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1  | INTRODUC TION

Comparing β-diversity, the variation in species composition among 
different regions is an important yet controversial topic in ecol-
ogy (Bennett & Gilbert, 2016; Kraft et al., 2011; Qian et al., 2013; 
Ulrich et al., 2017). A randomization-based null model that was said 
to correct for the dependence of raw β-diversity on species pool 
(Kraft et al., 2011) has been widely adopted for this purpose (e.g. De 
Cáceres et al., 2012; Myers et al., 2013; Vannette & Fukami, 2017; 
Xing & He, 2019; Zhang et al., 2020). However, this randomization 
approach has been criticized on several aspects, including incorrect 
interpretations of the β-deviation metric and the dependence of the 

metric on sampling effort and species pool (Bennett & Gilbert, 2016; 
Qian et al., 2013; Ulrich et al., 2017, 2018). Another limitation of the 
null model is that it requires individual count data and thus limits its 
application to situations where only abundances of individual species 
in each local community are available. Therefore, there is a strong 
need for a theoretical scrutiny of the null model to justify its use and 
also a need to extend its application to presence/absence data.

It has been established that the abundance of species and their 
spatial aggregation in a metacommunity are the two basic quantities 
that construct macroecological patterns of diversity, including β- 
diversity (He & Legendre, 2002; Morlon et al., 2008; Plotkin & Muller- 
Landau, 2002). All ecological processes, biotic and abiotic, are acting 
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Abstract
1. β-diversity is a primary biodiversity pattern for inferring community assembly.  

A randomized null model that generates a standardized β-deviation has been 
widely used for this purpose. However, the null model has been much debated 
and its application is limited to abundance data.

2. Here we derive analytical models for β-diversity to address the debate, clarify the 
interpretation and extend the application to occurrence data.

3. The analytical analyses show unambiguously that the standardized β-deviation 
is a quantification of the effect size of non-random spatial distribution of species 
on β-diversity for a given species abundance distribution. It robustly scales with 
sampling effort following a power law with exponent of 0.5. This scaling relation-
ship offers a simple method for comparing β-diversity of communities of different 
sizes.

4. Assuming log-series distribution for the metacommunity species abundance dis-
tribution, our model allows for calculation of the standardized β-deviation using 
occurrence data plus a datum on the total abundance.

5. Our theoretical model justifies and generalizes the use of the β null model for 
inferring community assembly rules.

K E Y W O R D S

β-diversity, log-series distribution, maximum entropy, METE, null model, spatial aggregation, 
species abundance distribution, species spatial pattern

www.wileyonlinelibrary.com/journal/mee3
mailto:
https://orcid.org/0000-0001-9133-6674
mailto:dlxing@des.ecnu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1111%2F2041-210X.13531&domain=pdf&date_stamp=2020-12-02


2  |    Methods in Ecology and Evoluon XING aNd HE

through these two quantities to affect the observed macroecologi-
cal patterns (He & Legendre, 2002). For instance, both dispersal lim-
itation and environmental filtering can result in spatially aggregated 
distribution of species, which, in turn, contributes to high β-diversity. 
However, the reverse is not necessarily true: a high β-diversity does 
not have to result from aggregated distribution. This is because dif-
ferences in species abundances could also alter values of observed 
β-diversity. Therefore, it is necessary to disentangle the effect of 
spatial aggregation from that of species pool for inferring contribu-
tions from different ecological processes on β-diversity.

Different from the original β-diversity, Kraft et al.'s null model 
(and the resultant standardized β-deviation, or β-deviation for short) 
was designed to preserve species abundance distribution (SAD) of 
metacommunity while randomizing the species-level spatial distribu-
tion. It is thus clear that the β-deviation is a measure of the effect of 
non-random spatial distribution of species on β-diversity for a given 
SAD. Although this link between β-deviation and intraspecific aggre-
gation of species was acknowledged in previous studies (e.g. Crist 
et al., 2003; Myers et al., 2013), including Kraft et al. (2011), this inter-
pretation of β-deviation has not been widely heeded in the literature 
(e.g. Qian et al., 2013). The original interpretation of β-deviation was 
‘a standard effect size of β-diversity deviations from a null model that 
corrects for γ dependence’ (Kraft et al., 2011) but this misinterpretation 
attracted much criticism on the null model (Bennett & Gilbert, 2016; 
Qian et al., 2013; Ulrich et al., 2017). While these debates stimulated 
searches for alternative null models aiming to correct for the γ-depen-
dence (Ulrich et al., 2018), the problem of the misinterpretation has not 
been solved but undermines the use of otherwise a promising and im-
portant approach in community ecology (Myers et al., 2013; Vannette 
& Fukami, 2017; Xing & He, 2019). Here by developing an analytical 
null model, we reinforce that β-deviation measures the effect of spe-
cies spatial distribution on β-diversity.

