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Abstract: Forest productivity (increment of above-ground biomass) is determined by biodiversity
but also by stand structure attributes. However, the relative strengths of these drivers in determining
productivity remain controversial in subtropical forests. In this study, we analyzed a tree growth
data from 500 plots with in a 20 ha mature subtropical forest in eastern China. We used spatial
simultaneous autoregressive error models to examine the effects of diversity variables (species
richness, evenness, and composition), stand structural attributes (stand density, tree size range and
diversity), environmental factors (topography and soil), and initial above-ground biomass (AGB)
on productivity. We also applied structural equation models to quantify the relative importance of
diversity, stand structure, environmental factors, and initial AGB in determining forest productivity.
Our results showed that stand structure together with diversity and initial AGB governed forest
productivity. Tree size diversity (DBH Shannon’s diversity index) had the largest positive effect on
forest productivity. These results provide new evidence that structural explanatory variables have
greater contributions to productivity for mature subtropical forests, strongly supporting the niche
complementarity hypothesis. Our work highlights the importance of tree size diversity in promoting
high forest productivity, and suggests that regulating and conserving complexity of forest stand
structure should be among the most important goals in subtropical forest management.

Keywords: species diversity; stand structure; tree size diversity; initial above-ground biomass; forest
productivity; niche complementarity hypothesis; selection effect hypothesis

1. Introduction

The relationship between biodiversity and productivity is a central topic in both
theoretical and applied ecology [1]. Classic examples of this research area were origi-
nally carried out in grassland ecosystems and commonly assumed that species diversity
promoted ecosystem productivity [2,3]. However, increasing evidence suggests that the
positive effect of species diversity can be influenced or neutralized by structural diversity,
particularly in forest ecosystem which has complex vertical and horizontal structures [4–6].
It remains far from clear what the major drivers of forest ecosystem productivity are.

Two fundamental mechanisms wildly used to explain the positive effects of species
diversity on forest productivity are the niche complementarity and the selection effect
hypothesis [3,7–9]. The niche complementarity hypothesis postulates that species having
different niches are able to utilize different resources or facilitate each other, and hence
increase the productivity of a community [3,10,11]. The selection effect hypothesis states
that increased productivity is due to the chance occurrence of a very productive species in
the community [12]. On one hand, increasing diversity may lead to niche overlap (species
that make use of the same resources), thus intensifying inter-species competition [13]; on
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the other hand, ontogenetic niche differences (resource requirements vary with individual
size) of intraspecies are ignored [6]. This may explain why the relationship between
species diversity and productivity/above-ground biomass sometimes does not support
the niche complementarity hypothesis in high diversity natural forest ecosystems, where
negative [4,14], or non-significant relationships are found [15,16].

Structural diversity is a key attribute of forests and it has long been recognized that
complex and structurally diverse forests are critically important for providing higher
productivity than simple structure stands [17]. However, the hypothesized relationships
between stand structural attributes and productivity have only recently been recognized in
natural forests, agroforests, and experimental plantation [5]. Structural attributes reflect
the variation of individual size composition in the study area, which can be caused by
both the inherent interspecific differences and the asymmetrical competition of intra-
and interspecific individuals [18–20]. At the community level, complex stand structure
results in trees of different diameters or heights occupying different niches [21], which
increases the efficiency of resources utilization (such as light, water, and soil nutrients).
This, in turn, improves community productivity, similar to the niche complementarity
effect caused by species and functional diversity [6,22]. Many studies have concluded that
structural diversity plays a more important role in determining productivity than species
diversity [6,23,24].

Many confounding effects should be considered in analyzing the relative contribution
of species diversity (including phylogenetic and functional) versus structural diversity
on forest productivity [5]. For instance, vegetation quantity (e.g., initial biomass) is a
major driver of community functional properties (e.g., productivity) [25]. A positive
relationship between forest productivity and initial biomass has been found for mature
forest ecosystems [13], and initial biomass was the only factor contributing significantly
to productivity in a secondary tropical forest study in Mexico [25]. Moreover, mixed
relationships between environmental factors, species diversity, and stand structural indices
have been reported in different forest ecosystems. It was reported that forests with low soil
fertility showed stronger species diversity effects than forests with high soil fertility [26,27].

Here, our objective was to disentangle the contributions of species and structural
diversity on the productivity of a mature subtropical evergreen broadleaved forest (EBLF)
ecosystem in eastern China. Note that while the term productivity may be used to refer
different quantities in the literature, in this study we refer it specifically to the increment
in above-ground biomass of surviving trees. We selected different species and structural
attributes other than single indices to avoid underrepresentation, while simultaneously
controlling for confounding factors such as initial above-ground biomass (AGB) and envi-
ronmental factors (including soil nutrients, topography, etc.). We collected data in a large
EBLF dynamic plot and applied structural equation models (SEMs) to test two hypotheses:
(1) that structural variables are more predictive of forest productivity than species diversity
and composition, and (2) that tree size diversity is the strongest structural explanatory
variable, which promotes forest productivity.

2. Materials and Methods
2.1. Study Area

This study was conducted in the Tiantong National Forest Park (29◦48′ N, 121◦47′ E),
Zhejiang Province, in eastern China (Figure 1A). This region supports EBLF, in which
forests are dominated by species in the Fagaceae and Theaceae families. The annual mean
temperature is nearly 16.2 ◦C, the warmest and coldest months are July and January with
a mean temperature 28.1 ◦C and 4.2 ◦C, respectively. The average annual precipitation is
1374.7 mm, which mainly occurs from May to August [28]. The parent soil materials are
Mesozoic sediments and acidic intrusive rocks, including quartzite and granite. The soil
texture is mainly sandy to silty clay loam, and soil pH ranges from 4.4 to 5.1 [29].
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Figure 1. The study area location in Zhejiang Province, China (A) and the perspective map of topography of the 20-ha
Tiantong forest dynamics plot (B).

