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Abstract
The utilization of the most prevalent endosymbionts Wolbachia spp. to tackle insect-borne viral diseases is growing rapidly. 
Understanding how and how often Wolbachia establish in a local population is fundamental to replacement releases but 
remains unclear. Previous models make the prediction of poor performance of Wolbachia at low frequencies that contradicts 
the natural ubiquity of those endosymbionts, and the prediction of almost certain fixation of Wolbachia at high frequencies 
that cannot explain the large fluctuations and collapses of infection in field releases. Here, we investigated whether those 
paradoxes can be reconciled by the stochasticity originating from fecundity overdispersion within host insects. We first 
reanalysed published data sets and showed that fecundity was mostly overdispersed in insects. To understand the effects of 
host fecundity variation on Wolbachia establishment, we further constructed a model accounting for cytoplasmic incompat-
ibility and fecundity cost on infected hosts. Based on the empirical results of fecundity overdispersion, the model predicted 
not only a biologically relevant probability for Wolbachia to establish from a single infection, but also a large uncertainty of 
fixation at high frequencies. These findings will enable a better understanding of endosymbiont-insect dynamics and help 
to design sustainable strategies to control arboviral diseases.
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Key message

• Wolbachia has been widely used to control arboviruses, 
but how fecundity variation of the vector impacts Wol-
bachia establishment remains unknown.

• Fecundity overdispersion was observed in most studied 
insects, and it may help Wolbachia to establish from low 
frequencies but reduce the certainty of fixation at high 
frequencies.

• Fecundity variation should be considered in Wolbachia-
based vector replacement strategies, and more transfected 
individuals may need to be released across a longer 
period than is currently used.

Introduction

Ubiquitous arthropod-borne viruses (arboviruses) have 
been posing threats to human health for a long time. The 
pandemic of dengue virus infection has spread to five con-
tinents at an unprecedentedly high rate of 390 million cases 
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per year, placing over 3 billion people at risk of the dis-
ease (Bhatt et al. 2013; Brady and Hay 2020). Since the first 
noteworthy epidemic on Yap Island in Micronesia in 2007, 
Zika virus has caused massive outbreaks throughout South 
America, Central America, and the Caribbean (Cugola et al. 
2016; Fauci and Morens 2016). Besides the developments 
of effective vaccines and therapeutics against pathogenic 
arboviruses, control of their vector populations also plays 
a critical role in epidemic prevention (Ritchie et al. 2018). 
However, suppressing the vectors through chemical insec-
ticides is challenged by the evolution of resistance (Moyes 
et al. 2017) and criticism on the damages to ecosystems 
caused by the chemicals (Pance 2018). Recently, more effec-
tive, natural, and self-sustaining biocontrol strategies using 
endosymbionts have been proposed and developed (Dorigatti 
et al. 2018; Ghosh et al. 2018; Ross et al. 2019).

Wolbachia spp. are probably the most abundant endo-
symbiotic intracellular bacteria infecting more than half 
of the million-plus species of insects (Hilgenboecker et al. 
2008; Zug et al. 2012). Some Wolbachia strains have been 
recognized to effectively inhibit the proliferation and trans-
mission of various RNA arboviruses in their host insects 
(Hedges et al. 2008; Teixeira et al. 2008), probably through 
competition over resources and innate immune priming (Ter-
radas and McGraw 2017). However, Wolbachia do not natu-
rally occur in some arboviral vectors including the primary 
vector of Zika, dengue, malaria, and chikungunya (i.e. the 
Aedes aegypti mosquito). A promising avenue for tackling 
this issue is release of transinfected vectors, which aims at 
population replacement with virus-blocking Wolbachia. 
So far, introduction of wMel Wolbachia strains from Dros-
ophila melanogaster into A. aegypti is the leading transin-
fection mode, with operational releases in ten countries by 
the World Mosquito Program (Ritchie et al. 2018). These 
wMel-releases have resulted in a dramatic reduction (up to 
97%) of dengue incidence in the project sites where Wol-
bachia have established at high frequency, in contrast to only 
a moderate reduction (c. 50%) in hot areas such as Brazil 
(https ://www.world mosqu itopr ogram .org/). In the light of 
large reduction in invasiveness and virus-blocking capacities 
for wMel at high temperatures in contrast to wAlbB from A. 
albopictus which is much less susceptible to similar tem-
peratures (Ant et al. 2018; Ross et al. 2017), wAlbB may be 
well suited for population replacement in hot tropical envi-
ronments. Recently, A. aegypti mosquitoes carrying wAlbB 
were released at six sites in Kuala Lumpur, Malaysia (Nazni 
et al. 2019). The strain has been successfully established and 
maintained at high frequency at some sites, but large fluc-
tuations of Wolbachia frequency were also observed (Nazni 
et al. 2019).