A second problem of the β-deviation is that the metric is sub-
ject to the effect of sampling effort (Bennett & Gilbert, 2016). In 
a recent study, we demonstrated by simulation that β-deviation 
can effectively identify and correctly compare non-random β pat-
terns across assemblages under the condition of constant sampling 
effort (see Appendix S2 in Xing & He, 2019). This suggests that 
there might be some scaling relationship between β-deviation and 
the sampling effort. In this study, we show that there is actually 
a surprisingly simple and robust scaling relationship between β- 
deviation and sampling effort. The discovery of this scaling rela-
tionship is remarkable. It analytically addresses the criticisms raised 
by Bennett and Gilbert (2016) on the sample effort dependence of 
β-deviation.

The last shortcoming of the currently used null model, inherited 
from the randomization procedure, is that it only deals with abun-
dance data. Yet, in many studies, particularly at regional scales, pres-
ence/absence of species are the only data available (e.g. Buckley & 
Jetz, 2008; Gaston et al., 2007; McKnight et al., 2007). Therefore, 
there is a need to extend its application to presence/absence data so 
that it could be used in broader contexts such as delineating biogeo-
graphical regions (Kreft & Jetz, 2010).

Here, based on theories about species abundance distribution 
and spatial distribution of species, we develop an analytical null 
model to replace the randomization procedure and to address all the 
above problems. The analytical results reveal that Kraft et al.'s β- 
deviation (a) is a measure of the effect size of non-random spatial 
species distribution on β-diversity for a given SAD, (b) scales with 
the sampling effort following a power law with a constant expo-
nent of 0.5 and (c) can be reasonably estimated based on presence/ 
absence data, provided that a datum on the total abundance of the 
metacommunity is known (which is usually more readily available 
than abundance for each species). We test the performance and 
utility of our analytically derived models using several well-studied 
empirical datasets.

2  | DERIVATION OF ANALY TIC AL MODEL S 
FOR β-DIVERSIT Y

Consider a metacommunity consisting of M equal-sized (equal area) 
local communities and there are in total N individuals belonging to S 
species. The widely used proportional species turnover, denoted βP 
following Tuomisto (2010), is defined as �P = 1 − � ∕S, wher � is the 
average number of species over the M local communities. Note here 
that we are not claiming that M or the area of a local community is 
an inherent property of the metacommunity. Instead, they are de-
termined by the sampling design. Two other major multi-community 
measures of β-diversity, namely the M-community Sorensen- (βS) 
and Jaccard-differentiation (βJ) (Chao & Chiu, 2016), are monotoni-
cally related with βP: �S =

1

M− 1

�P

1− �P
, �J =

M

M− 1
�P. Hence, although we 

will only focus on βP in this paper, our analytical models can be easily 
transformed to these other indices.

From the definition and some simple rearrangements (see 
Appendix S1), it is easy to show that βP is the expectation of the 
probability that a species from the metacommunity is absent from a 
local community and thus can be expressed as:

where Π (0 |n,M ) is the probability that a species with n individuals in 
the metacommunity is absent from a randomly chosen local commu-
nity, and Φ (n |S,N ) is the metacommunity species abundance distribu-
tion (SAD), that is, the probability of a species having n individuals. This 
model provides a general framework to develop analytical solutions for 
Kraft et al.'s null model and the resultant β-deviation.

2.1 | Null model: β-diversity under random spatial 
distribution of species

Kraft et al.'s null model randomly shuffles species identities across 
the N individuals that comprise the M local communities while keep-
ing the metacommunity SAD and each of the local community sizes 

(1)�P =

∞∑
n=1

Π (0|n,M) Φ (n |S,N ) ,
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unchanged. By repeating the randomization procedure, a large num-
ber of times (e.g. 999) one can get the expectation (βnull) and corre-
sponding variance (VarΠ(βnull)) of β-diversity under the null model. 
Here the subscript Π is used to denote that the variation is due to 
species spatial distribution, in contrast to that due to SAD, which will 
be made clear below. This randomization is equivalent to assuming 
random spatial patterns of species. β-deviation is then defined as 
�dev =

�obs − �null√
VarΠ(�null)

 (Kraft et al., 2011). This standardized metric describes 
the degree of departure from random distribution in spatial distribu-
tion of empirical species while maintaining the SAD Φ (n |S,N ).