2.2. Data Collection

All forest stand and environmental data came from a 20 ha (500 m× 400 m) permanent
forest plot that was established within Tiantong National Forest Park in 2010 (Figure 1B).
Following the field protocol of the Forest Global Earth Observatory (Forest GEO) [30],
the plot was divided into 500 quadrats (20 m × 20 m). Altimetric points of the corners
of 20 m × 20 m grids were measured using an Electronic Total Station (Sokkia SET-4120).
Soil samples were collected following John et al. [31] and then measured in the laboratory
following [32]. Totally, 1292 soil samples covering the whole 20-ha plot at high resolution
were collected by both regular and random sampling schemes (Figure S1). All free-standing
trees and shrubs with diameters at breast height (DBH) ≥ 1 cm were tagged, mapped,
measured, and identified to species, but only individuals with a DBH ≥ 5 cm were used in
this study. The first census and re-census of the plot were carried out in 2010 and 2015, and
recorded 28,167 and 29,103 individuals (DBH ≥ 5 cm), respectively.

2.3. Above-Ground Biomass and Productivity Calculation

The AGB of each individual was estimated from DBH using species-specific available
allometric equations in local and regional forests (covering ~84.3% and ~84.6% of the
whole plot AGB in 2010 and 2015, respectively), and a local generic allometric equation
for the remaining species (Table S1). The total AGB for each quadrat at each time point
was calculated by summing AGB of alive trees in the quadrat. AGB productivity (∆AGB)
of each quadrat was then determined as AGB increments from 2010 to 2015. The AGB
in 2010 also served as an independent factor, initial AGB (AGBi), to explain the effect
on productivity.

2.4. Species and Structural Variables

Species diversity was quantified in terms of richness, evenness, and composition.
Species richness and evenness were calculated using the “vegan” package in R [33], and
were defined as the number of observed species and Pielou’s evenness within each quadrat,
respectively. Species composition was obtained by non-metric multidimensional scaling
analysis (NMDS) [34]. The first axis of NMDS (NMDS1) was used to maximize the loga-
rithmic transformation correlation with productivity. NMDS was done using “metaMDS”
and “MDSRotate” functions [33] (Figure S3).

Structural variables used in this study included stand density, number of DBH classes
(DBHcs), and DBH Shannon’s diversity index (DBHsi) of each quadrat. Stand density
was the number of individual trees in a quadrat, representing the intensity of plant-plant
interactions [4]. DBHcs quantified structural complexity, which was the number of the DBH
classes in a given quadrat, and has a good correlation with tree height and canopy size [35].
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In this study, DBH was divided into 17 grades: [5, 10), [10, 15), [15, 20) . . . . . . [85, ∞).
Lastly, DBHsi was tree size diversity, calculated as the Shannon-Wiener biodiversity index
(Equation (1)), which is commonly used in structural diversity-productivity studies [4].
The calculations of DBHsi were performed using the R package ‘vegan’.

Hd = −
d

∑
i=1

Pi × ln(Pi) (1)

where Pi is the proportion of the basal area of ith DBH class while d is the number of DBH
classes within each quadrat.

2.5. Environmental Variables

In this study, the environmental factors of the 20 ha plot were defined in terms of three
topographic and four soil properties. Topographic variables included elevation, slope, and
aspect. Elevation was the average value of the four corner elevations of a 20 m × 20 m
quadrat [36], ranging from 304.2 m to 602.8 m. Slope was defined as the average slope of
the entire quadrat [36,37], ranging from 13.8◦ to 50.3◦. Aspect referred to the direction in
which slope faced [32]. Soil variables included soil total nitrogen (TN), total phosphorus
(TP), pH, and soil depth, which were quantified by 1292 soil samples covering the entire
20 ha plot. Soil depth was measured by a long steel drill pipe at each sampling point.
TN, TP, and pH were analyzed by an elemental analyzer (vario MICRO cube, Elementar,
Germany), flow-injection autoanalyser (SAN++, Skalar, Netherlands), and Metterler Toledo
pH meter (1:2, H2O), respectively (detail information can be found in [28]). For each soil
variable, standard block kriging was used to obtain final depths for each 20 m × 20 m
quadrat [32]. Principal component analyses (PCA) were used to reduce the number of
environmental factors and to avoid strong correlations. Two PCs of soil properties (soil
PC1, soil PC2) and two PCs of topographical variables (topography PC1 and topography
PC2) were used to represent the two kinds of environmental variables, respectively (see
Figures S4 and S5).

Summary of the productivity, AGBi, species diversity, species composition, structural
factors, and environmental factors used in this study is provided in Table S3.

2.6. Statistical Analyses

Prior to all analyses, productivity was natural-log transformed and all explanatory
variables were standardized to obtain a mean of 0 and a standard deviation of 1 to improve
the interpretability of regression coefficients [38]. Pearson’s correlation analysis was used
to examine correlations among all the individual predictor variables (Table S2).

Our study design may have confounded statistical results when there was spatial
autocorrelation in the variables of interest. To account for this, we performed generalized
least-squares (GLS) models [39] with (accounting for the spatial location of each quadrat)
and without spatial autocorrelation among quadrats for each of the relationships between
predictors and productivity, as recommended by previous studies [13,40]. GLS models
are reliable methods for testing whether quadrats sharing similar abiotic conditions are
independent of each other within a forest [41]. The goodness of fit of spatial and non-
spatial GLS models were evaluated by AIC. Our results showed that models with spatial
autocorrelation structures always had lower AIC values (Table S4).

