
1. Introduction
The dynamic of soil organic carbon (C) under climate change is a key regulator of ecosystem C cycling 
due to the large C storage capacity in the soil and its high sensitivity to environmental changes (Bradford 
et al., 2016; Davidson & Janssens, 2006; Doetterl et al., 2015). To improve our understanding of the soil C 
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decomposing soil organic carbon and releasing CO2 into the atmosphere. Current soil carbon models 
use the first-order kinetics to represent the decomposition process, but large uncertainties have emerged 
in simulating soil heterotrophic respiration among these models. Therefore, models incorporating 
microbial mechanisms are expected to better simulate soil carbon processes than the conventional models, 
especially in simulating the nonlinear phenomena of soil heterotrophic respiration. To test the ability 
of these two types of models (i.e., linear conventional and nonlinear microbial models) in simulating 
the nonlinear soil processes, we evaluate them based on in situ observations of the pulsed dynamics of 
soil heterotrophic respiration in a semi-arid grassland. We found the microbial-explicit model did not 
substantially improve the simulation of soil heterotrophic respiration. The moisture-response function 
combined with parameterization played an important role in reducing the uncertainties in simulating the 
pulsed dynamics of soil heterotrophic respiration in both types of models.
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dynamics and its interactions with the past and future climate changes, many numerical soil C-cycle models 
based on the first-order kinetics have been developed. The decomposition of soil organic matters in those 
models, for example, CENTURY (Parton et al., 1987) and RothC (Jenkinson et al., 1991), is typically repre-
sented as multiple pools with first-order decay rates. Although the first-order linear multi pool models have 
been widely used in Earth system modeling, large uncertainties have emerged in simulating soil C dynam-
ics and soil heterotrophic respiration (RH) among models because of their differences in model structure 
and parameterization (Bradford et al., 2016; Todd-Brown et al., 2013; Zhou et al., 2021).

One promising approach to reduce the large uncertainties on soil C dynamics in Earth system models is 
explicitly representing microbial processes with the multi pool models (Luo et al., 2016; Wieder, Allison, 
et al., 2015). Some recent efforts have been made to develop nonlinear soil C models based on microbial 
physiological processes (Abramoff et al., 2018; Allison et al., 2010; German et al., 2012; Wang et al., 2013; 
Wieder et al., 2013; Wieder, Grandy, et al. 2015). In many examples, the microbial process-based models have 
improved the modeling of the soil C dynamic and its feedbacks to climate change (Wang et al., 2013, 2016; 
Wieder, Allison, et al., 2015). However, it should be noted that a few other studies also have shown that 
current microbial models could conversely amplify the uncertainty in predicting soil C responses to climate 
change due to the complex mechanisms in microbial processes and challenges in model parameterization 
(Shi et al., 2018; Sulman et al., 2018).

Another important way to improve the accuracy of soil C dynamics in Earth system models is better param-
eterizations of environmental impacts in the model (Falloon et al., 2011; Sierra et al., 2015; Xia et al., 2013). 
The environmental response function in current linear or nonlinear soil C models varies significantly among 
models and hence causes considerable uncertainty in simulating soil C dynamics (Falloon et al., 2011; Sier-
ra et al., 2015). For example, in a grassland ecosystem, Lei et al. (2018) have indicated that different water 
scalars greatly affected the modeled ecosystem respiration and can result in a large spread of the future 
projections of the ecosystem C sink.