We now use the general formulation of βP as defined by 
Equation 1 to derive the null β for random distribution of species in 
the metacommunity consisting of M local communities. The prob-
ability for a randomly distributed species with abundance n being 
absent from a local community is Π (0|n,M) =

(
1 −

1

M

)n

. What we 
need to determine is which SAD should be used in Equation 1. 
The empirical SAD was used in Kraft et al. (2011). It is well es-
tablished in theory that SAD of metacommunity follows log- 
series distribution. This is a principal result of the neutral theory of 
ecology (Hubbell, 2001; Volkov et al., 2003) and is also predicted 
by the maximum entropy theory of ecology (Harte, 2011; Pueyo 
et al., 2007). In practice, log-series together with lognormal distri-
bution have been repeatedly shown to be the two models fitting 
empirical data best (McGill et al., 2007) and recent meta-analyses  
even show log-series outperforms other models (Baldridge et al., 
2016; White et al., 2012). In this study, we adopt the theoretical 
log-series SAD for metacommunity to derive βnull and its variance. 
We also tested the use of lognormal distribution by simulation  
but that does not change our main results about the scaling of 
β-deviation (see Appendix S2).

For a log-series SAD, Φ (n|S,N) = −
1

ln(1− p)

pn

n
, the only param-

eter p = e− � is fully determined by the state variables N and S: 
N

S
=

∑
N
n = 1

e − �n

∑
N
n = 1

e − �n ∕ n
 (Harte, 2011). Based on this SAD model and the 

binomial model for random species spatial distribution (Barton & 
David, 1959; He & Reed, 2006), we derive the following analyti-
cal version of the null model (see Appendix S1 for mathematical 
details):

We note that the approximations are valid under conditions M ≫ 1 
and 𝜆 ≪ 1 which are expected for real applications (Harte, 2011, p. 
150). This is because in real applications the size of a local commu-
nity is usually much smaller than the size of the metacommunity 
(M = metacommunity size/local-community size). However, we 

would recommend using the exact formulas in real applications since 
they impose no computing challenge. However, the approximations 
offer analytical simplicity and we will use them to derive the scal-
ing relationship between β-deviation and the sampling effort (see 
below).

From equation 2, it is clear that the expectation and variance of 
βnull under the spatial random distribution are fully determined by 
the parameter of the log-series SAD (p), the number of local com-
munities (M), and the total number of species (S). The property that 
the parameter p is fully determined by S and N allows βnull to be pa-
rameterized using only the three state variables N, S, and M. This 
means we can compare β-diversity calculated from occurrence data 
with the null model as long as the metacommunity size N is known 
(or can be estimated). This offers a method of testing β-diversity in 
cases where abundances of individual species are not available. The 
resultant analytical β-deviation is obtained by substituting equation 
2 into �dev = �obs − �null√

VarΠ(�null)
.

The variance in equation 2b is the expected conditional variance due 
to species spatial distribution, that is, VarΠ

(
�null

)
= EΦ

(
VarΠ (�|Φ )

)
.  

No variation due to SAD arises because in Kraft et al.'s randomiza-
tion approach the empirical SAD is used. However, in scientific infer-
ence, the empirical SAD ought to be considered as a sample of the 
underlying theoretical log-series SAD. It then becomes clear that the 
sampling procedure introduces additional variance in the expected 
βnull. According to the law of total variance, this second variance can 
be written as (Appendix S1):

where the subscript Φ indicates that the variation is due to SAD. This 
leads naturally to a quantification of the variance of β-deviation due to 
the metacommunity SAD:

2.2 | β-diversity under aggregated spatial 
distribution of species

In reality, species almost always show aggregated instead of ran-
dom spatial distribution due to a variety of ecological processes 
such as dispersal limitation, habitat filtering, and local competi-
tion. It has long been recognized that spatial aggregation of em-
pirical species can be well modelled by the negative binomial 
distribution (NBD, Boswell & Patil, 1970; Pielou, 1977). Using 
the same log-series SAD model as before and the NBD for aggre-
gated species spatial distribution, we can derive a prediction of βP 

(2a)
�null =

ln
(
1 − p

(
1 −

1

M

))

ln (1 − p)
≈

ln
(

M

1+ �M

)

ln (1∕�)
,

(2b)

VarΠ
(
�null

)
=

1

SM ln (1 − p)

[
ln

(
M (1 − p) + p

M (1 − p) + 2p

)

−Mln

(
1 −

1

M (M (1 − p) ∕p + 2)

)]

≈
1

SM ln (1∕�)

[
ln

(
2 + �M

1 + �M

)
−

1

2 + �M

]
.