A key driver for Wolbachia replacement is the induc-
tion of cytoplasmic incompatibility (CI), which elevates the 
mortality of embryos of matings between infected males 

and uninfected females or females carrying an incompat-
ible Wolbachia strain (Hoffmann and Turelli 1997; Laven 
1956). Because of maternal transmission of Wolbachia, 
CI provides infected females with a frequency-dependent 
fitness advantage (Caspari and Watson 1959). Successful 
establishment of Wolbachia then depends on CI outweigh-
ing possible fitness cost on infected hosts and outweighing 
incomplete maternal transmission of infection (Hancock 
et al. 2011; Turelli 1994). This creates bistable frequency 
dynamics under which the infection frequency must exceed 
a threshold for Wolbachia to spread rather than to be lost 
from a population (Caspari and Watson 1959). Other dynam-
ics, such as Fisherian dynamics under which Wolbachia will 
always spread throughout the host populations even with 
very low initial numbers in the absence of CI (Barton and 
Turelli 2011), are seldom reported or utilized in arbovirus 
control (but see Kriesner et al. 2013).

However, large fluctuations in infection frequency and 
thereby obstructions of Wolbachia invasion confronting 
field replacement releases are beyond the prediction of the 
model. In the A. aegypti population of Nogotirto, Indonesia, 
wMel frequency was raised to more than 80% at the end 
of field release period, but then oscillated strongly between 
50 and 100% (Tantowijoyo et al. 2020). Collapse of wMel 
introduction has also been observed in Westcourt, Australia 
(Schmidt et al. 2017) and Rio de Janeiro, Brazil (Garcia et al. 
2019). Following the releases of wAlbB-carrying A. aegypti 
in Malaysia, the Wolbachia frequency once exceeded 95% 
but subsequently fluctuated and even decreased to 20% at 
two of four primary intervention sites (Nazni et al. 2019). 
Temperature susceptibility of Wolbachia strain or lack of 
insecticide resistance in released mosquitoes may account 
for some unavailing releases (Ant et al. 2018; Garcia et al. 
2019), but was proved to have minor effect in some other 
cases (e.g. Nazni et al. 2019).

An alternative and probably more general factor that 
underlies large fluctuations and thereby collapse of Wol-
bachia introduction is stochastic processes (Engelstadter 
and Telschow 2009). Previous drift models showed weak 
impacts of stochasticity on Wolbachia dynamics in large 
host populations, leading to a conclusion that employment 
of Wolbachia as a driving element in pest control normally 
does not need to consider stochastic effects (Egas et al. 
2002; Jansen et al. 2008). However, those models invoked 
the population genetic parameter ‘effective population 
size’, i.e. the size of an idealized panmictic population 
that experiences the same strength of genetic drift as the 
actual population (Fisher 1930; Wright 1931). This param-
eter facilitates modelling but can hardly assist Wolbachia-
based epidemic management, because effective population 
size is usually unknown for most vector populations and is 
difficult to estimate accurately (Wang 2016). In contrast, 
more variation in fecundity than expected by the Poisson 
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distribution (termed ‘overdispersion’), the latter assumed 
in the Wright–Fisher idealized population (Kimura and 
Crow 1963), has been observed in many insect species 
including mosquitoes (Blackmore and Lord 2000; Fergu-
son et al. 2003; Vezilier et al. 2012). It should be expected 
that such overdispersion generates more stochasticity to 
the invasion dynamics of Wolbachia and, importantly, that 
the degree of the overdispersion can be easily estimated 
in the laboratory or in the field. Overdispersion may also 
provide an explanation for the paradox between the model 
prediction of poor performance of Wolbachia in a novel 
host from few infections and the reality that Wolbachia 
have successfully infected millions of arthropod species 
(Fenton et al. 2011). Nevertheless, fecundity overdisper-
sion has rarely been evaluated empirically in insect popu-
lations, nor is it understood how fecundity overdispersion 
impacts the fates of Wolbachia in a local host population.

