limits of parameters. We discarded the 
first 3000 accepted parameters to account for the “burn-in” 
period and ensure the obtained posterior parameter distribu-
tion was stationary. We calculated maximum likelihood esti-
mates (MLE) for the parameters using the obtained posterior 
parameter distributions.

We explored parameter stability by calibrating the param-
eters against (1) all observations at once and (2) observations 
grouped by individual years and treatment types (warm-
ing and clipping). The Bayesian inversion algorithm was 
implemented in MATLAB Release 2017b (The MathWorks, 
Inc., Natick, Massachusetts, USA). The simulation script is 
available on Github at https ://githu b.com/eco-cgjun g/Oecol 
ogia-simul .

Modeling experiment

We ran three TECO simulations using the calibrated model 
parameters: (1) a simulation forced with climatic variables 
under manipulated conditions (i.e., unclipped ambient, 
unclipped warming, clipped ambient and clipped warming) 
and annually calibrated parameters for each treatment, (2) a 

�new = �old + r
(
�max − �min

)/
D

Fig. 2  Temporal variations of a soil temperature, b volumetric water 
contents (VWC), and c standardized precipitation-evaporation index 
(SPEI) from 2002 to 2017. Blue and orange colors in (a) and (b) 
indicate ambient and warming conditions of soils, respectively. Solid 
trend lines and gray shading denote a significant slope (P < 0.01) 
and 95% confidence interval. Standard error was used for error bar. 
Orange, gray, and blue colors in (c) represent drought (SPEI < − 0.5), 
normal (− 0.5 < SPEI < 0.5), and wet (SPEI > 0.5) conditions

▸

https://github.com/eco-cgjung/Oecologia-simul
https://github.com/eco-cgjung/Oecologia-simul
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simulation forced with climatic variables under manipulated 
conditions and parameters calibrated using observations 
from all years for each treatment type, and (3) a simulation 
forced with the same climatic variables in the first and sec-
ond simulations, but using one set of parameters that was 
estimated using the observations from the unwarmed and 
unclipped (control) plots. We compared the model perfor-
mance in these three simulations (i.e., annual calibration, 
one-time calibration, and no calibration), and evaluated the 
presence biological adjustments, which would manifest as 
significant differences in posterior parameter distributions 
and improvement in model performance if forced with vary-
ing parameters.

Statistical analysis

In this study we focused on the temporal patterns and 
warming-mediated changes in environmental sensitivity, 
therefore clipping effects were not considered for further 
analysis. To examine the time-dependent effects and their 
interactions with environmental sensitivity (dryness index, 
SPEI) under warming on calibrated parameters, we used 

the following structure of linear model: parameters ~ warm-
ing + soil temperature +  SPEIannual + year + warming:soil 
temperature + warming:SPEIannual + warming:year. If there 
were significant effects on parameters, we calculated rela-
tive effects on year (relative to an effect at year = 2002) or 
 SPEIannual (relative to an effect at  SPEIannual = 0) with/with-
out warming to examine the effects of time-dependent and 
moisture conditions, and how warming offsets single effects. 
Parameters were natural-log-transformed to satisfy normal-
ity assumptions. All analyses were performed using R ver-
sion 3.6.3 (R-Core-Team 2019). The summary tables of the 
model fits are shown in Table S1 and S2.

Results

Long‑term patterns in microclimate

Over the course of the 16-year experiment, we observed a 
wide variation in soil temperature and moisture conditions 
(Fig. 2). Long-term averages in soil temperature for ambi-
ent and warmed plots were 17.5 and 19.3 °C, respectively 