We used spatial simultaneous autoregressive error models (SARs) to examine the
effects of predictor variables on productivity. SARs allowed the inclusion of residual spatial
autocorrelation in data, and are widely used in spatial ecology studies [42]. In order to
remove multicollinear variables, we used variance inflation factors (VIF < 10; [43]) to
identify any multicollinear variables in the SARs. VIFs were calculated using the R package
‘CAR’ [44]. Consequently, the full model included species richness, NMDS1, stand density,
DBHsi, topography PC1, soil PC1, and AGBi (Table 1). The best model was selected using
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corrected AIC (AICc) by considering the lowest AICc and number of predictors [45] (Table
S5), as implemented in the R package ‘MuMIn’ [46].

Table 1. Optimal spatial simultaneous autoregressive error model of species diversity, species composition, stand structural
attributes, initial above-ground biomass, and environmental factors on forest productivity.

Variable Estimate CI SE t-Value p-Value VIF

AGBi 0.045048 0.022–0.068 0.011753 3.833 <0.001 2.2
Species richness 0.025511 0.005–0.045 0.010313 2.474 <0.05 1.68

NMDS1 0.023597 0.006–0.04 0.008516 2.771 <0.01 2.64
Stand density 0.063777 0.039–0.087 0.012331 5.172 <0.001 2.49

DBHsi 0.041642 0.016–0.066 0.012664 3.288 <0.01 2.54
Topography PC1 0.013453 −0.01–0.03 0.010255 3.475 0.07 2.12

Soil PC1 0.010462 −0.01–0.03 0.012346 2.476 0.08 1.96

Model statistics
DF R2 SEresid F-value p-value VIF

494 0.28 0.18 38.7 <0.001 2.64

Notes: CI, 95% confidence interval for the regression coefficients; DF, degree of freedom; SE, standard error; SEresid, residual standard
error; VIF, variance inflation factor. The model selection is provided in Table S5.

Finally, structural equation models (SEMs) were used to examine both direct and
indirect effects of all predictor factors on forest productivity. Using the standardization
coefficient of each path in the model, the relative effect of different factors on productivity
was quantitatively expressed, so as to compare the relative importance of different factors
on productivity. Comparative fit index (CFI), Tucker Lewis index (TLI), root mean square
error of approximation (RMSEA), and standardized root mean square residual (SRMR)
were considered in SEM selection. SEMs were created using the R package “lavaan” [47].
All statistical analysis was implemented in R version 3.4.1 (R development core team, 2016).

3. Results
3.1. Correlations between Forest Productivity and Individual Predictor Variables

Based on linear regression tests, bivariate relationships indicated that forest produc-
tivity was positively associated with 7 of 11 predictor variables and negatively associated
with 1 of 11 predictor variables (Figure 2). AGBi (R2 = 0.16, p < 0.001; Figure 2d) explained
the most variation in forest productivity, followed by stand density (R2 = 0.12, p < 0.001;
Figure 2e) and species richness (R2 = 0.1, p < 0.001; Figure 2a). All three structural diversity
variables showed a significant positive impact on forest productivity (Figure 2e–g). Of the
diversity metrics, species richness explained more variation in forest productivity than
NMDS1 (R2 = 0.04, p < 0.001; Figure 2c), and of the environmental factors, topography PC1
(R2 = 0.02, p < 0.05; Figure 2j) explained more variance thank soil PC1 (R2 = 0.01, p < 0.05;
Figure 2h). Other three predictor variables including evenness, soilPC2 and topography
PC2 (p > 0.05; Figure 2b,i,k) do not show significant correlation with productivity.
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3.2. Relative Importance of Individual Predictor Variables on Forest Productivity

In the optimal spatial SARs model, only DBHsi, stand density, AGBi, species richness,
and NMDS1 had significant positive effects on productivity (Table 1), while topography
PC1 and soil PC1 had non-significant effects on productivity; other factors were not in the
optimal model.

SEMs showed that all predictor variables together accounted for 28% of the variation
in forest productivity (Figure 3A). DBHsi, stand density, AGBi, species richness, and
NMDS1 all had significant positive effects on productivity (Figure 3A,B). Species richness
had an indirect positive effect on productivity through NMDS1 (β = 0.014, p < 0.001) and
AGBi (β = 0.016, p < 0.001). Stand density had an indirect positive effect on productivity
through AGBi (β = 0.03, p < 0.001) and species richness (β = 0.07, p < 0.001), and indirect
negative effects through tree size diversity (β = −0.09, p < 0.001). DBHsi had an indirect
positive impact on productivity through AGBi (β = 0.16, p < 0.001). Topography PC1 had
an indirect positive effect on productivity through stand density (β = 0.03, p < 0.001) and
NMDS1 (β = 0.025, p < 0.001). Soil PC1 had an indirect positive effect on productivity
through species richness (β = 0.012, p < 0.001), and indirect negative effects via NMDS1
(β = −0.013, p < 0.001).
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Standardized total effects of each predictor variable on productivity showed that
DBHsi (value of effects) had the largest effect on productivity, followed by stand density,
initial biomass, species richness, NMDS1, and topography PC1.

4. Discussion

Assessing the drivers of forest productivity is vital for guiding forest management [4,5].
We found that species richness and composition had significant positive effects on forest pro-
ductivity, regardless of the effects of structural attributes, initial biomass, and environmental
variables. Structural attributes, including tree size diversity and stand density, were more
important modulators of forest productivity than species diversity.