Here we present evidence of fecundity overdispersion 
in insects through reanalyzing empirical data sets and 
construct a general Wolbachia frequency-dynamic model 
explicitly considering host fecundity variation. Based on 
the empirical estimates of overdispersion, we performed 
a general analysis using the model. We then further used 
the model to estimate the number of infected vectors 
required for successful population replacement, to offer 
some operational suggestions for optimum release strate-
gies in Wolbachia-based biocontrol. Additionally, we also 
explore how and how often Wolbachia succeed to invade 
a novel host population starting from a single infection, 
which may provide mechanistic insights into the ubiquity 
of those endosymbionts.

Materials and method

Literature search

We conducted a literature search using ‘TI = (fecundity) 
and TS = (insect*)’ on the ISI Web of Knowledge database 
(http://apps.webof knowl edge.com) in April 2020 to iden-
tify experimental data of insect fecundity, yielding a total 
of 1914 records. We also searched for the fecundity of A. 
aegypti using ‘TS = (A. aegypti and fecundity)’, yielding 
672 records. We then screened these records according to 
the following criteria: (i) realized fecundity (not potential 
fecundity) was measured, (ii) insect fecundity was counted 
at the individual level, and (iii) there was at least one group 
of studied insects free of the experimental treatments that are 
unlikely to occur in natural conditions (e.g. pesticides and 
RNA interference). After screening, we retained 56 studies 
for estimation of fecundity dispersion (Appendix S1, Sup-
porting Information).

Estimation of fecundity dispersion

For each species examined in each retained study, we calcu-
lated the sample size (n), the mean ( 

−
x ), and variance (S2) of 

fecundity from the deposited data. If original data were not 
available, these statistics were extracted from main texts or 
graphs only concerning the insect individuals that met the 
third criterion. When multiple groups were needed to be 
combined together (the conditions could occur in the same 
population, e.g. treatments with different hosts), but the sta-
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dix S2). In the cases where only the ranges of fecundity were 
reported for each group, we randomly sampled ni values 
from the corresponding uniform distribution. We then 
pooled all groups together and calculated the summary sta-
tistics based on 10,000 simulations for each species. The 
Kolmogorov–Smirnov test was used to examine whether the 
fecundity data were Poisson distributed in each species. If 
not, overdispersion parameter θ was estimated by 
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 . Zero inflation is a source of overdispersion 
(Linden and Mantyniemi 2011), but zeros might have been 
eliminated in data analyses, leading to an underestimation 
of overdispersion. Hence, we recorded whether zero values 
were included in each data set.

The model of Wolbachia dynamics

We construct a general dynamic model of infection fre-
quency to describe how host fecundity variation together 
with CI and infection cost impact the fate of Wolbachia in a 
host population. We focus on CI because it is the most fre-
quently found Wolbachia-induced reproductive effect (Wer-
ren et al. 2008) and most relevant to Wolbachia invasion for 
pest management (Ritchie et al. 2018).