VarΦ
(
�null

)
= VarΦ (EΠ (� |Φ ) )

=
1

S ln (1 − p)

[
ln

(
1 − p

(
1 −

1

M

)2
)

−
1

ln (1 − p)
ln2

(
1 − p

(
1 −

1

M

))]
,

(3)

VarΦ
(
�dev

)
=

VarΦ
(
�null

)

VarΠ
(
�null

)

=

M

[
ln

(
1 − p

(
1 −

1

M

)2
)
−

1

ln(1− p)
ln2

(
1 − p

(
1 −

1

M

))]

ln
(

M(1− p) + p

M(1− p) + 2p

)
−M ln

(
1 −

1

M(M(1− p) ∕ p+ 2)

) .
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(Barton & David, 1959; He & Reed, 2006; see Appendix S1 for the 
derivation):

where k (>0) is an aggregation parameter with smaller values indicating 
more aggregated distribution,

is a function fully determined by k and λM (i.e. a constant for given 
values of k and λM; see Appendix S1). Like equation 2, the approxi-
mation here is valid under conditions M ≫ 1 and 𝜆 ≪ 1. Note that the 
variance in equation 4b includes both the variation due to species 
spatial distribution (the first square bracket) and the variation due 
to SAD (the second square bracket). This is different from the null 
model (2), where only the variance due to random species spatial 
distribution occurs.

Model (4) provides a framework to predict β-diversity from the 
three state variables N, S, and M and the information about species 
spatial aggregation (k). Different from the null β of model (2), model (4) 
incorporates realistic spatial distribution of species and is expected to 
describe β-diversity of empirical communities (see Section 3 below 
for confirmation). The realism of model (4) allows us to explore various 
properties of β-diversity in relation to spatial distribution of species. 
As an example, below we derive a scaling relationship between β-de-
viation and sampling effort, to address a major criticism of the using 
of β-deviation. While model (4) is useful in many situations as stated 
above, we note that it is not needed if the purpose is to calculate and 
compare β-deviation, as is done by Kraft et al. (2011).

2.3 | Scaling of β-deviation with sampling effort

Substitute the approximate versions of equations 2 and 4a into Kraft 
et al.'s �dev =

�obs − �null√
VarΠ(�null)

 (replace �obs with �NBD), we have:

Until now all the derivations in the above assume that the metacom-
munity is fully sampled. That is, all the M local communities (that 

comprise the metacommunity) are sampled. In real applications, we 
can only sample a fraction of a metacommunity and sampling inten-
sity also changes from study to study. This sampling incompleteness 
can have consequences. As shown in Bennett and Gilbert (2016), 
β-deviation is subject to the effect of sampling effort. Considering 
Equation 5a, when only m (out of M) local communities are sam-
pled, the parameter k will not change but both S(m) and λ(m) will 
change with m. Nevertheless, numerical analyses suggest that 
λ(m)m and S (m ) ∕ ln (1∕� (m ) ) are nearly constant if M ≫ 1 (see also 
Harte, 2011, p. 243). This corresponds to a logarithmic sample-based 
species accumulation curve (Harte, 2011, p. 169). Hence, for a sam-
ple of m local communities, the complicated term

in Equation 5a becomes a constant independent of m. The relationship 
between β-deviation and the sampling effort (m) turns out to be a sim-
ple power law with scaling exponent of 0.5:

3  | EMPIRIC AL TEST OF THE MODEL S

3.1 | Data

We used several well-studied datasets from the literature to evaluate 
the analytical results derived above. Alwyn Gentry's forest transect 
data (Phillips & Miller, 2002) were used to confirm the performance 
of our analytical models (2) and (4). This dataset has been previously 
analysed using the β-deviation (Kraft et al., 2011; Qian et al., 2013). 
The data consist of 226 plots distributed worldwide, of which 198 are 
‘standard’ plots. Each plot is considered as a metacommunity (Kraft 
et al., 2011; Qian et al., 2013) that contains ten 2 m × 50 m transects 
(each transect is considered as a local community) where all plants 
with a stem diameter ≥2.5 cm were measured and identified to spe-
cies or morphospecies. Following the previous studies, we used the 
198 standard plots in this study. For each metacommunity, we calcu-
lated the observed β-diversity (βobs) and the expected β-diversity (βnull), 
variance (VarΠ (�null )), and β-deviation (βdev) for the spatial random hy-
pothesis (equation 2). We also computed βdev following the randomiza-
tion approach of Kraft et al. (2011). We then plotted these two βdev to 
evaluate consistency between our analytical null model and the origi-
nal randomization approach. These two βdev were also plotted versus 
absolute latitude for comparison. Our analytical models assumed log-
series SAD for the metacommunities. To test this assumption and to 
evaluate potential consequences due to violations of this assumption, 
a Kolmogorov–Smirnov goodness-of-fit test was performed for each 
of the metacommunities. In statistics, the Kolmogorov–Smirnov test 
calculates a distance between the empirical distribution function of 
a sample (observed species abundances in our case) and the cumu-
lative distribution function of the reference distribution (log-series 