The above activities of model improvement lead to a new question of how linear conventional and non-
linear microbial models will perform if they are used to simulate the nonlinear C-cycle phenomena, such 
as the rain-pulse effect in semi-arid grasslands. The rain-pulse effect, often referred to as the “Birch effect," 
is a typical microbially driven nonlinear soil process (Birch, 1964; Lawrence et al., 2009; Schimel & Wein-
traub, 2003). The rain-pulse effect of RH is an essential contributor to soil-to-air C (e.g., CO2, CH4) release in 
semi-arid grasslands (Yan et al., 2014). The pulse C release can be 30-times higher than under normal hy-
drological conditions and contribute to as much as 40% of ecosystem CO2-efflux in some grasslands (Spon-
seller, 2007; Yan et al., 2014). Accurate simulation of the rainfall pulse effect is relevant for understanding 
the soil C dynamics of semi-arid grasslands. However, modeling studies have shown that the rain-pulse 
effect of RH can be captured by some soil microbial models (Salazar et al., 2018; Schimel & Weintraub, 2003; 
Waring & Powers, 2016) or by some conventional linear models (Waring & Powers, 2016). Therefore, the 
pulse response of RH to rainfall events in semi-arid grasslands provides an ideal case for evaluating the per-
formance of different soil C models.

In this study, we applied eight terrestrial C cycling models by incorporating two different soil C model struc-
tures (linear conventional or nonlinear microbial) and four soil water-scalar schemes. Using these models, 
we conducted numerical experiments to simulate the rain pulse effect on soil C dynamics in a semi-arid 
grassland. Based on the comparative analysis, this study aimed to evaluate (1) whether the conventional 
linear model can capture nonlinear soil C process due to the rain-pulse effect as microbial models do, and 
(2) how the moisture response function affects the model performance in simulating the nonlinear soil C 
process.

2. Materials and Methods
2.1. Site Description and Data Sources

The observational soil CO2-efflux data and meteorological forcings for models were obtained during the 
growing season in 2009 from a continuous field manipulative experiment in a semi-arid grassland in China. 
The study site is located at Duolun County (42°27′N, 116°41′E) in northeastern Inner Mongolia, China. The 
dominant species of this region are Stipa krylovii, Agropyron cristatum, Leymus chinensis, and Artemisia 
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frigida. According to the U.S. soil taxonomy classification system (Yuan et al., 2005), the soil at the study 
site is classified as Calcic-orthic Aridisol. The mean annual air temperature is 3°C, ranging from −30°C in 
the winter to 34°C in the summer. The mean annual precipitation is 377 mm, nearly 95% (i.e., 358 mm) of 
which fall in the growing season (May to October).

The RH was measured based on the clipping method (Byrne & Kiely, 2006). This method was used to sepa-
rate the auto- and heterotrophic parts of soil respiration, which assumed that continuous removal of living 
plants greatly inhibited root growth in the clipped plots and the soil CO2-efflux in the plots would mainly 
come from soil fauna and microbial respiration. Therefore, three 1 × 1 m clipped plots 5–30 m apart were 
designed in late April 2006. The living plants in these clipped plots and an area of 10 cm around the plots 
were removed a month before the first measurement. Meanwhile, a PVC collar (20.3 cm in diameter and 
8 cm in height) was inserted into the soil at a depth of 3 cm in each plot one month before the first measure-
ment. Soil CO2 efflux was continuously measured every half an hour during the growing season using an in-
fra-red gas analyzer (LI-840, Li-Cor Inc., Lincoln, NE, USA) with three automatic measurement chambers. 
Soil CO2 efflux rate was determined by the time-series of CO2 concentrations in these chambers, which were 
recorded by a CR1000 data logger (Campbell Scientific Inc., CSI, USA Utah, Utah) and were processed by 
LoggerNet 3.1 (CSI, USA). Each measurement lasted 120 s. This measurement lasted from the beginning of 
May to the end of October during 2009. Most missing data gaps were less than 2 h and were filled by linear 
interpolation based on the nearby data or the linear relationship between RH and soil moisture.

The precipitation and the CO2 fluxes, including net ecosystem exchange (NEE) and ecosystem respiration 
(ER), were recorded at a half-hour time step by a nearby eddy covariance flux tower located 4 m above the 
ground. In this study, NEE represented the net CO2 exchange between ecosystem and atmosphere, and a 
positive NEE means ecosystem carbon release while the negative NEE means ecosystem carbon uptake. The 
gross primary productivity (GPP) was calculated as the difference between NEE and ER. More details of the 
measurement and calculation method have been described in Zhang et al. (2007). Soil temperatures were 
measured by soil temperature probes (CSI, USA) with a depth of 10 cm. The volumetric soil moistures were 
measured by the CS616 soil water probes (CSI, USA) at a depth of 0–10 cm. These probes were placed near 
the soil CO2 efflux chambers and the mean values of half-hour soil temperature and moisture were recorded 
simultaneously in the CR1000 data logger (CSI, USA).