We denote the fecundity of the ith infected female and 
that of the jth uninfected female using FI(i) and FU(j) (both 
can be zero), which have expected values of λ1 and λ2, 
respectively. The fecundity cost due to Wolbachia parasit-
ism is thus given by sf = 1–λ1/λ2. We let H < 1 represent 
the hatch rate from a CI cross relative to other crosses, 
and let μ ≤ 1 denote the probability for an infected female 
to transmit Wolbachia to its eggs. Thus, sh = 1–H quan-
tifies the intensity of CI, and 1–μ quantifies imperfect 
maternal transmission. We assume discrete generations 
of the host population, but generation overlap and age 
structure may be incorporated into our model like Turelli 
(2010) and Hancock et al. (2011). Panmixia is assumed 
for the host population, and more realistic nonrandom 
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mating may be reconciled by partitioning the population 
into several panmictic subpopulations linked via gene 
flow.

The population dynamics of Wolbachia can be mod-
elled by tracking changes in the frequency of infected 
hosts across generations. If the frequency of hosts being 
infected at generation t is pt, and the total number of 
reproductive females within the population is N, the num-
bers of crosses are then expected to be Npt

2, Npt(1–pt), 
Npt(1–pt), and N(1–pt)2, for IF × IM, IF × UM, UF × IM, 
and UF × UM, respectively (I: infected, U: uninfected; F: 
female, M: male). Multiplying them by the corresponding 
fecundity and hatch rate, we obtain the recursion equation

Stochastic deviation of the numbers of crosses from the 
expectations may exist due to finite population size, but 
we argue that the variation can be regarded as a source 
of dispersion in fecundity (FI and FU). Therefore, Eq. (1) 
holds in such cases. For investigating the role of host 
fecundity variation in the dynamics of Wolbachia, we 
characterize FI and FU in the following three cases.

Case 1: No variation of fecundity

We first assume constant fecundity, that is, FI = λ1 and 
FU = λ2. Then, Eq. (1) reduces to

and yields three equilibria by setting pt+1 = pt:

For a simple example, if we assume perfect maternal 
transmission (i.e. μ = 1), there will be two stable equi-
libria (p = 0 and p = 1) and one unstable equilibrium 
( ̂p = sf∕sh ) for the infection frequency. When the initial 
frequency (p0) is above the establishment threshold p̂ , 
Wolbachia will spread throughout the whole population, 
but when p0 < ̂p , Wolbachia will ultimately be lost in this 
population. Thus, this case corresponds to those deter-
ministic models that predict bistable dynamics (Barton 
and Turelli 2011; Caspari and Watson 1959; Turelli and 
Barton 2017; Turelli and Hoffmann 1991).
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Case 2: Poisson distribution for dispersed fecundity

We use the Poisson distribution to model moderate vari-
ation of host fecundity: FI ~ Poisson (λ1) and FU ~ Poisson 
(λ2), where the expected variances of FI and FU equal to 
their means (λ1 and λ2), respectively. This case corresponds 
to stochastic models that test for the effects of drift (Jansen 
et al. 2008; Rigaud and Rousset 1996).

Case 3: Negative binomial distribution for overdispersed 
fecundity

We take the negative binomial distribution to model FI and 
FU to include the overdispersion of host fecundity, because 
this distribution has a good performance in characterizing 
overdispersion of biological count data (Linden and Man-
tyniemi 2011; Warton et al. 2016). Specifically, the prob-
ability functions of FI and FU are defined by

and

with the variances �1 + �2
1
∕� and �2 + �2

2
∕� , respectively, 

where θ > 0 is the dispersion parameter with smaller 
values representing stronger overdispersion. When θ 
approaches infinity, the distribution converges to the Pois-
son distribution.

To illustrate how variation of host fecundity affects the 

fates of Wolbachia, we perform numerical simulations for a 
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tributions of fecundity (constant, Poisson, and four nega-
tive binomials with θ = 0.01, 0.1, 1, and 10 according to the 
empirical results). Perfect maternal transmission (i.e. μ = 1) 
and complete CI (i.e. sh = 1) are assumed in all scenarios, 
which is reasonable for a variety of Wolbachia strains in A. 
aegypti (Ant et al. 2018; Hoffmann et al. 2014). For each 
scenario, we set the initial infection frequency (p0) from 0.01 
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to 0.99 with an increase of 0.01 each time and then calcu-
lated p1, p2, using Eq. (1) until pt = 0 or 1. In the scenarios 
with fecundity variation, values of FI(i) and FU(j) are sampled 
from the Poisson distribution or using Eqs. (3) and (4). One 
thousand simulations are run for each p0 of each scenario to 
determine the probability of Wolbachia fixation.

