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Abstract

When Darwin visited the Galapagos archipelago, he observed that, in spite of the islands’

physical similarity, members of species that had dispersed to them recently were beginning

to diverge from each other. He postulated that these divergences must have resulted pri-

marily from interactions with sets of other species that had also diverged across these other-

wise similar islands. By extrapolation, if Darwin is correct, such complex interactions must

be driving species divergences across all ecosystems. However, many current general eco-

logical theories that predict observed distributions of species in ecosystems do not take the

details of between-species interactions into account. Here we quantify, in sixteen forest

diversity plots (FDPs) worldwide, highly significant negative density-dependent (NDD) com-

ponents of both conspecific and heterospecific between-tree interactions that affect the

trees’ distributions, growth, recruitment, and mortality. These interactions decline smoothly

in significance with increasing physical distance between trees. They also tend to decline in

significance with increasing phylogenetic distance between the trees, but each FDP exhibits

its own unique pattern of exceptions to this overall decline. Unique patterns of between-spe-

cies interactions in ecosystems, of the general type that Darwin postulated, are likely to

have contributed to the exceptions. We test the power of our null-model method by using a

deliberately modified data set, and show that the method easily identifies the modifications.

We examine how some of the exceptions, at the Wind River (USA) FDP, reveal new details

of a known allelopathic effect of one of the Wind River gymnosperm species. Finally, we

explore how similar analyses can be used to investigate details of many types of interactions

in these complex ecosystems, and can provide clues to the evolution of these interactions.

Author summary

Worldwide, ecosystems are collapsing or in danger of collapse, but the precise causes of

these collapses are often unknown. Observational and experimental evidence shows that

all ecosystems are characterized by strong interactions between and among species, and

that these webs of interactions can be important contributors to the preservation of eco-

system diversity. But many of the interactions–such as those involving pathogenic micro-

organisms and the chemical defenses that are mounted by their prey–are not easily

identified and analyzed in ecosystems that may have hundreds or thousands of species.

Here we use our equal-area-annulus analytical method to examine census data from over

three million trees in forest plots from around the world. We show how the method can

be used to flag pairs and groups of species that exhibit unusual levels of interaction and
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that are likely on further investigation to yield information about their causative mecha-

nisms. We give a detailed example showing how some of these interactions can be traced

to defense mechanisms that are possessed by one of the tree species. We explore how our

method can be used to identify the between-species interactions that play the largest roles

in the maintenance of ecosystems and their diversity.

Introduction

The] inhabitants of each separate [Galapagos] island, though mostly distinct, are related in

an incomparably closer degree to each other than to the inhabitants of any other part of the

world‥‥ [Dissimilarities] between the endemic inhabitants of the islands may be used as an

argument against my views; for it may be asked, how has it happened in the several islands

situated within sight of each other, having the same geological nature, the same height, cli-

mate, &c., that many of the immigrants should have been differently modified, though only

in a small degree. This long appeared to me a great difficulty: but it arises in chief part from

the deeply-seated error of considering the physical conditions of a country as the most

important for its inhabitants; whereas it cannot, I think, be disputed that the nature of the

other inhabitants, with which each has to compete, is at least as important, and generally a

far more important element of success.

Charles Darwin, The Origin of Species, 1st ed. 1859, p. 400.

In this passage from the Origin, Darwin effectively founded the field of evolutionary ecology.

He was faced with the difficulty of explaining recent adaptive radiations that sometimes

resulted in distinct species on the different islands of the Galápagos archipelago, even though

the islands have similar physical properties. The solution, he suggested, must lie in these evolv-

ing populations’ interactions with other species, the mix of which should differ among the

individual islands. (And those other species, by his reasoning, would simultaneously be evolv-

ing in their own unique directions as a result of their own sets of between-species interactions.)

But his claim that the importance of such between-species interactions "cannot be disputed"

was far from being demonstrated at the time.

In the century and a half since the Origin, ecologists and evolutionary biologists have

explored the many interactions among species that share the same ecological community, in

ever-greater detail and with ever-more-sophisticated tools [1]. Modeling has pointed the way

[2–6]. Even so, such interactions must involve many more species, occupying a variety of dif-

ferent trophic levels, than those that can be examined in a typical study. Host-pathogen inter-

actions were early postulated to be important in the maintenance of species diversity [7], and

were soon realized to have a high likelihood of contributing to negative density-dependent

(NDD) interactions between host species [8, 9]. Such interactions have been detected in the

relatively simple ecosystems of the Galápagos [10] and in complex ecosystems such as tropical

forests [11–13], coral reefs [14], and lacustrine fish communities [15].

The classic Lotka-Volterra model, based on competition coefficients, examines species that

compete directly for resources, and shows that the species can coexist if each has resources that

other species cannot access regardless of their numbers [2]. A second important group of mod-

els involves NDD interactions, in which a selective advantage to species that are locally rare

switches to a selective disadvantage when those species become locally common. NDD can

lead to multiple stable internal density equilibria that permit numerous species to occupy the

PLOS COMPUTATIONAL BIOLOGY Each of 16 forests shows a unique pattern of between-tree interactions
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same ecosystem [3–6]. Possible mechanisms for NDD effects can include species interactions

with both physical and biological factors.

Many general ecological theories seeking to explain the distributions of species that occupy

the same or similar trophic levels have tended to gloss over such complexities. In 2010, McGill

[16] surveyed six “unified theories of biodiversity,” all of which had shown success in predict-

ing observed species abundance distributions and species-area curves at scales of 100 m and

above. He showed that all these theories employ three assumptions: intraspecific clumping,

intraspecific variation in global abundance, and—most importantly for the present study—

spatial independence of the distributions of different coexisting species.

Darwin had postulated that species populating a multitude of trophic levels in an ecosystem

are continuously interacting, and that these interactions contribute to evolutionary divergence.

Given the growing evidence for such interactions (see [17] for an extreme example), it is sur-

prising that apparently successful general ecological theories can be constructed using the

assumption that species-species interactions are irrelevant to the overall structure of communi-

ties. General unified theories of ecosystems may indeed be congruent with the distributions of

component species that happen to be easily countable, provided that the scale is 100 m and

above. But they incorporate no information about the existence of biotic and abiotic interac-

tions at smaller scales, which is where most between-species interactions are likely to take place.

How common, how complex, and how significant in their effects are the fine-structure

between-species interactions that Darwin postulated? Can an understanding of these interac-

tions lead to more complete theories that underlie ecosystem structures and their evolutionary

trajectories? Here we test the spatial independence assumption that McGill shows is basic to

the most general ecological distribution theories. We examine sixteen multiply-censused forest

diversity plots (FDPs) that are scattered over a wide variety of biogeographic regions (Table 1),

and find that the assumption does not hold at the scale of meters. We also show that the pat-

tern of departures from independence can reveal new information about between-species

interactions.

We use the Equal-Area Annulus (EAA) [18] point-pattern method to visualize and quantify

non-random patterns of tree clustering, distributions of tree recruitment and mortality, and

the influence of surrounding trees on tree growth. We show details of how these interactions

occur not only between conspecifics, where they are well-known [5, 13, 19, 20], but also

between species that are separated across a wide range of phylogenetic distances. We show

that, although the interactions decrease smoothly in significance with increasing physical dis-

tance between trees, they exhibit complex relationships with phylogenetic distance that are

unique to each of the study’s FDPs. Such complexities are not dealt with in the global theories

examined by McGill.

Because of the many differences between EAA and the commonly-used regression-based

methods that are used to detect NDD effects, and because of the many modifications that have

been made to EAA since its original publication (subheads 1–8 in the Modifications to the

Original Method section), we have chosen to place the extensive Materials and Methods sec-

tion immediately following this introduction. We emphasize how the EAA method avoids the

statistical biases [21] that are inherent in regression-based methods. The "regression dilution"

issue flagged by that paper is not a problem in our analyses because a bias towards zero makes

the EAA method less—not more—likely to detect NDD (i.e. errors in predictors would reduce

the statistical power of the method instead of increasing the Type I error rate).

The EAA method also incorporates a number of desirable features that ideally should be

exhibited by methods designed to detect density-dependent effects, as discussed in a recent

review [22]. A method should (1) measure the relative magnitudes of conspecific NDD and

heterospecific NDD and how they vary among different between-species interactions, (2)
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evaluate the relative roles of conspecific and heterospecific NDD in the maintenance of eco-

logical diversity, (3) remove the biases inherent in statistical methods that do not compare the

actual data with appropriate null models, (4) distinguish the relative sizes of the contributions

to NDD of species with different abundances and life histories, and the contributions of bio-

geographic factors such as latitude and rainfall, (5) follow the contributions of organisms at

different stages in their life histories, (6) provide a route for further examination of the details

of the NDD mechanisms themselves and the long-term evolutionary implications of these

mechanisms.