2.2. Model Description

2.2.1. Model Structures

To evaluate how well different model structures capture the soil C dynamics in response to the rain events, 
we incorporated two models (linear conventional vs. nonlinear microbial model) into a terrestrial C cycling 
model that is a simplified version of the Terrestrial ECOsystem (TECO) model (Weng & Luo, 2008). The 
conventional linear model is based on Liang et al. (2018), while the nonlinear microbial model is based on 
Allison et al. (2010), outlined in Figure 1. Both models include the same above ground C allocation process 
and the input of litterfall. We used the measured GPP as the input of the models.

The conventional model includes three soil pools divided based on their decomposition rates: a fast soil C, 
a slow soil C, and a passive soil C (Figure 1a). Each pool in the conventional model has a constant turnover 
rate, and CO2 is released from each pool through C decomposition, and a fraction of C in one pool is trans-
ferred to another. Parameters describing fractions between the three soil C pools are shown in Table S1. The 
decomposition of each C pool is represented by the following equation (Lawrence et al., 2009):

i
i i s s

dC k C M T
dt

 (1)

where iC  is the pool size (g C m−2) and ik  is the turnover rate in each specific pool (day−1). sT  and sM  are sca-
lar schemes of temperature response function and moisture response function (MRF) respectively to modify 
the C decomposition rate depending on the abiotic environment. The temperature response function ( sT ) in 
all models of this study was expressed as follows (Lei et al., 2018):
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


soil ref

ref
10

T T
T

sT Q (2)

where the soilT  represents the soil temperature (°C). Q10 and Tref are set to 2 and 10 (°C), respectively 
(Friedlingstein et al., 2006).

The microbial soil C cycling model used in this study incorporates four pools: a microbial biomass carbon 
(MBC), a dissolved organic carbon (DOC), a soil enzyme biomass carbon (EBC), and a soil organic carbon 
(SOC) (Figure 1b). The two processes of the decomposition of SOC and the assimilation of MBC from the 
DOC pool are represented as the Michaelis-Menten function (Allison et al., 2010):

  
max

SOCEBC
Km SOCsF V (3)

  
maxuptake

uptake

DOCMBC
Km DOCUF V (4)

where FS is the fraction of SOC decomposition. FU is the fraction of MBC uptaking from DOC. maxV  and 
maxuptakeV  indicate the maximal decomposition rate (day−1), which is calculated by the Arrhenius equation. 

Km and Kmuptake (g C m−2) is the half-saturation of the MBC or EBC on the substrate. Microbial death and 
enzyme production are modeled as a constant fraction of MBC. The enzyme turnover is a first-order process 
with a constant rate. More details about the parameters and processes are described in Allison et al. (2010).

Heterotrophic CO2 (RH) is the fraction of DOC assimilated by microbes that is not allocated to biomass 
production:

    
uptake

uptake

DOCmax MBC 1 CUE
Km DOCHR V (5)

where uptakemaxV  represents the maximum decomposition rate of DOC assimilated by microbes. MBC is the 
microbial biomass carbon. uptakeKm  is the half-saturation of the substrate. CUE is the carbon use efficiency.

More descriptions of parameters for the microbial model are shown in Table S2. More details of the micro-
bial model can be found in Allison et al. (2010), such as the changes of MBC and EBC.