Our results are consistent with findings that species richness enhances forest pro-
ductivity [40,48,49]. On one hand, our results support the niche complementarity effect
because higher niche differentiation promotes higher resource capture, leading to more
efficient resource use and higher productivity [13,50,51]; on the other hand, higher species
richness also increases the chance of selection effects [52,53]. The direct significant positive
effect of species composition on productivity indicated that the productivity increase in
our study was related to selection effects. Dominant tree species constitute a central part
of the community and are responsible for most of the energy and resource fluxes of the
ecosystem [35]; thus they contribute more to productivity increases [24]. Similar studies in
other subtropical forests have reported that dominant tree species predict local scale varia-
tion in forest above-ground carbon stocks and community productivity [54,55]. Species
richness also had an indirect positive effect on productivity through species composition in
our analysis. Our results indicate that productivity was simultaneously affected by niche
complementarity and selection effects.
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More importantly, as we hypothesized, structural variables had larger effects on forest
productivity than other factors in our study, supporting the niche complementarity hypoth-
esis [4–6]. Consistent with previous studies, stand density had a significant impact on forest
productivity, indicating that there was a strong interaction between individuals [56,57].
From low to high stand densities, it is widely accepted that the interactions among trees
will be more intensive, and trees will occupy more space and utilize more resources [20],
possibly leading to an increase in complementarity [58,59].

In our study, tree size diversity was more predictive than stand density of forest
productivity. We found that the total effect of tree size diversity on productivity was the
largest among all explanatory variables. Theoretically, tree size diversity directly reflects
the change of individual size in the horizontal structure and indirectly reflects the change of
vertical structure (i.e., tree height) [6,22]. Within forests, complex tree size structures have
been associated with increased light capture and use efficiencies [21,60]. Tree species with
high size variation or variable tree sizes in forest communities are likely to have their own
set of habitat requirements for water and soil nutrients [61]. Therefore, a multilayered forest
structure allows for more efficient utilization of resources in species diverse forests, leading
to enhanced productivity via niche differentiation [53]. Other studies have suggested
that the impact of tree size diversity on productivity is mainly due to higher species
diversity [6,62]. In stands with high species diversity, the canopy of different tree species
occupies different niches, thus forming a dense and vertically stratified canopy with high
tree size diversity [63,64]. However, our SEM results showed that there was no correlation
between species diversity index and tree size diversity. Therefore, our results support that
tree size diversity has an independent effect on forest productivity.

A similar study of the same subtropical forest showed that stand density was the
most important modulator of productivity, but also that forest age plays an important
role [4,23,65]. Our study included the number of DBH classes (DBHcs) as a structural
variable, which served as a proxy for forest age, but DBHcs was not a significant factor
in our SARs (Table 1). In the large scale study of Ouyang et al. [23], most forests were
still young (age <45 year) due to afforestation and natural forest restoration projects. The
mature forest in our study (age >100 years) with long-term natural gap dynamics promotes
layer differentiation, while simple structures (e.g., planted forests) or young forests either
do not, or the effects are well explained by species diversity [66]. The initial AGB was
included in our analysis and showed a strong correlation with the number of DBH classes
(AGBi in Table S2). Generally, AGB increases exponentially or as a power-function with
tree diameter at tree scale [67,68], and therefore initial AGB can largely replace the effects of
stand age. As demonstrated by previous studies [69,70], initial AGB had positive significant
effects on forest productivity. Our results bolster our knowledge that structural explanatory
variables are the greatest predictors of productivity in mature subtropical forests, regardless
of initial biomass, which strongly supports the niche complementarity effect.

It is important to emphasize that all predictor variables together accounted only for
28% of the variation in forest productivity based on our SEMs analysis. This highlights the
complex nature of the underlying determinants of forest productivity and further studies
are needed to improve our understanding of this important problem. Indeed, low power
of explanation of predictor variables on forest productivity is also found in similar studies
e.g., [23,24,70]. The predictor variables only accounted for 27% of productivity variation
(carbon gain of surviving trees) in a temperate mixed forest [70], 37% of productivity
variation in a subtropical forest [24], and 37% of aboveground net primary productivity in
a temperate deciduous forest [23]. One possible reason is that there are other important
factors that are determining natural forest productivity [5]. In controlled experimental
studies about the biodiversity-productivity relationship, the predictor variables can explain
40% to 60% of variation of productivity [48,71]. Moreover, low explanation may also be
related to the complexity of the forest ecosystem itself. Forest ecosystem has complex
vertical and horizontal structure, species diversity, environment factors, etc. Numerous
factors may dilute the strength of the explanation on productivity. For instance, the same
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set of predictor variables can explain up to 69% of variation in productivity in the simple
boreal forests, but only accounted for no more than 24% in temperate forest [57].

5. Conclusions

Our study provides evidence that structural explanatory variables predict productivity
in mature subtropical forests. Furthermore, we show that tree size diversity plays a
more important role than stand density and initial biomass on forest AGB productivity
of surviving trees, and is independent of species richness and composition, supporting
the niche complementarity hypothesis. In sum, our results suggest that regulating and
conserving forest stand complexity should be among the most important goals to promote
higher forest productivity in subtropical forest management.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.339
0/f12080998/s1, Table S1: Allometric equations for the calculation of tree species above-ground biomass.
Table S2: Pearson correlation analysis of species diversity, structural diversity, aboveground biomass,
and environmental factors. Table S3: Summary of variables used in analyses in Tiantong plot. Table S4:
Summary of the generalized least-squares (GLS) models of productivity on predictors at Tiantong plot.
Table S5: Model comparison results of multiple linear mixed models predicting the log response ratio of
productivity (∆AGB). Listed are the top 5 models. Standardized regression coefficients (Beta) for each
predictor are given. Selected optimal models are highlighted in grey color. Figure S1: Soil sampling map
in the 20-ha Tiantong forest dynamics plot. Figure S2: Non-metric multidimensional scaling ordination of
Tiantong plot. NMDS output showing site scores (red dots) and species scores (blue text) of the ten most
abundant species. Figure S3: Principal component analysis (PCA) of elevation, aspect, and slope. Figure
S4: Principal component analysis (PCA) of total nitrogen (TN), total phosphorus (TP), pH value (pH), and
soil depth (SD).