Unlike regression-based methods, EAA uses null models that isolate the variables being

examined while leaving all the other properties of these extensive data sets unchanged. This

enables us to present details of the species-species interactions with high statistical confidence.

For clarity, we provide a step-by-step illustration of an EAA analysis (Fig 1). We also provide an

example showing that the method is highly sensitive to small deliberately-introduced changes in

the FDP data (subhead 11 of the Modifications to the Original Method section and Fig 2).

In the Results section, we present EAA analyses of all sixteen FDPs (Figs 3–7), and examine

in detail the causes of the heterospecific interaction peaks and valleys that are observed at the

temperate Wind River (Washington State, USA) FDP (Fig 8). We show how EAA analysis

Table 1. Some characteristics of the FDPs examined in this paper, arranged by latitude.

FDP Dim (m) No. of census

intervals

Total of species

recorded

Avg. tree density (trees/m2)

& no. annuli used

Annual Rainfall

(mm)

Latitude/

Longitude

Min/max or avg.

temp (oC)

Pasoh (Peninsular

Malaysia)

1000 X

500

5 898 0.671

20

2000 2.98N/102.3E 25.8/28.3

Lambir (Sarawak,

Malaysia)

1040x500 2 1180 0.665

10

2700 4.2N/114E 31.4/22.1

Korup (Cameroon) 1000 x

500

2 494 0.656

10

5500 (seasonal) 5.1N/8.9E 22.7/30.6

Sinharaja (Sri Lanka) 500 x 500 2 239 0.829

10

5000 6.4N/80.4E 20.4/24.7

Barro Colorado Island

(Panama)

1000 x

500

6 320 0.470

20

2600 (seasonal) 9.15N/79.85W 23/32

Mudumalai (India) 1000 x

500

2 (4-yr intervals) 76 0.035

10

1300 (seasonal) 11.6N/76.5E 16.4/27.4

Palanan (Philippines) 400 x 400 3 319 0.210

10

3200 (typhoons) 17.0N/122.4E 26.1

Luquillo (Puerto Rico) 320x500 4 163 0.289

10

3500 (hurricanes) 18.3N/65.8W 23.0

Nonggang 500 x 300 1 217 0.453

10

1300 (seasonal) 22.4N/107.0E 19.0/27.2

Heishiding 1000 x

500

1 245 0.546

10

1700 (seasonal) 23.3N/111.5E 10.6/28.4

Fushan 500 x 500 1 111 0.463

10

4300 (typhoons) 24.8N/121.6E 18.2

Gutianshan 600 x 400 2 159 0.586

10

2000 29.1N/118.1E 4.3/27.9

Tiantong 500 x 400 1 154 0.604

10

5000 (some

typhoons)

29.8N/121.8E 16.2

Changbaishan 500 x 500 2 52 0.155

10

700 42.4N/128.1E 3.6

Wind River (US) 800 x 340 1 26 0.116

10

2300 (seasonal) 45.8N/122W -2/27

Wytham Woods (UK) 300x600 2 24 0.112

10

700 51.8N/1.34W 10

https://doi.org/10.1371/journal.pcbi.1008853.t001
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Fig 1. An overview of a typical EAA analysis. At top is a diagram of a large focal tree in the Lambir (Malaysia) FDP, surrounded by 10

concentric annuli each of area 50 m2. For simplicity, the trees shown in the diagram are only a sample of some of the annular surviving trees

(S), recruits (R), and trees that die (D). In the diagram the trees shown are sampled from among the trees that lie at zero or at 185 Ma

(mega-annum) phylogenetic distances from their LCA with the focal tree, although of course all the trees in the annuli are used in the entire

EAA analysis. Generalized Additive Model (GAM) fits to patterns of clustering of surviving annular trees, using data from the closest and

the furthest annulus, are shown in the two-dimensional graphs on the right of the diagram. In this analysis, the observed annular clustering

is presented as deviations (z-values) from a null model expectation for four quantiles of focal tree diameter. The null model is generated by

repeated shuffling of the focal tree diameters within species, so that any positive z-values for some of the focal-annular size quantiles must be

balanced by negative values for others. Such positive-negative balances are expected in analyses of recruitment, clustering and mortality, but

not in analyses of growth (Materials and Methods). The 95% confidence intervals of the GAM curves are shown in gray. Brown horizontal

lines show the 95% confidence intervals around zero z-values. To help orient the viewer, gray arrows connect some of the closely-related

and distantly-related survivors in the diagram to the places at which their data contributes to the largest-quantile focal tree lines (red) on the

two-dimensional graphs. Each data point in the 2D graphs represents the difference between the actual and the null-model data for all focal

trees in a given census period that have annular trees within a specific phylogenetic range. The null-model data have been generated by

repeated shuffling of focal tree properties (size or growth rate) within species. A new point is generated for each of the ten replicates of the

actual-null comparisons and for each of the census periods at the FDP. The points in the graphs form clusters because, with each replicate,

species pairs separated by similar phylogenetic distances are shuffled at random in order to fill each of the phylogenetic distance quantiles.
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provides new details of the role played by strong allelopathic effects of a gymnosperm, the

western hemlock Tsuga heterophylla, on some but not all of the angiosperms in the FDP to

which it is very distantly related [23]. This example demonstrates the potential of EAA to

examine the roles of heterospecific interactions that may involve a wide variety of tree charac-

teristics and microenvironmental factors. EAA provides a tool to measure the sizes of the con-

tributions of these variables to species distributions and life history patterns. Our preliminary

findings show that EAA results and the experiments that they suggest will help to pinpoint

unusually significant interactions that can be investigated further through field observations

and experiments. These findings will in turn enable us to unravel the true complexity and the

evolutionary histories of the many between-species interactions that, as Darwin had believed,

“cannot be disputed.”

Materials and methods

FDP data

This paper surveys demographic and tree-distribution data from 16 repeatedly-censused forest

dynamics plots (FDPs) (https://forestgeo.si.edu/sites-all). The FDPs have been established in

locations ranging from tropical to high-temperate latitudes, and encompass a wide range of

seasonal and non-seasonal rainfall patterns (Table 1). Repeated censuses of the FDPs include

all trees present during each census that have a diameter of 1 cm or greater at a height of 1.3 m.

The EAA method

The EAA method [18] examines interactions between "focal" trees, made up of all the surviving

trees during a census period in the FDP, and the "annular" trees that occupy successive concen-

tric annuli of equal area around the focal trees. The use of these successive annuli, which each

consist of similar amounts of data that can be analyzed with the same statistical power, permits

unbiased statistical comparisons of the significance of interactions over a range of physical

focal-annular tree distances.

EAA draws on many previous studies that have employed quadrat or point pattern analysis,

coupled with a null modeling or Monte Carlo approach to generating control distributions in

which specific components of the data have been randomized [11, 24–26]. The EAA method is

an extension of neighborhood density functions such as the O-ring spatial statistic [26] and the

Dx index [27]. EAA is similar to bivariate mark correlation analyses [26, 28]. The r-mark func-

tion is a non-parametric estimator of the response of the growth of small trees to the presence

of a large tree at distance r. Point pattern methods are not based on regression analysis, like

many of the methods that have been used to search for positive or negative density-dependent

effects in forest data. These regression-based methods have recently been criticized as suscepti-

ble to over- or underestimation of the magnitudes of the effects that are being searched for [21].

EAA, in contrast, compares the distributions of the actual data with distributions in null models

in which only the variable or variables of interest are repeatedly randomized and all other

Thus, each of the gray arrows that shows the contribution of an individual tree simply shows where the tiny amount of information that is

contributed by that tree’s focal-annular interactions ends up in the data points in the graphs. The three-dimensional graphs show GAM fits

of the largest-quantile (graph A) and smallest-quantile (graph B) focal tree size data across all ten annuli. Regions of the surfaces that lie

within the range of non-significant z-values along the z-axis are gray; those that lie outside this range, and that therefore represent

significant z-values, are colored. The colors start with green and shade through blue as the significance of the positive or negative z-values

increases. The orientations of the three-dimensional graphs presented here sometimes differ, in order to reveal details of the surfaces. As

with the lines on the two-dimensional graphs, the 3D surfaces themselves have confidence intervals, but the confidence intervals are not

shown here. Typical confidence intervals on the 3D surfaces, which tend to be small, are visualized more easily if these three-dimensional

graphs can be rotated by the viewer. A sampling of such rotatable graphs is presented as html files in S3–S11 Figs.

https://doi.org/10.1371/journal.pcbi.1008853.g001
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parameters of the FDPs are left untouched. Each iteration of the null model is analyzed in the

same way as the real data, and the entire distribution of these null model results is used to test

the difference between the real and randomized data. In each of these iterated replicates of the

null-model data, any heteroskedasticity of the distributions of within-species focal tree growth

rates and focal tree sizes is left unaltered and therefore cannot bias the results.