Fig. 3  Comparison of observed (x-axis) and model-simulated (y-axis) total soil respiration with a–d annual calibration, e–h one-time calibration, 
and i–l no calibration. UC unclipped-ambient, UW unclipped-warming, CC clipped-ambient, and CW clipped-warming
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(Fig. 2a). Soil temperature ranged from 16.3 °C (2002) to 
19.4 °C (2012) in the ambient plots and from 17.8 °C (2002) 
to 21.2 °C (2012) in the warmed plots. Soil moisture var-
ied from 19.1 to 36.7% and 18.3 to 34.2% in the ambient 
and warming plots, respectively. The warming treatment 
increased soil temperature by approximately 1.8 ± 0.36 °C 
across the study period, whereas soil moisture was low-
ered by 1.7 ± 0.12% (Fig. 2a, b). Annual SPEIs  (SPEIannual) 
ranged from − 1.06 (2011) to 0.66 (2007 and 2015) over 
the course of the study (Fig. 2c). The experimental site 
experienced multiple drought events (orange colored bars 
in Fig. 2c) when  SPEIannual was less than − 0.5 (i.e., 2005, 
2006, and 2011) as well as high rainfall events (blue colored 
bars in Fig. 2c) when  SPEIannual exceeded 0.5 (i.e., 2007 and 
2015;  SPEIannual > 0.5).

Model performance

Calibrating parameters for each year and treatment type 
substantially improved model performance (Figs. 3 and 4). 
Before calibration, TECO explained 52–65% of temporal 
variation in total and heterotrophic soil respiration. Cali-
brating model parameters with 16-year time series of soil 

respiration showed 2–4% improvements in the explained 
variation in the observations. The model with annually cali-
brated parameters explained 76–86% of the variation in the 
observed total and heterotrophic soil respiration, increasing 
the explained variation by 21–24% compared to the simu-
lations from the non-calibrated TECO model. Importantly, 
the annually calibrated model captured higher rates of soil 
respiration in recent years (i.e., 2014–2017; Fig. S1 and S2).

Increasing recalcitrance of soil C pools

There was a marked negative trend in the turnover rates of 
the litter and three soil pools (i.e., active, slow, and passive) 
in intact soils, while in the root-free soils, this negative trend 
was significant only for litter and active soil C pool turno-
ver rates (Table S1 and S2; Fig. 5). Temperature sensitivity 
of microbial organic matter decay (Q10) had a significant 
positive trend in both intact and root-free soils. In the intact 
soils, the turnover rate of litter pool (k3) had the largest nega-
tive trend, decreasing by about 32% in 2017 compared to 
2002 (Fig. 5a). The turnover rates of active (k4), slow (k5), 
and passive (k6) soil C pools exhibited decreases by 30, 28, 
and 23%, respectively, after 16 years of observations. In the 

Fig. 4  Comparison of observed (x-axis) and model simulated (y-axis) heterotrophic soil respiration with a–d annual calibration, e–h one-time 
calibration, i–l and no calibration. For the abbreviations of treatment conditions, see the caption of Fig. 3
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root-free soils, the turnover rate of litter (k3) and active (k4) 
soil C pool decreased by 35 and 24% after 16 years of obser-
vations, respectively (Fig. 5b). Q10 increased by 55% and 
405% after 16 years of observations in intact and root-free 
soils, respectively. The significant decreases in the baseline 
turnover rates of these pools and increases in the tempera-
ture sensitivity indicate their increasing recalcitrance over 
the years.

Warming effects

Warming significantly affected baseline microbial turnover 
rates, carbon use efficiencies (CUEs) and their dependency 
on moisture conditions. Warming offset the negative trend 
in slow soil C turnover rate (k5, P < 0.1, Table S1; Fig. 6a), 

indicating that unlike in the control plots, the quality of the 
slow-decomposing organic matter did not decrease in the 
warmed plots. Warming treatment brought on marginally 
significant shifts in sensitivity of microbial CUEs in the 
active and slow pools (a65 for intact soils and  a64 for the 
root-free soils) to moisture conditions; however, while slow 
pool CUE (a65) increased with increasing moisture condi-
tion, the active pool CUE (a64) was negatively affected by 
moisture conditions (Fig. 6b, c). Lastly, in the warmed root-
free soils baseline decay rate of the passive pool,  k6, was 
significantly and positively related to SPEI, as opposed to k6 
in the control plots (Fig. 6d), indicating increased microbial 
sensitivity to moisture condition in the warmed plots with 
no fresh carbon input.