Considering the effects of environmental factors (e.g., temperature and moisture), we added the tempera-
ture and water responses into the Michaelis-Menten function:
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Figure 1. The diagram of the two carbon cycle models in this study, (a) with conventional structure (from TECO model) and (b) microbial structure (Allison 
et al., 2010) in the part of the soil, respectively (Fast soil carbon pool, Fast; Slow soil carbon pool, Slow; Passive soil carbon pool, Passive; Soil organic carbon, 
SOC; Dissolve organic carbon, DOC; Microbial biomass carbon, MBC; Enzyme biomass carbon, EBC). TECO, Terrestrial ECOsystem.
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  
max

i
i s s

dC SV C M T
dt K S

 (6)

where the sM  and the sT  are the scalar schemes as used in the linear soil 
C model.

2.2.2. Soil Water Response Parameterizations

To assess and compare the contribution of different MRF schemes (i.e., 
sM ) to the uncertainty in the soil C dynamics modeling, we incorporated 

four soil MRF schemes in the TECO model and re-parameterized them 
(Table 1). These MRFs are all derived from terrestrial C cycle models. The 
scheme MRF1 from the CABLE model (Wang et al., 2010) and the MRF2 
from IBIS model (Kucharik et al., 2000) are nonlinear functions of soil 
moisture, while the MRF3 from LPJ-DGVM model (Sitch et al., 2003) and 
the MRF4 from TECO model (Weng & Luo, 2008) are linear functions of 
soil moisture. Their response curves to soil moisture are shown in Fig-
ure S1. The moisture-response functions MRF1 and MRF2 start from 0 

and grow to unit 1 when the soil water content exceeds 50%. While the linear response function MRF3 
changes from 0.25 to 0.6 with soil water content from 0% to 50%. The linear response function MRF4 has 
the maximum growth rate with a range from 0 to 1 when the soil water content increases from 0% to 20%.

2.3. Data Assimilation for Improving Model Parameterization

In this study, we combined two C-cycle structures (conventional and microbial) models with four MRF 
schemes, which then produce eight model variants. All of them had parameter optimizations via a data as-
similation method before their comparisons. To optimize the parameters of models, the conditional Bayes-
ian inversion was used to assimilate data in this study (Du et al., 2017; Jiang et al., 2018; Li et al., 2016; Ma 
et al., 2017). The Bayes’ theorem can be expressed as follow:

     p | Z p(Z | )P (7)

where P(θ) represents the prior knowledge of the parameters in the models, referring to the previous stud-
ies (Allison et al., 2010; Shi et al., 2018). The detailed description of the parameters is shown in Tables S1 
and S2. Additionally, the likelihood function p(Z | ) was calculated based on the assumption that the errors 
(with mean biases removed) between each observation data and model simulation results followed a Gauss-
ian distribution with a zero mean. It can be expressed as follows:

   
 




       
 
 

2

2p(Z | ) exp
2t Z

Z t X t

t
 (8)

where  Z t  is the observation stream at time t,  X t  is the corresponding simulated variable, and   t  is the 
standard deviation of the observation set.

The posterior probability distribution of parameters was obtained by the Markov chain Monte Car-
lo (MCMC) technique with adaptive Metropolis-Hastings (M-H) algorithm (Hastings,  1970; Metropolis 
et al., 1953). The new proposal parameters were generated by:

    new 1
max min

kC C r (9)

where max and min are the maximum and minimum values of the given parameter space, respectively 
(shown in Tables S1 and S2), 1kC  means the parameter set of the previous step, and r is a random variable 
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Provenance Moisture response function

MRF1 CABLE     
   
   
   

6.6481 3.22
1.7 0.007

1.15 0.557
C CW W

MRF2 IBIS   
2

0.6

0.08

WC

e

MRF3 LPJ-DGVM 0.25 + 0.75WC

MRF4 TECO

 
  




5 ( 0.2)
1 0.2

C

C

WC W
W

Note. WC: soil water content (v/v%).
Abbreviation: TECO, Terrestrial ECOsystem.