A diagrammatic example of EAA analysis

Fig 1 shows, in diagrammatic form, the steps of a typical EAA analysis, in this case the relation-

ship between focal tree size and clustering of annular trees in the Lambir FDP (Sarawak, Bor-

nean Malaysia).

Overview of the EAA tests

Table 2 lists the current EAA tests, the focal and annular tree properties that each test exam-

ines, and the expected results if focal-annular NDD interactions are present. Each of the tests

is carried out as illustrated in Fig 1. Additional details of each test, including details of the null

models used, are given below.

Modifications of the original EAA method

Overview of the modifications

The EAA method has been redesigned since its initial publication. In addition to the use of

equal-area annuli surrounding focal trees, the method now divides sets of FDP data into equal

Table 2. Summary of the properties of, and expectations for, the EAA analyses that are used in this paper. The expected results for each test are for NDD focal-annu-

lar interactions; the PDD expectation is the opposite.

Focal tree properties Annular tree properties Null Model Comparison Expected Results

Focal-annular properties employed, and expectations shared by all tests:

Species, position, diameter, growth

rate, recruitment and mortality for

all trees in each census period

For each annulus: species, basal area,

distance from focal tree in Ma, whether

trees were recruited or died during census

period

A single focal-tree attribute is

repeatedly shuffled within

species to serve as a control

Focal-annular differences from null model

should decline in significance as either physical

or phylogenetic focal-annular distance

increases

Properties examined and expect results for each null model comparison test, assuming NDD focal-annular interactions:

Test 1) Relationship between focal survivor sizes and their annular survivor summed basal area

Focal survivor size Summed basal area of annular tree survivors

that fall within a given quantile of

phylogenetic distance from focal tree

Shuffle focal tree survivor sizes

within species

Negative relationship between focal tree size

and annular survivor summed basal area

Test 2) Relationship between focal survivor sizes and their annular recruit fraction

Focal survivor size Fraction of trees in the annulus and

phylogenetic distance quantile that recruit

Shuffle focal tree survivor sizes

within species

Negative relationship between focal tree size

and annular recruit fraction

Test 3) Relationship between focal survivor sizes and their annular mortality fraction

Focal survivor size Fraction of trees in the annulus and

phylogenetic distance quantile that die

Shuffle focal tree survivor sizes

within species

Positive relationship between focal tree size

and fraction of annular trees that die

Test 4) Relationship between a focal tree’s growth rate (normalized within species) and its annular tree basal area

Focal survivor growth rate Summed annular survivor basal area in the

phylogenetic distance quantile

Shuffle normalized focal tree

survivor growth rates within

species

Negative relationship between focal tree

growth rate and annular tree summed basal

area

Test 5) Differences between focal trees that do and do not recruit and their annular recruit fractions

Focal recruits vs. other focal trees Fraction of trees in the annulus and

phylogenetic distance quantile that recruit

Shuffle properties of all focal

trees within species

Higher fraction of annular recruits around

focal recruits

Test 6) Differences between focal trees that do and do not die and their annular mortality fractions

Focal trees that die (separated into

small and large) vs. other focal trees

Fraction of trees in the annulus and

phylogenetic distance quantile that die

Shuffle properties of all focal

trees within species

Higher fraction of annular trees that die

around focal trees that die

https://doi.org/10.1371/journal.pcbi.1008853.t002
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quantiles, so that the statistical power of the analyses of all the subdivisions of the data in a

given FDP are equivalent. Two- and three-dimensional GAM curves are now fit to the data.

These curves reveal details and significance of effects traceable to phylogenetic distances

between species. A uniform method of estimating phylogenetic distances between species is

applied to all the FDPs.

Equations that quantify the analyses of focal-annular NDD-influenced effects are derived in

[18]. Significances of the effects, compared to the mean of 1,000 iterations of the null models,

are estimated using z-scores. The GAM analyses we employ here use spline-based smooth

terms [29]. GAM fits of curves to the data use the formula y ~s(x, k = k-value), where s estab-

lishes the parameters of spline-based smooth terms and the k-value is the number of smooth

terms employed. The optimal k-value is determined using gam.check [30]. Edge-effect correc-

tions have been applied to all the FDPs [31]. The z-values obtained by all the analyses are

adjusted for the discovery of false positives, using the Benjamini-Hochberg correction for

independent statistics [32]. The data used to generate the GAM graphs are given in Supporting

Information compressed data files S1 and S2 Datas.

Division of the data into quantiles

Because we are comparing different FDPs that exhibit a wide range of species numbers, tree

size distributions and densities, plot sizes, and distributions of phylogenetic distances between

species, we have introduced standardized protocols for subdividing the data. Our goal is to

ensure that each of the subdivisions of a set of data are of approximately equal size, so that the

statistical power of the EAA tests remains the same across successive concentric annuli, phylo-

genetic distance intervals, and subdivisions of the focal and annular trees.

Annuli vary from 5 to 20 in number in the different FDPs, depending on overall tree

density, but the total area around each focal tree encompassed by the annuli is 500 m2 in all

FDPs. Focal tree diameters at the start of each census period for each species are divided

into four equal quantiles. Totals of annular tree biomasses in each of the annuli (approxi-

mated by the sum of the areas at standardized height) are divided into five equal quantiles.

Phylogenetic distances between species are also divided into quantiles, but this division

poses special problems. First, the amount of data varies among FDPs. Therefore, in order to

ensure that there is sufficient data for analysis, we have used different numbers of phyloge-

netic distance quantiles in different FDPs. We have been able to use as many as 20 quantiles

in large, species-rich FDPs such as BCI and Pasoh, but have been limited to as few as 5

quantiles in smaller, less speciose FDPs such as Wind River and Wytham Woods. Second,

because the distribution of pairwise phylogenetic distances between species is different in

each FDP, and these distributions are far from uniform, subdivision of quantile differences

often means that many species pairs that are separated by the same or similar phylogenetic

distances will fall into different quantiles. Each analysis for each census period, therefore, is

repeated ten times, each with 100 iterations of the null model. With each repetition, the

order within each set of focal-annular pairs that share the same phylogenetic distance value

is shuffled. This ensures that if large numbers of species pairs in an FDP share the same phy-

logenetic distance, subdivision into quantiles in the replicated analyses will have placed dif-

ferent random mixes of these pairs in adjacent quantiles.

Measurement of effect of annular trees on focal tree growth rates

We define focal survivors as trees that are present at the beginning and end of a five-year cen-

sus interval. For each data graph, data from all focal trees of all species are pooled. Normalized

focal tree growth rates are calculated for each FDP as standard deviations from the mean of a
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given decile of diameters of the focal trees of a given species within a census period. This

approach avoids the confounding effects of tree size differences, species differences, and secu-

lar trends over time on the growth rates of focal trees.

Summed annular tree basal areas are estimated as summed area at "breast height," the sum

of the trees’ cross-sectional areas at a height of 1.30 m. The areas of multi-stemmed trees are

summed. Basal areas and focal trees are each divided into five size quantiles. In the data pre-

sented in this paper, only the annular tree growth effects on the smallest size quintile of focal

trees are examined, though as reported earlier there is a smaller but often significant negative

effect of annular trees’ summed basal area on the growth of larger focal trees [18].

In these analyses, as in the analyses of recruitment, mortality, and annular tree clustering,

each annulus is examined separately. Thus, an analysis of fifth-annulus annular tree effects on

focal tree growth begins by examining all focal trees of the smallest diameter quintile. These

focal trees either have, or do not have, annular trees in their fifth annulus that fall within a

given quantile of Ma values to their last common ancestor (LCA) with the focal tree. Focal

trees that have no such annular trees in their fifth annulus, regardless of whether or not they

have such trees in their other annuli, form the comparison group. The focal trees that have

such annular trees in their fifth annulus are divided into the five quintiles of summed annular

tree basal areas and their growth rates are compared to those of the controls.