Discussion

Overall, forcing TECO with time-varying parameters 
obtained from the annual parameter calibrations led to sub-
stantial improvements in model performance, indicating that 
there were critical soil processes that were not accounted 
for in the model structure (Fig. 1). We discovered a clear 
increase in the recalcitrance of the dead organic matter, 
which manifested as a negative relationship between base-
line turnover rates and the calendar years. Increasing recal-
citrance is often associated with an increase in temperature 
sensitivity, Q10 (Fierer et al. 2005; Xu et al. 2010), which 
we also observed in this study (Fig. 5). Interestingly, the 
increase in C recalcitrance was more pronounced in plots 
that have not undergone fresh C exclusion (Fig. 5), which 
could indicate that an increase in dead organic matter recal-
citrance could be caused by a shift in live biomass recalci-
trance. In addition, the pattern of increase in temperature 
sensitivity is partly in line with results based on the pre-
viously demonstrated new theory—macromolecular rate 
theory (MMRT) (Hobbs et al. 2013). MMRT has proposed 
that temperature sensitivity varies in types of soil enzymes 
over time due to dynamics of the quality of C substrates 
(Alster et al. 2016a, b), which is another potential account 
for increasing C recalcitrant with Q10.

Ambient environmental changes, such as rising atmos-
pheric  CO2 concentrations, increasing temperature, and 
changing moisture regime can cause a shift in the plant 
functional types. For instance, an area dominated by plants 
with a  C3 photosynthetic pathway may transition into an 
ecosystem dominated by plants with a more efficient  C4 pho-
tosynthetic pathway (Loladze 2002; Shi et al. 2018). Spe-
cies with the  C4 photosynthetic pathway tend to have higher 
C:N biomass ratios compared to those in  C3 species (Baer 
et al. 2002; Wedin and Tilman 1990), and tissues with the 
higher C:N ratios are more resistant to microbial decay (Sil-
ver and Miya 2001). Therefore, an increase in belowground 

Fig. 5  Year effects on annually calibrated parameters of litter, soil C 
turnover rates, and temperature sensitivity of soil C for a intact soils 
and b root-excluded soils relative to 2002. Green, blue, orange, black, 
and purple colors indicate turnover rates of litter (k3), active (k4), slow 
(k5), and passive (k6) soil C, temperature sensitivity of soil C (Q10), 
respectively
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C recalcitrance may have been caused by a shift in species 
composition in this area (Shi et al. 2018). Alternatively, root 
C input may have caused an increase in the apparent C recal-
citrance through the formation of aggregates, which protect 
belowground C from decay (Cheng et al. 2014; Cotrufo et al. 
2013; Fontaine et al. 2007).

Mounting evidence suggests that climate warming plays 
an important role in soil C loss by increasing the rate of 
microbial decomposition of soil organic matter (Stocker 
2014). The effect of temperature on microbe-driven decay 
of organic matter is represented in TECO as an exponential 
relationship between temperature and decay rate (Zhou et al. 
2008). However, our results showed an additional effect of 
the warming treatment, which offset the increasing recalci-
trance trend in slow soil C pool in the presence of fresh C 
input (Table S1 and S2; Fig. 6a) that was unaccounted for in 
the model. Such effects could be the result of a shift in the 
microbial community, as indicated by a recent incubation 
study performed with soils from our experimental site (Feng 
et al. 2017). In absence of limitation of the fresh C supply 
warming stimulated the abundance of microbial genes asso-
ciated with complex compound degradation; however, under 
limitation of fresh C supply (i.e., root exclusion treatment), 
warming did not have such effect (Feng et al. 2017).