Applications of the model

We used the model to address two specific issues. First, we 
estimated the number of infected A. aegypti mosquitoes that 
need to be released in order to ensure a high probability 
(say, ≥ 0.95) for successful Wolbachia invasion, when there 
is overdispersion in host fecundity. The fecundity cost on 
Wolbachia-infected A. aegypti was estimated at c. 20% for 
wMel infection (Hoffmann et al. 2011) and 10–15% for 
wAlbB infection (Axford et al. 2016; Xi et al. 2005). We 
thus assumed fecundity cost at sf= 0.15. The dispersion 
parameter θ was set to vary over the range 0.01–10, accord-
ing to the empirical estimates. The number of reproduc-
tive female mosquitoes N was set at  102,  103, and  104. For 
comparison, simulations with the same settings except for θ 
were also performed in cases where host fecundity is fixed 
or Poisson distributed.

Second, the model was used to estimate the probability 
of Wolbachia’s fixation following the introduction of a sin-
gle infected female into a population (i.e. p0 = 1/N) through 
interspecific horizontal transfers. For comparison, we used 
the same settings of fecundity cost as Jansen et al. (2008). 
Given the empirical results of fecundity overdispersion in 
insects, we considered four plausible scenarios of over-
dispersion, i.e. θ = 10, 1, 0.1, and 0.01, and use Poisson-
distributed fecundity as the control. We ran the model one 
million times for each combination of parameters to get the 
probability of fixation of Wolbachia.

Results

Fecundity overdispersion

We obtained a total of 56 articles that met the three criteria, 
involving 47 species and 79 data sets. Only one of them 
(grain aphid Sitobion avenae) showed a Poisson-type dis-
tribution of fecundity, with the variance close to the mean 
(23.74 vs. 26.09, P = 0.58). Overdispersion was found in 
all other cases, with estimates of overdispersion parameter 
θ 0.01 − 20.29 (median: 2.6). The largest overdispersion 
(θ = 0.01) was found in the eusocial red ant Myrmica rubra. 
Besides S. avenae, 57 data sets did not include zero values, 
which produced significantly larger θ (i.e. less overdisper-
sion) than the 21 data sets with zeros (5.04 ± SE 0.58 vs. 

0.80 ± SE 0.11, Mann–Whitney U = 1121, P < 0.001; Fig. 1). 
For the same species, parameter θ was overestimated by 
approximately one order of magnitude (median: 4.08-fold) 
when zero values were overlooked (Fig. 1). Summary sta-
tistics of all studies are provided in Table S1.

Among the data sets involving A. aegypti (n = 14), six 
studies reported zero values and displayed substantial fecun-
dity overdispersion, with θ ranging 0.55–1.57 (median 1.05). 
The remaining eight data sets that did not include zero val-
ues showed much weaker overdispersion, where θ varied 
between 1.97 and 7.39 (median 4.50). When zero values 
were deliberately excluded from the with-zero data sets, the 
increases in the estimate of θ were large in two of three 
cases (Fig. 1).

Wolbachia fixation from different initial frequencies

The fixation probability displays a step function of initial 
infection frequency (p0) if assuming no variation for host 
fecundity (case 1), but turns to a sigmoid function when 
fecundity is Poisson-distributed (case 2) or overdispersed 
(case 3). Compared to Poisson-distributed fecundity, over-
dispersed fecundity produces smoother curves for the fixa-
tion probability function (Fig. 2). More generally, when the 
overdispersion in fecundity becomes larger (with a smaller 
θ), the model provides smoother curves for the fixation prob-
ability function at all levels of fecundity cost (Fig. 2).