The null model used for comparison is generated by repeated randomization, within spe-

cies, of the growth rates of the focal trees.

Annulus number and the number of phylogenetic distance quantiles used in each FDP

analysis are adjusted to ensure that within each of the concentric annuli there will be a substan-

tial number of such control annuli.

Focal-annular phylogenetic distances

We estimated DNA-based divergences times between focal and annular species (last com-

mon ancestor (LCA) in mega-anna (Ma)) using the S.PhyloMaker program written by YJ

(available at https://github.com/jinyizju/S.PhyloMaker). Table 3 presents the proportion of

species in each FDP that are present in S.PhyloMaker’s Phytophylo DNA dataset. These

proportions vary from 100% at Wind River to 14% at Sinharaja. The majority of phyloge-

netic distances between species must therefore be estimated at the genus rather than the

species level in most of the FDPs. In this study the estimation was made by using Scenario

2 of S.PhyloMaker. For the species for which only genus-level information is known, this

scenario picks uniformly-distributed distances from the interval from the present back to

its genus’ LCA.

There is unavoidably some noise in the phylogenetic distances, especially at FDPs such

as Lambir and Pasoh where few species have been characterized genetically (Table 3). Fur-

ther, and unavoidably, we are forced to add more noise because we divide the pairwise dis-

tances to the LCA into Ma interval quantiles that vary in number according to the amount

of information in the FDP. This division has the advantage that it equalizes the amount of

information in each quantile, but the disadvantage that it can add further noise to focal and

annular species that are separated by pairwise distances that fall in a sparsely population

region of the range of pairwise distances at the FDP. The noise problem can be overcome to

some extent because we repeatedly sample the pairwise distances during the analysis. We

have concluded that the advantage of having equal statistical power in each of the pairwise

distance quantiles outweighs the disadvantage of introduced noise. This is because, when

we have exhaustively analyzed FDPs more than once using this methodology, the results are

essentially indistinguishable.
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Null models for clustering, recruitment and mortality

In order to isolate the influence of focal tree diameter on annular tree properties, the

observed distribution of clustering, recruitment or mortality of annular trees around differ-

ent diameter classes of focal trees is compared with 1,000 iterations in which focal tree

diameters are randomized within species within census intervals in an FDP which is other-

wise identical to the original FDP. Thus, these null models leave all other properties of the

FDPs intact, including the positions and species identifications of all of the annular trees

and the distributions of sizes of each species of focal tree. The only real-data components of

clustering, recruitment and mortality that are measured are in the form of z-values of differ-

ences between the real data and the means of the Monte Carlo randomizations of focal tree

diameters within species within census periods. This avoids the introduction of possible

unknown variables, which is a problem with the regression analyses that are commonly

used to search for density-dependent effects on recruitment and mortality [21]. Regression

analyses search for differences in the properties of trees that surround trees that recruit or

those that die, compared with those surrounding survivors, but the resulting regressions

may have many sources traceable to the distributions of tree positions and tree properties

that will vary across species.

Null models and the influence of storage effects

There is a built-in “delay” in NDD-influenced factors that affect recruitment, mortality and

clustering. This delay results from spatial and temporal storage effects [4, 6], allowing relatively

dense clusters of trees of the same or phylogenetically related species to become established in

regions where physical resources are initially plentiful and where species-specific pathogens,

browsers, and seed-predators are initially few. As the trees in the clusters grow older and

larger, their species-specific pathogens begin to accumulate, browsers and seed-predators

become increasingly attracted to the area, and species-specific physical resources become lim-

iting [33]. As a consequence, the trees in the clusters thin out over time, so that new clusters of

saplings of the same species as those in the clusters can only be established elsewhere. By

Table 3. Numbers and fraction of species in each of the FDPs in this study that are found in Phytophylo.

FDP Species Found in Phytophylo Species Not Found in Phytophylo Fraction of Total Species found in Phytophyo

BCI 266 54 0.8313

Changbaishan 26 26 0.5

Fushan 45 66 0.4054

Gutianshan 117 42 0.7358

Heishiding 132 166 0.443

Korup 117 390 0.2308

Lambir 209 1127 0.1564

Luquillo 130 32 0.8025

Mudumalai 33 50 0.3976

Nonggang 82 135 0.3779

Palanan 49 267 0.1551

Pasoh 190 708 0.2116

Sinharaja 33 206 0.1381

Tiantong 105 51 0.6731

Windriver 17 0 1

Wytham 19 5 0.7917

https://doi.org/10.1371/journal.pcbi.1008853.t003

PLOS COMPUTATIONAL BIOLOGY Each of 16 forests shows a unique pattern of between-tree interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008853 April 29, 2021 11 / 33

https://doi.org/10.1371/journal.pcbi.1008853.t003
https://doi.org/10.1371/journal.pcbi.1008853


combining the original Janzen-Connell theory with spatial and temporal storage theory, it has

been possible to explain the apparently contradictions between the Janzen-Connell model and

the fact that many species of tree in forests are clustered rather than overdispersed [4, 6, 11].

Thus, null models that randomize only focal tree size and leave annular tree clustering or over-

dispersal intact are central to the EAA analyses, because these storage effects are the same in

both the real and the randomized data.

NDD- influenced focal-annular interactions

Many focal-annular interactions can be examined by the EAA method. We chose the interac-

tions, listed below, that were shown in our previous study [18] to have an NDD component

that remains significant across a wide range of focal-annular phylogenetic distances.

The effect of focal tree size on annular tree recruitment. NDD predicts that recruitment

of annular trees at any phylogenetic distance from the focal tree should tend to be highest

around small focal trees and diminish as the focal trees increase in size. Conditions favoring

annular recruitment result from the accumulation of NDD effects of pathogens and parasites

shared between focal and annular trees [8, 9], and from the depletion of shared physical and

biologically-generated resources (niche-complementarity) [34, 35]. As focal trees grow, as

shared pathogens accumulate, and as shared resources become scarcer, annular recruitment

should diminish [3, 8, 9, 19]. Seedling data are not available for these data sets, and we there-

fore use the fraction of annular trees that have achieved a diameter of 1 cm during a census

period as a proxy for recruitment rates.

The effect of focal tree size on annular tree mortality. The same NDD processes should

result in low mortality among the annular trees that surround small focal trees and high mor-

tality among annular trees that surround large focal trees [8, 9, 36].

The effect of focal tree size on annular tree clustering. The combination of NDD effects

influencing recruitment and mortality should over time result in high summed basal area of

annular trees around small focal trees and lower summed basal area of annular trees around

large focal trees, again across a wide range of focal-annular phylogenetic separations.

The effect of annular tree basal area on focal tree growth. If a tree’s growth rate is slo-

wed by the effects of competition for physical resources with nearby conspecific or phylogenet-

ically related annular trees, or through the sharing of pathogens and predators with these

annular trees, there may be a negative impact on its fitness [37]. Trees growing in regions that

have few related trees nearby exhibit a fitness advantage over those growing in regions where

there are many related trees nearby [24].

As noted above, and as in the original EAA analyses [18], focal tree growth rates are nor-

malized within species, censuses, and focal tree size classes.

Additional analyses

Other analyses based on comparisons of the actual data with randomized null models may be

applied to these data. For example, the focal trees that recruit or die during a census period can

be examined to determine the fraction of their annular trees that are also recruits or trees that

die (tests 5 and 6 of Table 2). The null models for these tests determine the same ratios after

the positions of the focal trees that recruit, survive and die are repeatedly shuffled within spe-

cies and the properties of the annular trees are left untouched. These tests, however, only

examine how interactions between focal trees that recruit or die and their annular trees that

recruit or die, which are small fractions of all the focal-annular interactions, differ from those

of the remainder of the focal-annular interactions.
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Interpretation of the graphical results

In interpreting the graphs of tests for these classes of focal-annular interactions, recall that in

EAA analyses the z-values for the annular tree properties express differences from null-model

data sets that are randomized only with respect to focal tree size. The z-values from the four quan-

tiles of focal tree sizes are therefore symmetrically distributed around the mean of all the z-values.

Unlike the results for clustering, recruitment and mortality, the growth results are not sym-

metrically distributed around zero. Instead, each line shows the difference in z-scores between

(a) the normalized growth rates of small focal trees that have, in a specified annulus, a specified

summed basal area of annular trees within a specified quantile of phylogenetic distances from

the focal tree, and (b) the normalized growth rates of small focal trees with no such annular

trees in the specified annulus. In general, throughout the FDPs, the larger the summed basal

area of the specified subset of annular trees, and the closer to the focal tree they are in either

physical or phylogenetic distance, the greater the expected negative effect of the annular trees

on normalized focal tree growth.