We also found a warming-mediated relationship between 
C transfer coefficients and moisture conditions. Transfer 
coefficients in the TECO model are conceptually similar to 
C use efficiency (CUE) (Allison 2014; Geyer et al. 2016; 
Manzoni et al. 2012) and are represented as constant frac-
tions of decomposed C in the upstream (donor) pool that is 
transferred to the downstream (recipient) pool. Our results 
showed that some CUEs became dependent on moisture con-
ditions under warming (Fig. 6). Temperature and moisture 
are key factors that can stimulate or suppress CUE; thus, 
decreasing or increasing soil respiration fluxes, respectively 
(Allison and Treseder 2008; Allison et al. 2010; Li et al. 
2019). Prior results from the same experimental site reported 
that under drought conditions, warming created an unfavora-
ble environment for microbes, reducing microbial popula-
tions by 50–80%, whereas under wet conditions warming 
increased microbial abundance (Sheik et al. 2011). While it 
is unclear whether community-level microbial CUE shifted 
in Sheik et al.’s study, positive relationship between slow 
pool CUE and moisture conditions uncovered here was con-
sistent with their findings.

In absence of fresh C input, we saw that CUE in the 
active pool decreased with increasing SPEI (Fig.  6c). 
Such contrasting response may indicate an increasing 

Fig. 6  Warming offset/amplifies 
year and standardized precipi-
tation-evaporation index (SPEI) 
effect on a turnover rate of slow 
soil C (k5) and b transfer coef-
ficient from slow to passive soil 
C pools (a65) for intact soils; c 
transfer coefficient from active 
to passive soil C pools (a64) and 
d a turnover rate of passive soil 
C (k6) for root-excluded soils. 
Black and red colors represent 
year/SPEI only and year/SPEI 
with warming effects, respec-
tively. Solid, dashed, dotted 
lines, respectively represent 
P < 0.05, P < 0.1, and P > 0.1
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consumption of slow soil C: moist conditions increase 
reaction rates and microbial energy demand, but lack of 
labile C to meet this demand in the root-free soils forces 
microbes to consume a more recalcitrant C which is asso-
ciated with low CUE (Agren and Bosatta 1987). Alterna-
tively, increased rainfall may flush the available nitrogen 
(N) out of soils, forcing microbes to mine for N by decom-
posing complex organic compounds in order to maintain 
the C:N stoichiometry at the cost of biomass growth (Man-
zoni et al. 2012). This pattern is partly explained by the 
birch effect—increasing rainfall stimulates microbes to 
utilize mineral SOM-N complex (Birch 1958; Lado-Mon-
serrat et al. 2014). Furthermore, especially warming under 
lower moist condition potentially exhibited slow diffusions 
of enzymes and substrates as shifts in microbial commu-
nity and associated metabolic products (Fuchslueger et al. 
2016; Or et al. 2007; Suseela et al. 2012). This response 
to changing environments is perhaps the innate function 
of microbes aimed at surviving under harsh conditions by 
enhancing their local environments (Schimel 2018).

In summary, we used a data assimilation approach to 
inform a process-based TECO model with the long-term 
in situ observations of C dynamics and gain understand-
ing about the temporal changes in soil C dynamics as well 
as its response to warming. We demonstrated that model 
performance was substantially improved after accounting 
for interannual parameter variability. Variations in model 
parameters indicated presence of processes that signifi-
cantly affected C dynamics, but were not reflected in the 
TECO model structure. These unrepresented mechanisms 
manifested as the increase in organic matter recalcitrance 
and dependency of turnover rates and CUEs on mois-
ture conditions, partly supported by MMRT (Alster et al. 
2016a, b). Consistent temporal trends in model parameters 
(i.e., time-varying parameters) uncover a potential issue 
in simulating C dynamics under unprecedented environ-
mental conditions if the processes underlying these trends 
are not incorporated into the model structure as recently 
reported by Luo and Schuur (2020). Future research should 
explore the potential mechanisms that cause parameter 
variation, namely the long-term trends in plant traits and 
the mechanistic pathways of microbe-mediated organic 
matter decay.
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