(4a)�NBD =
−1

ln (1 − p)

∞∑
n=1

pn

n

(
1 +

n

Mk

)− k

≈
ln
(

M

1+ �M

)
+ C (k, �M)

ln (1∕�)
,

(4b)

Var
�
�NBD

�
=

⎡
⎢⎢⎢⎣

1

SM ln (1 − p)

⎛
⎜⎜⎜⎝
ln
1 − pe−

1

M

1 − pe−
2

M

+
pe−

2

M

M
�
1 − pe−

2

M

�
⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎣

−1

S ln (1 − p)

⎛
⎜⎜⎝

∞�
n=1

�
1 +

n

Mk

�− 2k pn

n
−

−1

ln (1 − p)

�
∞�

n=1

�
1 +

n

Mk

�− k pn

n

�2⎞
⎟⎟⎠

⎤
⎥⎥⎦
,

C (k, �M) =

∞∑
n=1

[(
1 +

n

Mk

)− k e− �n

n

]
− ln

(
M

1 + �M

)

≈
ln
(

1

�M
+ 1

)

1 + (5.07 − 0.44 ln (�M)) k

(5a)�dev =
C (k, �M)√

ln
(
2+ �M

1+ �M

)
−

1

2+ �M

√√√√ SM

ln
(
1

�

) .

C (k, �m)√
ln
(
2+ �m

1+ �m

)
−

1

2+ �m

√√√√ S

ln
(
1

�

)

(5b)�dev ∝
√
m.
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distribution in our case) and tests the null hypothesis that this distance 
is not statistically different from zero. Because log-series is a discrete 
distribution, we performed the test using the revised ks.test function 
from r package dgof (Arnold & Emerson, 2011).

With respect to the NBD model (equation 4), we tested its 
performance by plotting the predicted versus observed β-diver-
sities. Beyond the three state variables (i.e. N, S and M) that are 
known for each metacommunity, model (4) requires an additional 
aggregation parameter k. We estimated it for each metacommu-
nity by maximizing the log-likelihood function (He et al., 2002): 
l =

∑S

i=1
[oiln

�
E
�
oi�ni

��
+
�
M − oi

�
ln
�
1 − E

�
oi�ni

��
] for the occu-

pancy model E
(
oi|ni

)
= M −M

(
1 +

ni

Mk

)− k

, where oi is the number 
of local communities where a species with ni individuals is present 
(i.e. the occupancy). The other notations are the same as in previous 
sections.

To test the prediction about the power-law scaling of β-deviation 
with sampling effort, we extracted data on β-deviation and sample 
size from the four different datasets reported in Bennett and Gilbert 
(2016). The four datasets are as follows: (a) plants in 605 1-m2 plots 
collected from meadow patches in the Garry Oak Ecosystem of south-
ern British Columbia and northern Washington State; (b) plants in 110 
1-m2 plots collected in an abandoned field at the Koffler Scientific 
Reserve in southern Ontario, Canada; (c) understory plants in 85 
50-m2 forest plots collected from Mount St. Hilaire, near Montreal, 
Canada and (d) diatoms in surficial sediments sampled from 492 North 
American lakes. More details about these datasets can be found in 
Bennett and Gilbert (2016) and the references therein. The extracted 
β-deviation and sample size were plotted on a log–log graph and were 
visually compared against the theoretical power law of Equation 5b.