Author Contributions: S.R., X.W., and Q.Y. conceived and designed the study. H.L., S.Z., M.L., H.Y.,
and Z.Z. (Zhengkang Zhou) collected the data. S.R., Z.Z. (Zemei Zheng), G.S., and Q.Y. provided
analysis tools and analyzed the data. Q.Y., S.R., and X.W. drafted and revised the article. All authors
have read and agreed to the published version of the manuscript.

Funding: This study was financially supported by the National Natural Science Foundation of
China (Grant No. 31901103, 31800351&31210103920), and by “Fundamental Research Funds for the
Central Universities”.

Data Availability Statement: Data available for research upon request.

Acknowledgments: We thank Haibo Yang, Qingkai Lin, Xiyang Fei, Yi Zong, Binbin Li, Li Lin,
Shu Dong, Mingjiao Yuan, Yuqin Su, and Xiaoying Sun for help with the field work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Naeem, S. Biodiversity, Ecosystem Functioning, and Human Wellbeing; Oxford University Press: Oxford, UK, 2009.
2. Grace, J.B.; Anderson, T.M.; Seabloom, E.W.; Borer, E.T.; Adler, P.B.; Harpole, W.S.; Hautier, Y.; Hillebrand, H.; Lind, E.M.; Partel,

M.; et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 2016, 529, 390–393.
[CrossRef] [PubMed]

3. Tilman, D.; Reich, P.B.; Knops, J.M.H.; Wedin, D.A.; Mielke, T.; Lehman, C. Diversity and Productivity in a Long-Term Grassland
Experiment. Science 2001, 294, 843–845. [CrossRef]

4. Forrester, D.I.; Bauhus, J. A review of processes behind diversity—productivity relationships in forests. Curr. For. Rep. 2016,
2, 45–61. [CrossRef]

5. Ali, A. Forest stand structure and functioning: Current knowledge and future challenges. Ecol. Indic. 2018, 98, 665–677. [CrossRef]
6. Zhang, Y.; Chen, H.Y.H. Individual size inequality links forest diversity and above-ground biomass. J. Ecol. 2015, 103, 1245–1252.

[CrossRef]
7. Grime, J.P. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J. Ecol. 1998, 86, 902–910. [CrossRef]
8. Naeem, S.; Hahn, D.R.; Schuurman, G.W. Producer–decomposer co-dependency influences biodiversity effects. Nature 2000,

403, 762–764. [CrossRef]
9. Huston, M.A. Hidden treatments in ecological experiments: Re-evaluating the ecosystem function of biodiversity. Oecologia 1997,

110, 449–460. [CrossRef]

https://www.mdpi.com/article/10.3390/f12080998/s1
https://www.mdpi.com/article/10.3390/f12080998/s1
http://doi.org/10.1038/nature16524
http://www.ncbi.nlm.nih.gov/pubmed/26760203
http://doi.org/10.1126/science.1060391
http://doi.org/10.1007/s40725-016-0031-2
http://doi.org/10.1016/j.ecolind.2018.11.017
http://doi.org/10.1111/1365-2745.12425
http://doi.org/10.1046/j.1365-2745.1998.00306.x
http://doi.org/10.1038/35001568
http://doi.org/10.1007/s004420050180


Forests 2021, 12, 998 11 of 13

10. Tilman, D.; Knops, J.; Wedin, D.; Reich, P.; Ritchie, M.; Siemann, E. The influence of functional diversity and composition on
ecosystem processes. Science 1997, 277, 1300–1302. [CrossRef]

11. Díaz, S.; Lavorel, S.; de Bello, F.; Quétier, F.; Grigulis, K.; Robson, T.M. Incorporating plant functional diversity effects in ecosystem
service assessments. Proc. Natl. Acad. Sci. USA 2007, 104, 20684–20689. [CrossRef]

12. Loreau, M.; Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 2001, 412, 72–76. [CrossRef]
[PubMed]

13. Chisholm, R.A.; Mullerlandau, H.C.; Rahman, K.A.; Bebber, D.P.; Bin, Y.; Bohlman, S.A.; Bourg, N.A.; Brinks, J.S.; Bunyavejchewin, S.;
Butt, N. Scale-dependent relationships between tree species richness and ecosystem function in forests. J. Ecol. 2013, 101, 1214–1224.
[CrossRef]

14. Cavard, X.; Bergeron, Y.; Chen, H.Y.H.; Pare, D. Mixed-species effect on tree aboveground carbon pools in the east-central boreal
forests. Can. J. For. Res. 2010, 40, 37–47. [CrossRef]

15. Seidel, D.; Leuschner, C.; Scherber, C.; Beyer, F.; Wommelsdorf, T.; Cashman, M.J.; Fehrmann, L. The relationship between tree
species richness, canopy space exploration and productivity in a temperate broad-leaf mixed forest. For. Ecol. Manag. 2013,
310, 366–374. [CrossRef]

16. Vila, M.; Vayreda, J.; Gracia, C.; Ibanez, J.J. Does tree diversity increase wood production in pine forests. Oecologia 2003,
135, 299–303. [CrossRef]

17. Buongiorno, J.; Dahir, S.E.; Lu, H.; Lin, C. Tree size diversity and economic returns in uneven-aged forest stands. For. Sci. 1994,
40, 83–103.