When p0 is smaller than the threshold ( ̂p ) predicted by 
the deterministic model, the model predicts nonzero fixation 
probabilities when there are some variations in fecundity, 
and these probabilities generally increase with larger extent 
of fecundity dispersion (Fig. 2). For example, a Wolbachia 
strain causing fecundity cost of 25% is always unable to fix 
itself in a host population of 1000 reproductive females, 
when the initial infection frequency is 0.17 and host fecun-
dity is Poisson distributed (Fig. 2f). In contrast, the strain 
has a 9.2% chance to achieve fixation if host fecundity shows 
a negative binomial distribution with θ = 0.1. When p0 > ̂p , 
however, overdispersion can introduce larger variation to 
Wolbachia fixation, and the uncertainty of fixation increases 
with stronger overdispersion (e.g. p0 > 0.25 in Fig. 2f). This 
trend is extremely strong when population size is relatively 
small (e.g. comparing Fig. 2c , f).

Application 1: replacement releases 
of Wolbachia‑infected vectors

In the vector population replacement with Wolbachia, 
fecundity variation significantly elevates the number of 
infected vectors that should be released to ensure the 
successful invasion of Wolbachia (Fig. 3). For a vector 
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population of 1000 reproductive females, 27% more Wol-
bachia-carrying vectors are required than predicted by 
the deterministic model when accounting for Poisson-
distributed fecundity. This proportion increases to 33%, 
40%, 80% and 220% when fecundity is overdispersed with 
θ of 10, 1, 0.1, and 0.01, respectively. The strength of 
such effect of fecundity variation depends negatively on 
population size. The required initial infection frequency 
increases at an astonishing rate in a population of 100 
reproductive females when fecundity variation becomes 
larger, whereas the impacts of overdispersion are much 
weaker in a very large population (e.g. 10,000 reproduc-
tive females) (Fig. 3). Nevertheless, there is still a sub-
stantial effect that needs to be considered in such large 
populations if fecundity overdispersion is of the order of 
θ = 0.1 (Fig. 3).

When regarding the primary vector of Zika and den-
gue fever, A. aegypti, based on the empirical estimates 
of fecundity overdispersion of θ = 0.55–1.57 (Fig. 1), our 
model predicts that the numbers of released mosquitoes 
into a population of 100, 1000, and 10,000 reproduc-
tive females need to exceed the expectations from the 

deterministic model by 107–130%, 33–40%, and 13%, 
and exceed those from the stochastic model by 11–23%, 
5–11%, and 0%, respectively (Fig. 3).

Application 2: spread of Wolbachia from a single 
infection

When assuming Poisson-distributed host fecundity, the 
fixation probability declines with population size in an 
approximately linear manner on the log–log plot if the 
Wolbachia strains are neutral to their hosts (Fig.  4a). 
When population size is small, the fixation probability 
of a weakly deleterious Wolbachia strain is close to the 
neutral one, but the discrepancy enlarges rapidly as the 
deleterious effect of Wolbachia and/or population size 
increases (Fig. 3a). Note that a strain with cost sf = 0.125 is 
still unable to establish itself in any population of N > 600 
following one million events of lateral introduction of a 
single infection.

Overdispersion of host fecundity increases the probability 
of Wolbachia spreading to fixation from a single infection 
in a host population, and this effect becomes stronger when 

Fig. 1  Empirical estimates 
of overdispersion in realized 
fecundity for 47 insect species. 
Smaller values of θ represent 
stronger overdispersion. The 
estimate for Sitobion avenae is 
not given, because the species 
showed Poisson-distributed 
fecundity. Each estimate is 
derived from one study except 
in A. aegypti and A. albopictus, 
and the numbers of studies used 
for the two species are shown. 
The difference of estimates 
between with- and without-zero 
data sets for the same species 
is denoted by solid line when 
the same study is used in both 
cases, or by dash line when 
using different studies. All esti-
mates from with- and without-
zero data sets, respectively, 
are summarized by boxplots. 
Insert shows the estimates for A. 
aegypti from each study
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population size, the deleterious effect of Wolbachia, and the 
magnitude of overdispersion increase (Fig. 3b − d). In con-
trast to the Poisson scenario, a strain with cost sf = 0.125 
achieves fixation in a host population of N = 631 every 550 
events of introducing a single infection if host fecundity is 
overdispersed with θ = 0.1.