3.2 | Test results

The empirical tests shown in Figure 1 confirm that our theoretical 
null model (equation 2) for the random species spatial distribution 

F I G U R E  1   β-diversity of Gentry's 198 forest plots under the 
null model of random spatial distribution of species. (a) Relationship 
between the expected β-diversity calculated using equation 2a and 
the randomization approach of Kraft et al. (2011). (b) Relationship 
between standard deviation of βnull calculated using equation 
2b and the randomization approach. Sizes of the points are 
proportional to the values of logarithm of the number of species. 
The dashed lines are 1:1 line. R2

1:1
 describes the goodness-of-fit of 

the 1:1 line to the data, while R2
x:y

 is the R2 between x and y

F I G U R E  2   β-deviation for Gentry's 198 forest plots.  
(a) Relationship between β-deviation calculated using the analytical 
equation 2 and the randomization approach. Error bars represent 
1.96 SD of β-deviation due to species abundance distribution 
(Equation 3). The dashed line is 1:1 line. R2

1:1
 describes how well the 

1:1 line fits the data. (b) Relationship of β-deviation with latitude 
computed using the analytical solution, and (c) the randomization 
approach. The solid lines in (b, c) show ordinary least squares 
regression. R2

x:y
 is the R2 between x and y. Filled points highlight the 

nine plots where the two β-deviations are significantly different
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accurately implements the randomization procedure of Kraft 
et al. (2011). The analytical null model β-deviation has an appreci-
able but weaker correlation with the β-deviation computed from 
Kraft et al.'s randomization process (R2 > 0.47, Figure 2a). Only nine 
out of Gentry's 198 metacommunities show significant difference 
between the two versions of β-deviation. Both methods are consist-
ent in showing the decreasing latitudinal gradients of β-deviation, 
but the gradient is appreciably somewhat stronger using the analyti-
cal β-deviation (Figure 2b,c). The Kolmogorov–Smirnov test shows 
that the log-series describes the metacommunity SAD very well 
(p > 0.05) for 180 out of the 198 plots (Figure 3). All the nine ‘outlier’ 
plots identified in Figure 2 are among the few that have a poor fit of 
log-series (p < 0.05; Figure 3b).

The NBD β-diversity (equation 4) performs very well in pre-
dicting empirical β-diversity (R2 = 0.88, Figure 4). Again, nine out 

F I G U R E  3   Goodness-of-fits of the log-series SAD to Gentry's 
data. (a) Histogram of p value of the Kolmogorov–Smirnov (KS) test 
for the log-series SAD model. (b) Relationship of the difference 
between the analytical and randomization β-deviation with p 
value of the KS test. Filled points in (b) are plots where the two 
β-deviations are significantly different (same as in Figure 2). The 
dashed vertical line indicates p = 0.05

F I G U R E  4   Relationship between predicted β-diversity using 
model (4) and observed β-diversity for Gentry's 198 forest plots. 
The grey dashed error bars represent 1.96 SD due to both species 
abundance distribution and species-level spatial distribution, with 
the black solid portions due to species-level spatial distribution 
only. The dashed line is the 1:1 line. Filled points represent the nine 
plots where the observed β-diversity differ significantly from the 
prediction. R2

1:1
 describes the goodness-of-fit of the 1:1 line to the 

data, while R2
x:y

 is the R2 between the two β-diversity

F I G U R E  5   Relationships of β-deviation with sampling effort for 
the four different datasets from Bennett and Gilbert (2016). The 
data points are extracted from published figures in Bennett and 
Gilbert (2016) and their corresponding figure numbers are shown 
in the legend. The grey lines are the derived power-law with scaling 
exponent of 0.5 (Equation 5b). The positions of the power-law lines 
are determined by the data points with the largest sampling effort 
for each dataset, that is, each line goes through the most top-right 
data point in each corresponding dataset
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of Gentry's 198 metacommunities show significant departure from 
the prediction (note seven of those nine are the same ‘outlier’ plots 
as in Figure 2). The empirical relationships between β-deviation and 
sampling effort employed by Bennett and Gilbert (2016) to argue 
against the use of β-deviation follow our theoretical power-law scal-
ing Equation 5b very well, as long as the sample size is not too small 
(i.e. m > 30, Figure 5).

4  | DISCUSSION

In this paper, we have developed analytical β-diversity for random 
and aggregated spatial distribution. The random β-diversity pro-
vides a null model for standardizing empirical β-diversity which 
would otherwise have to be implemented by randomization (Kraft 
et al., 2011). The simulation and empirical tests show that the ana-
lytical β-diversity models perform very well in comparison to the 
original randomization process of Kraft et al. (2011) (Figures 1 and 
2). The practical difference between the theoretical null model and 
the original randomization approach can be simply explained by the 
use of different SADs, which is one of the two differences between 
our null model and the original randomization approach. The sec-
ond difference is that we do not preserve the abundance in each 
local community. Previous study has demonstrated that this second 
difference is neglectable (see figure 3a in Xu et al., 2015). Our null 
model uses a theoretical distribution (could be log-series, or lognor-
mal; see Appendix S2) while the randomization approach uses the 
empirical SAD that could be subject to sample size and sampling 
variation. The variation arising from sampling SAD is quantified by 
Equation 3. Recognizing the existence of this variation is important 
because in real applications almost all empirical SADs are based on 
sampling data and themselves are not true metacommunities. This 
sampling problem is one of the major criticisms of Kraft et al.'s (2011) 
original analyses of Gentry's data that the empirical SAD does not 
represent true metacommunity (Tuomisto & Ruokolainen, 2012). 
From this point of view, our analytical β-diversity based on the 
theoretically justified log-series SAD of metacommunity provides a 
desirable solution. That said, it could happen that the SAD of a real 
metacommunity does not follow log-series distribution. In this case, 
our beta-deviation is biased. Fortunately, beta-deviation in general 
is quite robust to the variation in SAD as we tested by assuming 
lognormal SAD distribution (Appendix S2).