18. Coomes, D.A.; Kunstler, G.; Canham, C.D.; Wright, E.F. A greater range of shade-tolerance niches in nutrient-rich forests:
An explanation for positive richness–productivity relationships? J. Ecol. 2009, 97, 705–717. [CrossRef]

19. Clark, J.S. Individuals and the variation needed forhigh species diversity in forest trees. Science 2010, 327, 1129–1132. [CrossRef]
20. Morin, X. Species richness promotes canopy packing: A promising step towards a better understanding of the mechanisms

driving the diversity effects on forest functioning. Funct. Ecol. 2015, 29, 993–994. [CrossRef]
21. Dănescu, A.; Albrecht, A.; Bauhus, J. Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern

Germany. Oecologia 2016, 182, 319–333. [CrossRef]
22. Yachi, S.; Loreau, M. Does complementary resource use enhance ecosystem functioning? A model of light competition in plant

communities. Ecol. Lett. 2007, 10, 54–62. [CrossRef] [PubMed]
23. Ouyang, S.; Xiang, W.; Wang, X.; Xiao, W.; Chen, L.; Li, S.; Sun, H.; Deng, X.; Forrester, D.I.; Zeng, L. Effects of stand age, richness

and density on productivity in subtropical forests in China. J. Ecol. 2019, 107, 2266–2277. [CrossRef]
24. Fotis, A.T.; Morin, T.H.; Fahey, R.T.; Hardiman, B.S.; Bohrer, G.; Curtis, P.S. Forest structure in space and time: Biotic and abiotic

determinants of canopy complexity and their effects on net primary productivity. Agric. For. Meteorol. 2018, 250–251, 181–191.
[CrossRef]

25. Lohbeck, M.; Poorter, L.; Martinezramos, M.; Bongers, F. Biomass is the main driver of changes in ecosystem process rates during
tropical forest succession. Ecology 2015, 96, 1242–1252. [CrossRef] [PubMed]

26. Pretzsch, H.; Bielak, K.; Block, J.; Bruchwald, A.; Dieler, J.; Ehrhart, H.P.; Kohnle, U.; Nagel, J.; Spellmann, H.; Zasada, M.; et al.
Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus
sylvatica L.) along an ecological gradient. Eur. J. For. Res. 2013, 132, 263–280. [CrossRef]

27. Toigo, M.; Vallet, P.; Perot, T.; Bontemps, J.; Piedallu, C.; Courbaud, B. Overyielding in mixed forests decreases with site
productivity. J. Ecol. 2015, 103, 502–512. [CrossRef]

28. Yang, Q.; Shen, G.; Liu, H.; Wang, Z.; Ma, Z.; Fang, X.; Zhang, J.; Wang, X. Detangling the effects of environmental filtering
and dispersal limitation on aggregated distributions of tree and shrub species: Life stage matters. PLoS ONE 2016, 11, e0156326.
[CrossRef]

29. Wang, X.H.; Kent, M.; Fang, X.F. Evergreen broad-leaved forest in Eastern China: Its ecology and conservation and the importance
of resprouting in forest restoration. For. Ecol. Manag. 2007, 245, 76–87. [CrossRef]

30. Condit, R. Tropical Forest Census Plots Methods and Results from BARRO Colorado Island, Panama and a Comparison with Other Plots;
Springer: Berlin/Heidelberg, Germany, 1998.

31. John, R.; Dalling, J.W.; Harms, K.E.; Yavitt, J.B.; Stallard, R.F.; Mirabello, M.; Hubbell, S.P.; Valencia, R.; Navarrete, H.; Vallejo, M.;
et al. Soil nutrients influence spatial distributions of tropical tree species. Proc. Natl. Acad. Sci. USA 2007, 104, 864–869. [CrossRef]

32. Yang, Q.; Yang, H.; Fang, X.; Yan, E.; Wang, X.; Ma, Z.; Xie, Y.; Zhang, Z.; Wang, Z.; Liu, H.; et al. Community structure and
species composition of an evergreen broad-leaved forest in Tiantong’s 20 ha dynamic plot, Zhejiang Province, eastern China.
Biodiversity 2011, 19, 215–223.

33. Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Wagner, H. Multivariate analysis of ecological communities in R: Vegan
tutorial. R Package Version 2011, 1, 1–43.

34. Fortin, M.J.; Dale, M.R.T. Spatial Analysis: A Guide for Ecologist; Cambridge University Press: Cambridge, UK, 2005.
35. Fahey, R.T.; Fotis, A.T.; Woods, K.D. Quantifying canopy complexity and effects on productivity and resilience in late-successional

hemlock–hardwood forests. Ecol. Appl. 2015, 25, 834–847. [CrossRef] [PubMed]
36. Harms, K.E.; Condit, R.; Hubbell, S.P.; Foster, R.B. Habitat associations of trees and shrubs in a 50-ha Neotropical forest plot.

J. Ecol. 2001, 89, 947–959. [CrossRef]

http://doi.org/10.1126/science.277.5330.1300
http://doi.org/10.1073/pnas.0704716104
http://doi.org/10.1038/35083573
http://www.ncbi.nlm.nih.gov/pubmed/11452308
http://doi.org/10.1111/1365-2745.12132
http://doi.org/10.1139/X09-171
http://doi.org/10.1016/j.foreco.2013.08.058
http://doi.org/10.1007/s00442-003-1182-y
http://doi.org/10.1111/j.1365-2745.2009.01507.x
http://doi.org/10.1126/science.1183506
http://doi.org/10.1111/1365-2435.12473
http://doi.org/10.1007/s00442-016-3623-4
http://doi.org/10.1111/j.1461-0248.2006.00994.x
http://www.ncbi.nlm.nih.gov/pubmed/17204117
http://doi.org/10.1111/1365-2745.13194
http://doi.org/10.1016/j.agrformet.2017.12.251
http://doi.org/10.1890/14-0472.1
http://www.ncbi.nlm.nih.gov/pubmed/26236838
http://doi.org/10.1007/s10342-012-0673-y
http://doi.org/10.1111/1365-2745.12353
http://doi.org/10.1371/journal.pone.0156326
http://doi.org/10.1016/j.foreco.2007.03.043
http://doi.org/10.1073/pnas.0604666104
http://doi.org/10.1890/14-1012.1
http://www.ncbi.nlm.nih.gov/pubmed/26214927
http://doi.org/10.1111/j.1365-2745.2001.00615.x