Discussion

This study provides to our knowledge the first assessment of 
overdispersion in insect fecundity and its effect on the inva-
sion dynamics of Wolbachia. Empirical data present compel-
ling evidence for overdispersion of fecundity in most studied 
insect species. Furthermore, our model demonstrates that the 
overdispersion may help in CI-inducing Wolbachia spread 
in novel hosts from few infections, but can also undermine 
vector population replacement with Wolbachia in epidemic 
management.

Our analysis may provide an underestimate for fecundity 
overdispersion in many insect species due to several reasons. 
First, the conspecific insects used here to estimate fecun-
dity variation were reared under almost the same condition 
in each data set. However, environmental heterogeneity, 
variation in the availability and quality of food and mates, 
and other biotic factors may augment the overdispersion of 
fecundity in field populations (Awmack and Leather 2002; 
Borer et al. 2009; Reigada et al. 2018; Zanchi et al. 2012). 
Second, zero inflation is an important source of overdis-
persion (Linden and Mantyniemi 2011), as shown by the 
large overdispersion of the eusocial species Myrmica rubra 
(θ = 0.01). Most studies reviewed here were not designed 
to test the variation of fecundity, and therefore some ovi-
position failures might be treated as noise and excluded 
artificially. However, null fecundity has a close relevance 
to the invasion of Wolbachia, because it may directly lead 
to the loss of Wolbachia. Additionally, copious oviposition 
sites were supplied for each adult in those studies, whereas 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2  Probability of local fixation of Wolbachia as a function of ini-
tial infection frequency, with varying levels of parasitism cost (sf), 
host population size (N), and host fecundity variation. The variation 
of fecundity increases from no dispersion (black lines), dispersion 

(green lines), to overdispersion (purple, blue, yellow and red lines). 
For each p0 under each parameter setting, the model is conducted 
1000 times to estimate the fixation probability. Scenarios with sf = 0 
are very similar to those with sf = 0.01, and thus not shown here
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competition for oviposition sites may occur in field popula-
tions of some species, resulting in lower or even null fecun-
dity of some adults. This is likely the case in two populations 
of A. aegypti with wAlbB-releases in Malaysia, where the 
population sizes decreased considerably following the ces-
sation of releases (Nazni et al. 2019).

Consistent with the results of previous stochastic models 
(Egas et al. 2002; Jansen et al. 2008), our model suggests 
it is usually difficult for a deleterious Wolbachia strain to 
spread from few initial infections if host fecundity is Poisson 
distributed. Repeated Wolbachia transfers can compensate 
for the extremely low fixation probability of a single transfer 
event (Jansen et al. 2008), but in this situation it is unclear 
whether the waiting time for fixation is biologically relevant. 
In our study, the estimated probabilities of Wolbachia reach-
ing fixation from a single infection in host populations of 
overdispersed fecundity appear to relax the assumptions 
of Jansen et al. (2008) on transfer rate and waiting time, 
and may reconcile the contradictions among occasional 
and probably rare interspecific transfer events (Turelli et al. 
2018), bistable population dynamics (Barton and Turelli 
2011), and the remarkable prevalence of Wolbachia (Wer-
ren et al. 2008).