Unlike the randomization process, our β-diversity models do not 
require abundances of individual species but only the data on meta-
community size (N) and total richness (S) (for null β-diversity equa-
tion 2) or N and S plus spatial distribution parameter k (for the NBD 
β-diversity equation 4). More significantly, these analytical results 
reveal the dependence of β-diversity on N, S, species spatial pattern 
and sampling effort and thus offer unambiguous interpretation on 
β-deviation which is otherwise not obvious and has been a subject of 
debate (Bennett & Gilbert, 2016; Kraft et al., 2011; Qian et al., 2013; 
Ulrich et al., 2017). In the following discussion, we will address and 
clarify the controversies surrounding the use of the randomized 

β-deviation. Our discussion will make it clear that β-deviation is an 
important and solid diversity measure for testing community as-
sembly mechanisms and the much-criticized sampling effect on β- 
deviation (Bennett & Gilbert, 2016) can be easily dealt with using the 
simple scaling law of equation (5).

The misinterpretation of β-deviation as ‘a standard effect size 
of β-diversity deviations from a null model that corrects for γ de-
pendence’ (Kraft et al., 2011) has raised much concern about the 
null model because β-deviation is not independent of γ diversity 
(Bennett & Gilbert, 2016; Qian et al., 2013; Ulrich et al., 2017, 2018). 
The fact that the null β-diversity of equation 2 is derived from the 
assumption of random spatial distribution of species and the con-
sistence between our analytical model and the randomization ap-
proach (Figures 1 and 2) clearly indicate that the null model of Kraft 
et al. (2011) is for randomizing spatial distribution of species given a 
metacommunity with fixed SAD. Hence, the β-deviation is a metric 
measuring the effect size of non-random species spatial distribution 
on β-diversity for a given SAD. It is not for correcting for the effect 
of γ diversity as originally interpreted, neither should it be inter-
preted as correcting for SAD. The reason that information of SAD 
is included in β-deviation is because the randomization procedure 
(and the analytical model (2)) is implemented under a given meta-
community SAD. Because of that, if metacommunity SAD changes, 
beta-deviation will also change. Indeed, Equation 5a shows that the 
magnitude of β-deviation is collectively dependent on aggregation 
parameter k, metacommunity size N, total richness S and the num-
ber of local communities M. When compared among regions, due 
to the difference in SAD (or N and S), communities with the same 
k could have different β-deviation, and vice versa (see Figure S3 of 
Appendix S3).

There are a number of alternative approaches used in the literature 
that are closely related with the null model proposed here, but they all 
suffer from similar problems. Qian et al. (2013) and Xu et al. (2015) an-
alysed the raw (i.e. βobs − βnull), instead of the standardized, β-deviation. 
From our models (2) and (4), it is clear that the raw β-deviation is also 
dependent on γ, thus not serving as a correction for the γ-dependence. 
A more fundamental problem with the raw β-deviation is that it is not a 
measure of effect size and thus is of little use for comparing the effect 
of species aggregation on β-diversity. Ulrich et al. (2018) proposed a 
‘fixed-fixed’ null model that preserves both row and column sums of 
the community matrix to correct for the γ-dependence. However, the 
‘fixed-fixed’ null model does not have an analytical solution and its eco-
logical interpretation is not clear.