Forests 2021, 12, 998 12 of 13

37. Lai, J.; Mi, X.; Ren, H.; Ma, K. Species-habitat associations change in a subtropical forest of China. J. Veg. Sci. 2009, 20, 415–423.
[CrossRef]

38. Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 2010, 1, 103–113.
[CrossRef]

39. Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D. nlme:Linear and nonlinear mixed effects models. R Package Version 2014, 3, 1–117.
40. Yuan, Z.; Wang, S.; Ali, A.; Gazol, A.; Ruiz-Benito, P.; Wang, X.; Lin, F.; Ye, J.; Hao, Z.; Loreau, M. Aboveground carbon storage

is driven by functional trait composition and stand structural attributes rather than biodiversity in temperate mixed forests
recovering from disturbances. Ann. For. Sci. 2018, 75, 67. [CrossRef]

41. Zuur, A.F.; Ieno, E.N.; Walker, N.J.; Saveliev, A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Springer:
New York, NY, USA, 2010; pp. 464–465.

42. Kissling, W.D.; Carl, G. Spatial autocorrelation and the selection of simultaneous autoregressive models. Glob. Ecol. Biogeogr.
2008, 17, 59–71. [CrossRef]

43. Graham, M. Confronting multicollinearity in ecological multiple regression. Ecology 2003, 84, 2809–2815. [CrossRef]
44. Fox, J.; Weisberg, S.; Adler, D.; Bates, D.; Baudbovy, G.; Ellison, S.; Firth, D.; Friendly, M.; Gorjanc, G.; Graves, S.; et al. Package

‘car’ 2.0-25: Companion to Applied Regression. October 2015. Available online: http://cran.r-project.org/web/packages/car/
index.html (accessed on 27 July 2021).

45. Burnham, K.; Anderson, D.; Burnham, P.; Anderson, R. Model Selection and Multimodel Inference: A Practical Information-Theoretical
Approach; Springer: Berlin/Heidelberg, Germany, 2010.

46. Bartoń, K. Multi-model inference. Sociol. Methods Res. 2016, 33, 261–304.
47. Fox, J. Teacher’s corner: Structural equation modeling with the sem package in R. Struct. Equ. Model. A Multidiscip. J. 2006,

13, 465–486. [CrossRef]
48. Liang, J.; Crowther, T.W.; Picard, N.; Wiser, S.; Zhou, M.; Alberti, G.; Schulze, E.D.; McGuire, A.D.; Bozzato, F.; Pretzsch, H.; et al.

Positive biodiversity-productivity relationship predominant in global forests. Science 2016, 354, 6309. [CrossRef]
49. Liu, X.; Trogisch, S.; He, J.-S.; Niklaus, P.A.; Bruelheide, H.; Tang, Z.; Erfmeier, A.; Scherer-Lorenzen, M.; Pietsch, K.A.; Yang,

B. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. R. Soc. B Biol. Sci. 2018, 285, 20181240.
[CrossRef]

50. Gamfeldt, L.; Snall, T.; Bagchi, R.; Jonsson, M.; Gustafsson, L.; Kjellander, P.; Ruizjaen, M.C.; Froberg, M.; Stendahl, J.; Philipson,
C.D. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 2013, 4, 1340.
[CrossRef] [PubMed]

51. Zhang, Y.; Chen, H.Y.H.; Reich, P.B. Forest productivity increases with evenness, species richness and trait variation: A global
meta-analysis. J. Ecol. 2012, 100, 742–749. [CrossRef]

52. Fotis, A.T.; Murphy, S.J.; Ricart, R.D.; Krishnadas, M.; Whitacre, J.; Wenzel, J.W.; Queenborough, S.A.; Comita, L.S.; Hector, A.
Above-ground biomass is driven by mass-ratio effects and stand structural attributes in a temperate deciduous forest. J. Ecol.
2018, 106, 561–570. [CrossRef]

53. Poorter, L.; Der Sande, M.T.V.; Thompson, J.; Arets, E.J.M.M.; Alarcon, A.; Alvarezsanchez, J.; Ascarrunz, N.; Balvanera, P.;
Barajasguzman, G.; Boit, A. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr. 2015, 24, 1314–1328.
[CrossRef]

54. Song, K.; Yu, Q.; Shang, K.; Yang, T.; Da, L. The spatio-temporal pattern of historical disturbances of an evergreen broadleaved
forest in East China: A dendroecological analysis. Plant Ecol. 2011, 212, 1313–1325. [CrossRef]

55. Lin, D.; Andersonteixeira, K.J.; Lai, J.; Mi, X.; Ren, H.; Ma, K. Traits of dominant tree species predict local scale variation in forest
aboveground and topsoil carbon stocks. Plant Soil 2016, 409, 435–446. [CrossRef]

56. Forrester, J.A.; Mladenoff, D.J.; Gower, S.T. Experimental manipulation of forest structure: Near-term effects on gap and stand
scale C dynamics. Ecosystems 2013, 16, 1455–1472. [CrossRef]

57. Paquette, A.; Messier, C. The effect of biodiversity on tree productivity: From temperate to boreal forests. Glob. Ecol. Biogeogr.
2011, 20, 170–180. [CrossRef]

58. Boyden, S.; Binkley, D.; Senock, R. Competition and facilitation between Eucalyptus and nitrogen-fixing Falcataria in relation to
soil fertility. Ecology 2005, 86, 992–1001. [CrossRef]

59. Forrester, D.I.; Kohnle, U.; Albrecht, A.T.; Bauhus, J. Complementarity in mixed-species stands of Abies alba and Picea abies
varies with climate, site quality and stand density. For. Ecol. Manag. 2013, 304, 233–242. [CrossRef]