A test for a possible relationship between tree size and patterns of tree

mortality in this study

Mortality varies across life cycle, with NDD effects being most pronounced in the smallest

trees [38]. NDD patterns of seedling mortality are primarily mediated by fungal pathogens [20,

39]. Mammals, foliar herbivores and foliar pathogens tend to contribute little to mortality at

these early stages [40]. Phylogenetic distance is known to play an important role in the inci-

dence of seedling mortality, which decreases as the phylogenetic distance between focal and

surrounding trees increases [41–43].

The smallest trees for which mortality is measured in the present study have a dbh of 1 cm.

We hypothesized that such small trees are more likely to die if they are near large focal trees,

and less likely to die if they are near small focal trees. Larger trees that die might show a weaker

association with focal tree size, because there might be a greater influence on the mortality of

large trees of factors such as wind, fire and large herbivores that may have a small NDD com-

ponent. To test this possibility, we divided annular trees of each species that died into two

equal-sized groups, designated small and large.

A control manipulation of the BCI data to check the sensitivity of the EAA

analyses

Fig 2 below shows that focal-annular phylogenetic curves undergo the expected changes when

FDP data are deliberately manipulated. EAA analyses are therefore highly sensitive to small

differences in the data sets.

A pronounced reduction in significance in the BCI FDP data (marked with a circled

numeral 1 at slightly over 100 Ma focal-annular phylogenetic distance in Fig 2 below) indicates

that focal-annular species pairs separated by this phylogenetic distance are only interacting at

low levels. This “valley” in significance values is seen clearly in focal-annular clustering,

recruitment and the mortality of large annular trees. It is not apparent in mortality of small

annular trees, or in focal tree growth.

To investigate the validity of this signal, we determined the set of phylogenetic distances

between pairs of species at this FDP that lie between 108 and 117 Ma, and selected the interac-

tions involving the three commonest species that are separated by these distances for our sensi-

tivity test. Our reasoning was that, because these species are common in the plot, they are

likely to contribute disproportionately to between-species interactions. The three, in
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Fig 2. Test of the sensitivity of EAA analysis. The circled 1 and 2 mark unusual valleys and peaks respectively in the

significance of focal-annular interactions. Asterisks mark the appearance of a new “valley” in significance levels after

deliberate manipulation of the data (see text). Other legends as in Fig 1.

https://doi.org/10.1371/journal.pcbi.1008853.g002
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descending order of abundance, are Trichilia tuberculata (Meliaceae) (5.0% of the stems),

Mouriri myrtilloides (Melastomataceae) (3.4%), and Tetragastris panamensis (Burseraceae)

(2.5%). The focal-annular phylogenetic distances to their LCA that fall in this window are T.

tuberculata with M. myrtilloides (111 Ma) and T. panamensis with M. myrtilloides (111 Ma),

while T. tuberculata with T. panamensis (72 Ma) falls outside the window.

We modified each of the focal-annular phylogenetic distances separating these three species

to 50 Ma, and repeated the EAA analysis. The right-hand set of graphs in Fig 2 show the

appearance of a new region of lowered significance (indicated with an asterisk) close to the 50

Ma mark for the clustering, recruitment and large-tree mortality graphs. The new lowered-sig-

nificance signal does not appear precisely at 50 Ma, because these altered between-species dis-

tances now join a large group of other distances that contribute to the phylogenetic distance

quantile that includes the 50 Ma distance. The original “valley” in significance values remains,

though somewhat reduced in size, demonstrating that additional species pairs contribute to it.

The growth graph shows no new signal, however, suggesting that the causes of the reduction

in between-species interactions do not influence focal tree growth. Selective removals of spe-

cies or focal-annular data from the data sets, such as those which were carried out at Wind

River that are presented below, are therefore capable of providing consistent and detailed

information about the extent of individual between-species interactions.

Results

Each of the 16 forest diversity plots (FDPs) examined in this study exhibits smooth declines

across increasing physical focal-annular distance (in m) in the significance of each of the four

focal-annular interactions tested. There is one exception: recruitment at Mudumalai shows com-

plexity across physical distance, possibly because of recent influence of elephants and/or fires (S1

Fig). Clustering at Mudumalai, which measures the results of longer-term processes, shares with

the other FDPs the common pattern of a smooth decline with increasing physical distance.

These interactions also tend to show an overall decline in significance with increasing phy-

logenetic distances (in Ma) between the species, but there are many localized exceptions to this

decline that result in unique patterns of “peaks” and “valleys” in the magnitude of significance

along the phylogenetic distance axis for each FDP.

Table 4 summarizes the expected (from Table 2) and the observed results from the four

EAA tests employed in this paper. In general, the results agree with NDD expectation, but

there are many localized departures from a smooth decrease in significance with phylogenetic

distance. In addition, there is a puzzling weak PDD signal seen for small annular trees that die

and that warrants further investigation.

In Fig 3 we present the results, for each of the first four NDD-influenced focal-annular

interactions that are listed in Table 2, at the BCI (Panama) FDP. The results are presented as

two- and three-dimensional graphs generated from generalized additive model (GAM) analy-

ses. The three-dimensional graphs in the figure present data from GAM analyses along both

the physical (focal-annular distance in meters) and phylogenetic (Ma back to the last common

ancestor (LCA)) axes, permitting a comparison of the effects of physical and phylogenetic dis-

tance in a single graph. Note that in these 3D graphs the physical distance decline remains

smooth across all concentric annuli, while the irregularities in the phylogenetic distance curve

are preserved across all concentric annuli. The smooth and gradual decline in significance

with increasing physical focal-annular distance is clearly distinguishable from the complex

fluctuations in significance that are seen across the range of phylogenetic distances. Figs S1

and S2 show that these patterns are seen in 3D analyses across FDPs, with the exception of

recruitment at Mudumalai that was noted earlier.
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Fig 4 shows phylogenetic distance results from a preliminary application of Tests 5 and 6 to

the data from BCI.

The results are highly significant and in agreement with NDD expectation (Table 4, Tests 5

and 6). As with the other analyses, there is a smooth decline with increasing focal-annular physical

distance (not shown), and a complex decline with increasing phylogenetic distance. The curves

for mortality are in agreement with those shown for large annular tree mortality in Fig 3. How-

ever, the phylogenetic significance decline for recruitment appears to show a different pattern of

hills and valleys from the equivalent analysis in Fig 3, suggesting that focal-annular interactions of

focal trees that recruit or die with annular trees that recruit or die may be different from those of

focal survivors. In addition, the phylogenetic peaks and valleys for recruitment are less complex

than those found in the Fig 3 analysis, possibly because in Test 5 data are being examined from a

smaller fraction of the focal trees. As these and other tests are explored further, they will provide

additional windows of opportunity for investigation of detailed focal-annular interactions.

First-annulus two-dimensional graphs for Tests 1–4 in the remaining fifteen FDPs, which

illustrate each FDP’s unique phylogenetic distance patterns, are shown in Figs 5, 6 and 7.

NDD-influenced focal-annular interactions for clustering and recruitment are present in all of

the FDPs, and NDD-influenced focal tree growth interactions with the summed basal areas of

annular trees are also found in 15 of the FDPs.

Three-dimensional GAM graphs for clustering, recruitment and focal growth in all of the

FDPs are shown in S1and S2 Figs. These three-dimensional graphs show that, with the

Table 4. Expected and observed results for the EAA tests, assuming NDD focal-annular interactions.