The uncertainty in the fixation of Wolbachia caused by 
overdispersion of host fecundity (see Figs. 2 and 3) may 
to some extent explain the large fluctuations of Wolbachia 
frequency in some A. aegypti populations after replacement 
releases (Nazni et al. 2019; Schmidt et al. 2017; Tantowijoyo 

et al. 2020). Especially for the releases of A. aegypti in 
Malaysia, lack of wAlbB invasion was found in low-den-
sity sites where oviposition sites might be rare (Nazni et al. 
2019). This phenomenon is consistent with the expectations 
of large overdispersion of fecundity. Although we illustrate 
a special case of sf = 0.15, the need for increasing released 
individuals is prevalent across diverse fecundity costs of 
Wolbachia infection and becomes even more critical when 
the cost is smaller (see Fig. 2). In the light of great efforts 
being made to search for Wolbachia strains of low fecun-
dity costs (Ant et al. 2018; Pance 2018), the significance of 
considering fecundity overdispersion in successful vector 
control is likely to increase further.

Nevertheless, the effects of fecundity overdispersion 
may be counterbalanced by other factors that have not been 
included in the model. An important factor particularly for 
A. aegypti is larval density-dependent competition (Han-
cock et al. 2016a). This density effect is likely to weaken 
the overdispersion effects, due to the trade-off between adult 
fecundity and larval fitness. Yet, the outcomes of density 
dependence for Wolbachia-based biocontrol strategies are 
very similar to those of overdispersion, i.e. greater num-
bers of released mosquitoes and longer time of Wolbachia 
establishment following releases (Hancock et al. 2016a, 
2016b). While increased mortality due to Wolbachia infec-
tion, imperfect maternal transmission (e.g. at high tempera-
tures), or occurrence of adverse conditions, may augment the 
effects of overdispersion (Jansen et al. 2008).

Our model focuses on CI-inducing Wolbachia strains 
especially wMel and wAlbB. However, the wAu strain which 
does not induce CI shows more efficient virus blocking and 
greater temperature stability than the two strains (Ant et al. 
2018). Hence, a superinfection wAu-wAlbB was created to 
combine strong viral inhibition and CI and has been pro-
posed as a novel biocontrol agent (Ant et al. 2018). Intrigu-
ingly, our model can also apply for the superinfection, but 
if wAu and wAlbB decoupled over time in the field, only 
the dynamics of wAlbB would be described by our model.

Our model assumes a panmictic population, but mating 
is often nonrandom in the field populations, especially when 
it routinely takes place at breeding sites before individu-
als disperse (Macke et al. 2011). After an initial phase of 
local establishment, Wolbachia may spread to other areas in 
a wave of colonization (Barton and Turelli 2011; Schmidt 
et al. 2017) or via stepping stone subpopulations (Engel-
stadter and Telschow 2009). In both cases, spatial spread 
can be slowed or even stopped if the host density is much 
higher in surrounding uninfected areas, because there are 
insufficient migrants transporting Wolbachia. These areas 
are analogous to the ‘tension zones’ where transitions occur 
between alternative genetic equilibria. Local fluctuations in 
population density and dispersal rate can drive development 
and movement of these tension zones (Barton 1979; Barton 

Fig. 3  Initial frequencies for ensuring a probability of 95% for suc-
cessful establishment of Wolbachia in relation to host fecundity over-
dispersion. Smaller θ values represent larger overdispersion. Three 
population sizes (N) are considered, and we assume sf= 0.15, sh = 1, 
and μ = 1. The predictions from the deterministic and stochastic mod-
els are also shown (dash lines). Grey area denotes the estimation for 
A. aegypti 
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and Hewitt 1989). Nonetheless, the increased probabilities 
of fixation caused by overdispersion in host fecundity should 
help Wolbachia to pass through such tension zones via few 
migrants.

In conclusion, fecundity overdispersion is ubiquitous in 
insect populations, placing large stochasticity on the dynam-
ics of Wolbachia. The significance of this stochasticity has 
been underestimated in both explaining the pandemic dis-
tribution of Wolbachia and formulating strategies for sus-
tainable biocontrol of insect-borne diseases with Wolbachia. 
Our study address that efforts should be made to understand 
the dispersion of fecundity in the target vector populations 
before decision on the nature of the Wolbachia releases and 
also that the stochasticity brought by fecundity overdisper-
sion greatly contributes to the local establishment and spatial 
spread of Wolbachia after the releases.
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