60. Ali, A.; Yan, E.-R. The mediation roles of intraspecific and interspecific functional trait diversity for linking the response of
aboveground biomass to species richness across forest strata in a subtropical forest. Ecol. Indic. 2018, 85, 493–501. [CrossRef]

61. Lei, X.; Wang, W.; Peng, C. Relationships between stand growth and structural diversity in spruce-dominated forests in New
Brunswick, Canada. Can. J. For. Res. 2009, 39, 1835–1847. [CrossRef]

62. Chiang, J.M.; Spasojevic, M.J.; Muller-Landau, H.C.; Sun, I.F.; Lin, Y.; Su, S.H.; Chen, Z.S.; Chen, C.T.; Swenson, N.G.; McEwan,
R.W. Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest.
Oecologia 2016, 182, 829–840. [CrossRef]

63. Pretzsch, H.; Schutze, G. Effect of tree species mixing on the size structure, density, and yield of forest stands. Eur. J. For. Res.
2016, 135, 1–22. [CrossRef]

http://doi.org/10.1111/j.1654-1103.2009.01065.x
http://doi.org/10.1111/j.2041-210X.2010.00012.x
http://doi.org/10.1007/s13595-018-0745-3
http://doi.org/10.1111/j.1466-8238.2007.00334.x
http://doi.org/10.1890/02-3114
http://cran.r-project.org/web/packages/car/index.html
http://cran.r-project.org/web/packages/car/index.html
http://doi.org/10.1207/s15328007sem1303_7
http://doi.org/10.1126/science.aaf8957
http://doi.org/10.1098/rspb.2018.1240
http://doi.org/10.1038/ncomms2328
http://www.ncbi.nlm.nih.gov/pubmed/23299890
http://doi.org/10.1111/j.1365-2745.2011.01944.x
http://doi.org/10.1111/1365-2745.12847
http://doi.org/10.1111/geb.12364
http://doi.org/10.1007/s11258-011-9907-1
http://doi.org/10.1007/s11104-016-2976-0
http://doi.org/10.1007/s10021-013-9695-7
http://doi.org/10.1111/j.1466-8238.2010.00592.x
http://doi.org/10.1890/04-0430
http://doi.org/10.1016/j.foreco.2013.04.038
http://doi.org/10.1016/j.ecolind.2017.10.057
http://doi.org/10.1139/X09-089
http://doi.org/10.1007/s00442-016-3717-z
http://doi.org/10.1007/s10342-015-0913-z


Forests 2021, 12, 998 13 of 13

64. Williams, L.; Paquette, A.; Cavenderbares, J.; Messier, C.; Reich, P.B. Spatial complementarity in tree crowns explains overyielding
in species mixtures. Nat. Ecol. Evol. 2017, 1, 0063. [CrossRef]

65. Ali, A.; Yan, E.-R. The forest strata-dependent relationship between biodiversity and aboveground biomass within a subtropical
forest. For. Ecol. Manag. 2017, 401, 125–134. [CrossRef]

66. Pedro, M.S.; Rammer, W.; Seidl, R. Disentangling the effects of compositional and structural diversity on forest productivity.
J. Veg. Sci. 2017, 28, 649–658. [CrossRef]

67. Chave, J.; Rejoumechain, M.; Burquez, A.; Chidumayo, E.N.; Colgan, M.S.; Delitti, W.B.C.; Duque, A.; Eid, T.; Fearnside, P.M.;
Goodman, R.C. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 2014,
20, 3177–3190. [CrossRef] [PubMed]

68. Ali, A.; Xu, M.S.; Zhao, Y.T.; Zhang, Q.Q.; Zhou, L.L.; Yang, X.D.; Yan, E.R. Allometric biomass equations for shrub and small tree
species in subtropical China. Silva Fenn. 2015, 49, 1–10. [CrossRef]

69. Prado-Junior, J.A.; Schiavini, I.; Vale, V.S.; Arantes, C.S.; van der Sande, M.T.; Lohbeck, M.; Poorter, L. Conservative species drive
biomass productivity in tropical dry forests. J. Ecol. 2016, 104, 817–827. [CrossRef]

70. Cai, H.; Li, F.; Jin, G. Soil nutrients, forest structure and species traits drive aboveground carbon dynamics in an old-growth
temperate forest. Sci. Total Environ. 2020, 705, 135874. [CrossRef] [PubMed]

71. Huang, Y.; Chen, Y.; Castroizaguirre, N.; Baruffol, M.; Brezzi, M.; Lang, A.C.; Li, Y.; Hardtle, W.; Von Oheimb, G.; Yang, X.; et al.
Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 2018, 362, 80–83. [CrossRef]
[PubMed]

http://doi.org/10.1038/s41559-016-0063
http://doi.org/10.1016/j.foreco.2017.06.056
http://doi.org/10.1111/jvs.12505
http://doi.org/10.1111/gcb.12629
http://www.ncbi.nlm.nih.gov/pubmed/24817483
http://doi.org/10.14214/sf.1275
http://doi.org/10.1111/1365-2745.12543
http://doi.org/10.1016/j.scitotenv.2019.135874
http://www.ncbi.nlm.nih.gov/pubmed/31841914
http://doi.org/10.1126/science.aat6405
http://www.ncbi.nlm.nih.gov/pubmed/30287660

	Introduction 
	Materials and Methods 
	Study Area 
	Data Collection 
	Above-Ground Biomass and Productivity Calculation 
	Species and Structural Variables 
	Environmental Variables 
	Statistical Analyses 

	Results 
	Correlations between Forest Productivity and Individual Predictor Variables 
	Relative Importance of Individual Predictor Variables on Forest Productivity 

	Discussion 
	Conclusions 
	References