Expected (from Table 2) Observed

Results expected and observed in all tests:

Focal-annular differences from null model should

decline in significance as either physical or phylogenetic

focal-annular distance increases

Smooth decline in significance with increasing physical

distance. A general decline as phylogenetic distance

increases, but many FDPs show significant peaks and

valleys

Results expected and observed in each test, given NDD expectation:

Test 1) Relationship between focal survivor sizes and their annular survivor summed basal area

Negative relationship between focal tree size and

annular survivor summed basal area

Generally negative, as predicted, but there are some

localized switches into PDD (positive) territory in some

FDPs

Test 2) Relationship between focal survivor sizes and their annular recruit fraction

Negative relationship between focal tree size and

annular recruit numbers

Generally negative, as predicted. Peaks and valleys along

the phylogenetic axis often match annular survivor

curves

Test 3) Relationship between focal survivor sizes and their annular mortality fraction

Positive relationship between focal tree size and

numbers of annular trees that die

Positive, as predicted for large annular trees that die, but

weakly negative for small annular trees that die

Test 4) Relationship between a focal tree’s growth rate (normalized within species) and its annular tree basal

area

Negative relationship between focal tree growth rate

and annular tree summed basal area

Negative relationship, as predicted. Significance falls

with decreasing annular summed basal area, with many

significant peaks and valleys along the phylogenetic axis

Test 5) Relationship between focal trees that do and that do not recruit. and their annular recruit fractions

Higher fraction of annular recruits around focal recruits At BCI, a higher fraction, as predicted. Peaks and valleys

along the phylogenetic axis do not match those for

surviving focal trees

Test 6) Relationship between focal trees that do and do not die and their annular mortality fractions

Higher fraction of annular trees that die around focal

trees that die

At BCI, a higher fraction, as predicted, for both small

and large focal trees that die

https://doi.org/10.1371/journal.pcbi.1008853.t004
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Fig 3. A comparison of two- and three-dimensional graphs of the z-values for NDD-influenced focal-annular

patterns at the BCI (Panama) FDP. The 2D graphs show first-annulus z-values of these patterns for all subdivisions

of focal tree sizes and annular tree biomasses, compared to null models (Materials and Methods). The 3D graphs show

the surfaces formed by the z-values across both physical and phylogenetic distances between focal and annular trees.

The surfaces shown are for the largest focal trees or annular biomasses (red lines in the 2D graphs) and the smallest
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exception of recruitment at Mudumalai, the significance of NDD-related effects declines

smoothly rather than irregularly with increasing physical distance, while the patterns of peaks

and valleys along the phylogenetic axis that are unique to each FDP are preserved across the

range of physical focal-annular distances. These idiosyncratic phylogenetic distance patterns

show that the species in each of the FDPs have in the past been shaped by distinct evolutionary

trajectories that have led to this wide variety of patterns of species-species interactions.

Some of the exceptions to a smooth decline in significance with increasing focal-annular phylo-

genetic distance are observed at the same phylogenetic distances of an FDP’s recruitment, cluster-

ing, and/or focal tree growth analyses. In Figs 3 and 5–7, which present first-annulus 2D graphs

for all sixteen FDPs, the most pronounced of these exceptions are marked with circled numbers 1

or 2 to mark significant local reductions or increases in significance respectively. Fig 6 shows a par-

ticularly striking example in the subtropical Luquillo FDP. At this FDP a valley and a peak, cen-

tered at 100 and 150 Ma back to the LCA respectively, are seen in clustering, recruitment and

growth. If such exceptions are found at the same phylogenetic distance in more than one type of

focal-annular interaction, they may have underlying causes in common (see the detailed analysis

of the Wind River patterns below). Note that these resemblances are not the result of correlations

in the numbers of recruits and survivors in the annuli, because these correlations are preserved in

the null-model data to which the real data are compared (Materials and Methods).

Mortality results show a more complex and difficult-to-interpret pattern

Thirteen of the sixteen FDPs show significant deviations from the null model in the pattern of

small annular tree mortality. The pattern, however, is the opposite of that seen in previous

studies of seedling mortality [20, 39]. More small annular trees than expected die around small

focal trees, and fewer die than expected around large focal trees. This pattern, which is consis-

tent with positive rather than negative density dependence, is largely confined to conspecific

annular trees, except at the Nonggang, Tiantong and Wind River FDPs at which the PDD

effect extends to some heterospecifics. This test is different from the BCI analysis of Fig 4 (d),

which shows that more annular trees than expected die near the focal trees that die regardless

of their size. The Fig 4 (d) analyses are consistent with NDD effects, in which mortality—espe-

cially mortality among closely-related trees—is expected to be spatially clustered.

In Figs 3, 5, 6 and 7 the mortality pattern exhibited by large annular trees that die is the

reverse of that seen in the small annular trees, and like the Fig 4 (c) analysis is consistent with

NDD effects. In fifteen of the FDPs, with the exception of the dry tropical forest plot at Mudu-

malai, there is a deficiency of mortality in large annular trees around small focal trees and an

excess around large focal trees, as NDD would predict. We explore some possible reasons for

the different outcomes of these different mortality tests in the Discussion.

Known between-species interactions account for some of the variation in

significance levels along the phylogenetic distance axis at the Wind River

FDP

At the Wind River (Washington State, USA) FDP, which has only 26 tree species, EAA analysis

reveals an unusually large exception to declines of NDD effects as focal-annular phylogenetic

focal trees or annular biomasses (blue lines in the 2D graphs). Circled numerals 1 and 2 mark unusually low or high z-

values that are found at certain focal-annular phylogenetic distances. The k-values are the optimized number of

smooth terms used in the GAM analyses (Materials and Methods). The 95% confidence limits for the expected 2D z-

values of zero are shown as brown horizontal lines, and the 95% confidence intervals of the 2D lines are shown in gray.

The regions of significant z-values on the 3D surfaces are heat-map colored as in Fig 1, and the non-significant regions

are gray.

https://doi.org/10.1371/journal.pcbi.1008853.g003
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Fig 4. Tests at the BCI FDP of the proportions of recruits or trees that die in Annulus 1 around focal recruits or

focal trees that die, compared with the proportions expected from a null model in which the properties (recruits,

survivors, died) of the focal trees are shuffled repeatedly within species.

https://doi.org/10.1371/journal.pcbi.1008853.g004
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distance increases. At the largest focal-annular phylogenetic distances in this FDP, there are

large increases in the significance of deviations of annular clustering and recruitment, and a

large negative effect on focal tree growth rate. First-annulus data are used in the analysis

Fig 5. This figure and the following two figures show two-dimensional GAM analyses of NDD-influenced focal-annular interactions for the

remaining fifteen FDPs in the study (excluding BCI, which is presented in Fig 3). This figure shows results from the lowest-latitude FDPs. Legends as

in Figs 1 and 3. The k-values are the optimized number of smooth terms. Circled numbers 1 and 2 represent local reductions or increases respectively in

the significance of the effects along the phylogenetic distance axis.

https://doi.org/10.1371/journal.pcbi.1008853.g005
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presented in Fig 7, but as with the other FDPs these unique patterns of phylogenetic peaks and

valleys at Wind River are preserved across more distant annuli.

A likely factor contributing to the unusual EAA pattern found in this FDP may be allelo-

pathic inhibition. Large-diameter trees of the western hemlock Tsuga heterophylla have dense

canopies and have been shown to have allelopathic needles [23]. These properties reduce the

Fig 6. Continuation of the first-annulus two-dimensional phylogenetic distance analyses of all the FDPs, showing FDPs at intermediate

latitudes. Legends as in Figs 1 and 3.

https://doi.org/10.1371/journal.pcbi.1008853.g006
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growth rate of trees of other species when T. heterophylla are nearby, and also reduce cluster-

ing and recruitment of trees of a range of species around large T. heterophylla [23, 43].

The effects of removing different combinations of species from the Wind River EAA analy-

sis are shown in Fig 8. Trees of the commonest species, the vine maple Acer circinatum, and

those of the second most common species, Tsuga heterophylla, are close to each other in num-

bers. Together, these two species make up two-thirds of the stems, and those of all the other

Fig 7. The highest-latitude set of the first-annulus two-dimensional phylogenetic distance analyses of all the FDPs. Legends as in Figs 1 and 3.

https://doi.org/10.1371/journal.pcbi.1008853.g007
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species make up the remainder. We therefore divided the species into three categories: A. circi-
natum, T. heterophylla, and a third category made up of all the other species. We examined the

effects of removing different combinations of focal or annular trees, or both, that fall into these

three categories.

The row of graphs (1) at the top of Fig 8 show (A) annular clustering, (B) annular recruit-

ment, and (C) focal tree growth GAM-generated curves for all the Wind River first-annulus

data. All three of these focal-annular interactions show increases in significance among species

separated by 150 Ma or more from their LCA, in the direction expected from NDD models.

This is in striking contrast to the patterns of declining significance with increasing focal-annu-

lar phylogenetic distance that would be predicted if the strength of focal-annular interactions

decreases with increasing phylogenetic distance between them. For focal growth, however, a

group of species pairs that are separated by a little more than 100 Ma shows strong positive

effects of annular trees on the growth of focal trees, consistent with PDD.

The next row of graphs (2) show results from only focal T. heterophylla and all annular spe-

cies except for A. circinatum. The anomalous results at the most distant phylogenetic intervals

are retained for clustering and recruitment, but disappear for focal tree growth (as does the

equally anomalous PDD peak at more intermediate distances). This is the pattern to be expected

if focal T. heterophylla are suppressing recruitment of distantly-related annular species (pre-

dominantly Angiosperms), but if the presence of these distantly-related annular species is not

affecting the growth of the focal T. heterophylla in either a positive or a negative direction.