Another major criticism on β-deviation is that it is sampling 
effort dependent, meaning that different sample sizes from the 
same system can lead to drastically different β-deviation (Bennett 
& Gilbert, 2016). This problem makes the method not useful for 
comparing different communities unless sample size is standard-
ized (Xing & He, 2019; Zhang et al., 2020). The scaling relationship 
between β-deviation and sampling effort (Equation 5b) derived 
in this study thaws this criticism and offers a simple solution. To 
compare β-deviation with different sample size (m), one only needs 
to standardize the effect of sample size by dividing the β-deviation 
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by 
√
m. This analytical result is a generalization of the simulation 

study of Xing and He (2019) (see Appendix S2 there). It is remark-
able because the simulation study only justifies comparisons of 
β-deviation under constant sampling effort. It does not provide 
the standardization method revealed by the analytical study pre-
sented here. The standardization method revealed here is critical 
for future comparison study or meta-analyses of published results 
from different studies. However, it is important to note that in ap-
plications the scaling relationship does not behave as well for small 
sample sizes (e.g. m < 30). This may reflect the fact that small sam-
ple size leads to underestimation of the difference in β-diversity  
of multiple communities, as shown by M-community Jaccard β  
(Marion et al., 2017), which differs from βP only by a factor of  
M/(M − 1). To our knowledge, no correction for the small sample 
effect on these M-community β measures is currently available. 
Hence at this stage we can only recommend sampling more local 
communities to calculate M-community β and β-deviation. The 
small sample effect warrants further research. We also note that 
both β and β-deviation are dependent on the sampling grain and 
extent. This study deals with neither of these two aspects of scale 
effect. In application, the same grain size and similar spatial extent 
are required when β or β-deviation is compared among different 
regions.

The null model of β-diversity and the resultant β-deviation 
provide a promising approach for inferring community assembly 
rules. The derivation of the analytical version of the null model in 
this study clarifies the interpretation of the model and addresses 
the problem that the β-deviation is subject to the effect of sam-
pling effort. Beyond these apparent benefits, our analytical 
model also extends the application of β-deviation to occurrence 
data. The requirement for species abundance data by the origi-
nal randomization null model can seriously limit its application in 
systems of large spatial extent. Data on abundance of individual 
species are no longer needed for the theoretical model derived 
here as long as the size of the metacommunity is known. This 
affords the use of the theoretical model to systems of large ex-
tent and can take advantage of the occurrence data available for 
many taxa (e.g. birds, amphibians, mammals, and plants; Gaston 
et al., 2007; McKnight et al., 2007; Buckley & Jetz, 2008; Maitner 
et al., 2018). Coupling with these data, our analytical model offers 
an approach to explore the global pattern and underlying drivers 
of β-diversity.

When applied to occurrence data, our analytical model needs 
four inputs to calculate β-deviation: total abundance (N), total 
richness (S), number of local communities (M) and the observed 
beta diversity (βobs). S, M and βobs can be directly obtained from the 
occurrence data. N needs to be determined separately. Although 
not trivial, we argue that estimating N is much easier than obtain-
ing abundances for each species. This is because not like S, N is 
additive when small areas are merged to form a larger one and 
thus scales linearly with area (He et al., 2002; Preston, 1962). An 
example of how to map the global distribution of N for trees is 
shown by Crowther et al. (2015). In this kind of applications, S and 

N are parameters of the metacommunity and the uncertainty in 
their estimation could have consequence on the calculation of 
β-deviation. Fortunately, simulation shows that the errors of β-de-
viation caused by the variation in S and/or N are on average much 
smaller than the variation in S and/or N themselves (Figure S4 in 
Appendix S3). The relative error in β-deviation tends to be larger 
for metacommunities with more random species spatial patterns 
(i.e. when β-deviation is small).

One potential limitation of this study is the assumption of 
log-series for metacommunity SAD. In situations where the true 
SAD does not follow log-series, our model could elevate type I error 
(i.e. the β-deviation tends to reject a true hypothesis that communi-
ties are randomly assembled in space). That is, deviation of the true 
SAD from log-series will weaken the accuracy of predictions from 
our models (Figure 3). As for the power-law scaling of β-deviation 
with sampling effort, both our simulation (Appendix S2) and the 
empirical data from various sources (Figure 5) show that it is robust 
to variations in SAD. The ecological interpretation of β-deviation 
revealed by our analytical analyses does not suffer from the SAD 
assumption either. Hence, among the three major implications of 
our analytical results, only the application in estimating β-deviation 
from occurrence data could potentially be affected by the assump-
tion. Because log-series for metacommunity SAD is theoretically 
justified (Harte, 2011; Hubbell, 2001; Pueyo et al., 2007) and well 
supported in numerous empirical tests (Baldridge et al., 2016; 
White et al., 2012), our theoretical models are of strong practical 
significance, as exemplified by the majority of Gentry's forest plots 
(Figures 1–4). However, erring on the side of caution, we suggest 
avoiding using our model if the SAD of the study system is far from 
log-series.
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