Graphs in row (3) show the results for only focal A. circinatum and all annular species

except for T. heterophylla. These graphs present only the interactions between focal trees of the

commonest species in the plot and annular species that are not known to have allelopathic

effects. These interactions show a general decline of NDD-influenced effects with increasing

phylogenetic distance across all phylogenetic distances. Thus, at Wind River, such a pattern—

seen, though with many localized exceptions, at most of the FDPs—is revealed when only the

interactions between focal trees of the commonest species A. circinatum and all annular species

except for T. heterophylla are analyzed. When the entire data set is examined, however, this

pattern is masked because of the strong allelopathic effects of T. heterophylla.

Row (4) conditions are the same as in Row (3), except that T. heterophylla has been added

back to the annular trees. Clustering and recruitment patterns around focal A circinatum are

little changed from Row (3), showing a lack of interactions between annular T. heterophylla
and focal A. circinatum. There may be a small negative effect of T. heterophylla on the growth

of focal A. circinatum, but it is at the margin of significance.

The graphs in Row (5) show results from the dataset consisting of all focal species except for

T. heterophylla and all annular species except for A. circinatum. These results are the mirror

image of Row (2). Clustering and recruitment of annular species are not influenced by allelop-

athy from focal trees other than T. heterophylla, and therefore do not show enhanced effects at

extreme phylogenetic distances. But growth of distantly related focal species is slowed, as

expected, by the allelopathic effects of annular T. heterophylla. And the striking peak in growth

of intermediate-distance focal trees is again apparent, strongly indicating that annular T. het-
erophylla may be responsible for this effect as well.

Taken together, these results show that T. heterophylla influences at least some distantly

related species negatively, and may influence trees at intermediate phylogenetic distances posi-

tively, but it does not influence the commonest species A. circinatum. Removal of other combi-

nations of focal and annular species yields results that are consistent with this interpretation

(not shown).

Previously-published measurements of the allelopathic effects of T. heterophylla had not

detected A. circinatum’s immunity to T. heterophylla’s effects [23, 43].
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Fig 8. EAA two-dimensional first-annulus analysis of allelopathic effects of Tsuga heterophylla on other species in

the Wind River FDP. Three-dimensional analyses (not shown) show smooth declines in significance with increasing

physical distance but preservation of localized phylogenetic distance features across annuli. See text for interpretation.

Legends and confidence intervals as in Fig 1.

https://doi.org/10.1371/journal.pcbi.1008853.g008
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The positive effects on focal growth seen in rows (1) and (4) of Fig 8 suggest that T. hetero-
phylla has positive density-dependent effects on the growth of focal trees separated from it by

intermediate phylogenetic distances. This interesting result warrants further investigation.

Discussion

The FDPs examined here span a wide range of environments, from tropical to northern tem-

perate. Across this diversity of ecosystems, the EAA results reinforce the growing body of evi-

dence that NDD interactions between even distantly related species are common [44]. Here

we provide a brief summary of conclusions that can be drawn and questions that can be raised

from EAA analyses.

Peaks and valleys in the significance of focal-annular species interactions

along the phylogenetic axes for each FDP may result from unusual rates of

evolutionary divergence and convergence between pairs or groups of

species

For example, a valley in significance of annular tree effects on focal tree growth might result

from the convergent evolution of distantly-related species on the ability to obtain resources

from the environment [45]. A peak in significance in the NDD component of recruitment of

distantly-related annular trees around focal trees might result from convergent evolution that

has led to susceptibilities to similar pathogens [41] or browsers [46], while a valley in these sig-

nificance levels between distantly-related focal and annular trees might result from divergent

evolution in these susceptibilities. Evolution of allelopathy and of other offensive or defensive

mechanisms in particular species, as in the Wind River FDP (Fig 8), must also play an impor-

tant role in generating peaks and valleys.

We emphasize that the evolutionary changes leading to the peaks and valleys that we

observe are not likely to have originated in the FDPs being examined, but must have had a

much longer history of natural selection that took place in the various ecosystems that were

inhabited by these species’ ancestors. Regardless of these anomalies’ precise origins, EAA can

detect the between-species interactions that are most significant and that are therefore most

likely with further study to yield useful information about the species’ evolutionary histories.

Mortality interactions that have an NDD component may be confounded

with effects that do not have an NDD component

Mortality of seedlings is known to have a strong NDD component [41, 42]. On the assumption

that factors unrelated to NDD effects might play an important role in the mortality of large

trees (such as large herbivores, strangler figs, windstorms, etc.), we divided the focal trees of

each species that died in each FDP into two equally numerous groups (small and large) accord-

ing to their diameters. When Test 3 of Table 2 was applied, the mortality pattern differences in

these two groups were striking and unexpected.

For small annular trees that die, most of the FDPs show patterns consistent with positive
density-dependence. There is low mortality around the largest focal trees and high mortality

around the smallest focal trees. The FDPs Changbaishan and Palanan show no significant

effects. In contrast, when the larger annular trees that die are examined, a positive density-

dependent pattern is only seen at Changbaishan. Instead, a pattern that is consistent with

NDD effects is seen at BCI, Fushan, Gutianshan, Heishiding, Korup, Lambir, Nonggang, Sin-

haraja, Tiantong, Wytham Wood and possibly Wind River. Examination of the causes of

small-tree mortality may reveal the source or sources of the conspecific PDD effects.
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Storm-damaged FDPs show a variety of EAA patterns

The FDPs Palanan, Fushan and Luquillo are repeatedly damaged by cyclonic wind storms.

These three FDPs have recently been compared with each other and with BCI, and were

shown to have significant differences in mortality, growth and recruitment [47]. The present

study found that all four FDPs also show differences in NDD patterns of mortality, growth and

recruitment (Fig 6).

Palanan is a species-rich tropical forest in the Philippines that has been battered by three

supertyphoons and numerous other storms during the 18 years that it has been censused. (It

was hit with another supertyphoon in 2018, with effects yet to be measured.) This FDP shows

weak focal-annular interactions that do not decline with increasing phylogenetic distance.

Although Luquillo is at the same latitude as Palanan and was damaged by two severe hurri-

canes during the period covered by this study, it shows a different set of focal-annular interac-

tions. Luquillo, like Palanan, exhibits weak clustering and recruitment NDD effects that persist

across most phylogenetic distances, but unlike at Palanan these effects diminish markedly at

the largest distances.

Fushan, at a higher latitude, is a similarly storm-battered submontane FDP. It shows an

interaction pattern more typical of the majority of FDPs, with strong interactions among con-

specifics and an overall decline (with some dramatic exceptions) with increasing focal-annular

phylogenetic distance.

Palanan and Luquillo have lower tree densities than Fushan, even though Fushan lies fur-

ther north. In part this is the result of the more severe effects of the storms at Palanan and

Luquillo, which often rip away the tops of canopy trees. These events open up the areas around

large trees to higher levels of successful recruitment of all species [48, 49]. Enhanced recruit-

ment may help explain why NDD-associated recruitment and clustering patterns are weakly

significant and often change little over most phylogenetic distance in these FDPs. But at

Luquillo, the reduction in the significance of clustering and recruitment at extreme phyloge-

netic distances is more consistent with the majority of FDPs.

The three-dimensional GAM graphs show the persistence of peaks and

valleys in species-species interactions across a range of physical distances

The unique shapes of the three-dimensional surfaces along their phylogenetic distance axis are

retained across annuli at each FDP (Fig 3 and S1 and S2 Figs). They are retained even in distant

annuli in which the means of the z-values that the surfaces represent are not themselves signifi-

cantly different from zero (gray regions of the 3D surfaces). The surfaces can retain their phy-

logenetic-distance shapes, even in the gray regions, because the 95% confidence limits on the

surfaces are small. As noted above, the rotatable three-dimensional GAM graphs from Fushan,

Lambir and Pasoh that are presented in S3–S11 Figs allow the viewer to assess the relationships

between the surfaces and their confidence intervals. In each case these intervals are small com-

pared to the confidence intervals of the z-values themselves. Thus, the GAM analyses of the

EAA data are able to detect the details of focal-annular interactions, even if the z-values them-

selves may be below the level of significance.

Species with different properties do not on average contribute

disproportionately to the results

In the first EAA paper [18] it was shown for the BCI FDP that between-species NDD interac-

tions are of approximately equal strength across a variety of groupings of species into subsets

that have different phenotypic and ecological properties. In that analysis it was decided not to
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divide species into phenotypic classes that would have led to unequal-sized subdivisions,

because this would have made the tests for NDD-influenced patterns less directly comparable to

each other. To preserve the statistical power of the tests, and to make them comparable to each

other, the BCI species were subdivided using two different criteria. The first criterion sorted the

species according to their abundance, and the second sorted them according to the CV of their

diameters across all the stems of the species. After ranking of the species according to each of

these criteria, the pooled trees of the ranked species were then divided into thirds, each third

consisting of equal numbers of individual trees. EAA analyses of each of these six subdivisions

showed that all six exhibited the same EAA NDD patterns as the BCI FDP as a whole, though as

expected the subdivision results were less significant than they were in the total data. Thus, in

this FDP, EAA analysis of species with a wide range of properties yields similar results.

Detailed examinations of NDD interactions between conspecifics of individual species of differ-

ent abundances at BCI, however, have suggested substantial differences in the strength of NDD-

influenced patterns, to the point that the least-influenced species may be in danger of local extinc-

tion [50]. EAA can be used to investigate the effects of the removal of information about individual

species that have similar abundances in an FDP, in order to test this observation further.

EAA analyses can be used to investigate ecological-evolutionary processes

in detail

It is possible to use EAA to examine interactions between focal-annular species pairs that are

based, not only on the phylogenetic distance between them, but also on other quantifiable

characteristics: differences in the species’ physical and biochemical phenotypes, in their defen-

sive and allelopathic mechanisms, in their shared interactions with different classes of patho-

gens, herbivores and parasites, and in their associations with the plots’ topographies and soil

types. The only requirement for such an analysis is the ability to arrange focal-annular species

pairs on a scale of numerical values for the character, from least divergent to most divergent.

The EAA approach can then be modified to "sieve out" focal-annular species combinations

that show the greatest discordance between phylogenetic distance and such scalable pheno-

typic and environmental characteristics. A large focal-annular phylogenetic distance, coupled

with a small focal-annular distance in a simultaneously measured phenotypic or niche-related

character, would suggest evolutionary convergence in the character being measured, while the

reverse situation would suggest an unusually high rate of evolutionary divergence. This

approach will permit the isolation of the characteristics that are most likely to be associated

with cases of unusual focal-annular divergence or convergence in FDPs and in similar complex

ecosystems. The nature of these interactions can be explored further by experimental manipu-

lations in the field or in greenhouse experiments.

Most of the thousands of species in these plots are rare. Their aggregate contributions to

NDD effects may be substantial, but most of these contributions are unlikely to be detectable

at the species level. EAA provides us with a tool for finding the species that are likely to repay

further study, while still applying the rigorous EAA standard of examining the effects of only

one variable at a time.

The EAA approach may also be sensitive enough to detect small changes over time in the

focal-annular dynamics of multiply-censused FDPs such as BCI and Pasoh that may be corre-

lated with climatic change.

EAA and Darwin’s hypothesis

EAA analyses can be used to test an important ecological-evolutionary prediction that follows

from Darwin’s observations and from his speculations that were quoted at the beginning of
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this paper. When species have lived in close physical proximity to each other within an ecologi-

cal community for some time, some of these species’ evolutionary changes should have been

driven by the direct and indirect interactions among them. Even if particular pairs of tree spe-

cies are not physically close in the ecosystem, they will share symbionts, pollinators, pathogens,

parasites, predators, and herbivores that often have high levels of dispersal. These shared bio-

logical agents must also have undergone evolutionary change as a result of their interactions

with their hosts. It is likely that the variety of evolutionary trajectories in the NDD-influenced

focal-annular effects that are seen in the FDPs of this study stems in part from such biotic

interactions. EAA can detect the pairs of tree species in an FDP that are likely candidates for

detailed studies of these interactions, which will in turn help towards eventual clarification of

their true causes and their evolutionary histories. At the same time, such extended studies will

reveal the proportion of these interactions that are responses to physical factors in the species’

environment, and provide firm evidence for or against Darwin’s hypothesis that biological fac-

tors play a large role in ecosystem evolution.

EAA and ecosystem preservation

In order to preserve threatened ecosystems, we must understand the mechanisms that main-

tain their diversity. EAA can be used to flag between-species interactions that are unusually

strong or weak and are therefore likely to yield significant results when subjected to experi-

mental manipulation. Each such case that is understood in depth will increase our understand-

ing of the kinds of interactions that must be preserved in order to maintain the overall

structure of both intact and endangered ecosystems. General ecological models that ignore

these interactions are of little help in understanding which aspects of ecosystems are important

in their long-term preservation.

Supporting information

S1 Fig. Three-dimensional graphs showing the differences between the physical (m) and

phylogenetic (Ma) axes for z-values that measure the significance of the NDD-influenced

component or annular tree clustering and recruitment for the sixteen FDPs. The graphs

show the patterns seen around the largest quantile of focal tree sizes. Legends and surface col-

ors as in Figs 1 and 3. Note that levels of significance decrease smoothly with increasing focal-

annular physical distance and irregularly with increasing focal-annular phylogenetic distance

at each FDP. In addition, the shapes of the phylogenetic distance curves for clustering and

recruitment often resemble each other, for reasons discussed in the Results section of the main

paper.

(TIF)

S2 Fig. Three-dimensional graphs showing the effect of the largest quintile of annular

trees on the growth of focal trees for all 16 FDPs. Legend as in Figs 1 and 3.

(TIFF)

S3 Fig. bci_focal_growth_largest_annular_biomass_type_factor.html. An interactive rotat-

able graph of a three-dimensional GAM analysis of focal growth data from the BCI FDP. The

graph allows the viewer to examine the surfaces formed by the data from all vantages, in order

to visualize the differences between the physical and the phylogenetic distance axes. The areas

of the surface on the graph that lie in regions of significant z-values are shown in color. The

areas that lie in regions of non-significant z-values are in gray. Because of the size of the graph,

it is possible to show clearly the magnitude of the 95% confidence intervals of the surface itself,

which tend to be small. The surface with its confidence interval also shows that irregular
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features along the surface’s phylogenetic distance axis retain their shapes and their significance

even in parts of the surface that lie within regions where the individual z-values themselves are

non-significant.

(HTML)

S4 Fig. bci_annular_clust_largest_focal_trees_type_factor.html. An interactive rotatable

graph of a three-dimensional GAM analysis of clustering data from the BCI FDP. Legend as in

S3 Fig.

(HTML)

S5 Fig. bci_annular_born_largest_focal_trees_type_factor.html. An interactive rotatable

graph of a three-dimensional GAM analysis of recruitment data from the BCI FDP. Legend as

in S3 Fig.

(HTML)

S6 Fig. fushan_focal_growth_largest_annular_biomass_type_factor.html. An interactive

rotatable graph of a three-dimensional GAM analysis of focal growth data from the Fushan

FDP. Legend as in S3 Fig.

(HTML)

S7 Fig. fushan_annular_clust_largest_focal_trees_type_factor.html. An interactive rotat-

able graph of a three-dimensional GAM analysis of clustering data from the Fushan FDP. Leg-

end as in S3 Fig.

(HTML)

S8 Fig. fushan_annular_born_largest_focal_trees_type_factor.html. An interactive rotat-

able graph of a three-dimensional GAM analysis of recruitment data from the Fushan FDP.

Legend as in S3 Fig.

(HTML)

S9 Fig. luquillo_focal_growth_largest_annular_biomass_type_factor.html. An interactive

rotatable graph of a three-dimensional GAM analysis of focal growth data from the Luquillo

FDP. Legend as in S3 Fig.

(HTML)

S10 Fig. luquillo_annular_clust_largest_focal_trees_type_factor.html. An interactive rotat-

able graph of a three-dimensional GAM analysis of clustering data from the Luquillo FDP.

Legend as in S3 Fig.

(HTML)

S11 Fig. Luquillo_annular_born_largest_focal_trees_type_factor.html. An interactive

rotatable graph of a three-dimensional GAM analysis of recruitment data from the Luquillo

FDP. Legend as in S3 Fig.

(HTML)

S1 Data. Data for FDP’s Mudumalai, Wytham Woods, Heishiding, Nonggang and Pala-

nan.

(ZIP)

S2 Data. Data for remainder of FDP’s in the study. These zipped files contain all the data

used to plot the figure graphs, including information needed to generate the errors on the

graphs, in .csv format.

(ZIP)
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