Table 1 
Moisture Response Function (MRF) Parameterizations on Soil Carbon 
Decomposition From Four Different Terrestrial Biosphere Models
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between −0.5 and 0.5 with a uniform distribution. The initial samples (approximately 5,000 for each run) 
were discarded after the running means, and standard deviations (SDs) were stabilized (regarded as the 
burn-in period) (Du et al., 2017). All the accepted samples without the burn-in periods were used for poste-
rior analysis. In total, there are 50,000 accepted samples from five parallel chains to construct the posterior 
distribution.

The initial values of total soil C used in the models were obtained from measurements (Liu et al., 2013). The 
optimized values of the ratio of each C pool to the measured total soil C in the conventional model are used 
as the initial stable state of the model. The upper ranges of the initial values of MBC, EBC, and DOC in the 
microbial model for data assimilation were set ∼1% of total C carbon (Wieder et al., 2013). To equilibrate the 
models under different parameter sets, we set each step of data assimilation to run 7,300 time-steps before 
the start of the simulations used to examine if the new parameter set should be accepted or rejected. The 
detailed information on the initial state variables in the models is shown in Table S3.

2.4. Model Evaluation

To evaluate the ability of models to simulate the soil C dynamics, we compared the modeled RH with exper-
imental data by deviance information criterion (DIC) (Liang et al., 2018; Spiegelhalter et al., 2002). In our 
study, half of the observation data were randomly selected for parameter optimization by data assimilation 
and the other half for verification. For each model, DIC was calculated by

 DIC DD p (10)

where

  


  
1

1 2 log ( | )
n

t

t
D p Z

n
 (11)

and

   2 log ( | )Dp D p Z (12)

where n is the number of the generated parameter sets, and   is the mean of the generated parameter sets. 
A smaller DIC for a model means a better simulation against observational data.

We randomly selected 1,000 parameter sets from the posterior probability distribution formed by data as-
similation in each model from the eight model combinations. We further obtained the DICs of the simula-
tions from these parameter sets. The DIC results were used to evaluate the performance of these models. 
Comparing the DIC results of conventional and microbial models, we analyzed which of these model struc-
tures can better capture the rain pulse.

MRF can affect the decomposition of different soil C pools and thus affect the performances of models in 
simulating RH. In our study, the relationships between RH and the changes of different soil C pools are meas-
ured by the partial correlation that is conducted by the software of Matlab (R2019a). Meanwhile, different 
moisture-response functions can change the sensitivity of simulating RH to the parameters in the model. 
The sensitivity of parameters in our study is determined by the sensitivity index (I) defined as (Lenhart 
et al., 2002):

 


2 1 0

0

/
I

2Δ /

y y y

x x
 (13)

Where y0 is the model output (RH) with the initial parameter set x0. The model outputs from initial param-
eters varied by Δx are variable y2 and y1. Δx was set at 0.25 times of initial values. Details of the sensitivity 
index are available in Lenhart et al. (2002).
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3. Results
3.1. Observed Rain Pulse in a Grassland

From the observation-based analysis, we show that the patterns of soil moisture and RH were significantly 
affected by the rainfall events during the growing season (Figure 2a). Generally, rainfall events varied from 
0.3 to 33.8 mm, and the observed soil moisture increased by 0.4%–132% accompanied by rainfall events. 
The observed RH also showed obvious variations and increased by 4.4%–369.2% in 1–2 days after the rainfall 
events. After reaching its peak, RH gradually returned to pre-rainfall levels in 2–5 weeks (Figure 2a). Ad-
ditionally, MRFs used in our study showed different regulation abilities under the measured soil moisture 
conditions. As shown in Figure 2b, during the growing season, the water response scalar of MRF1 and MRF2 
changed from 0.0058 to 0.12 and 0.022 to 0.079, respectively, while MRF3 and MRF4 ranged from 0.28 to 0.36 
and 0.23 to 0.75, respectively (Figure 2b).

3.2. Model Validation and Comparison

The data assimilation method could effectively constrain most of the targeted parameters in all models 
(Figure S2). After optimizing the parameters by conditional Bayesian method (see Tables S1 and S2 for 
optimized parameters in conventional and microbial models, respectively), the modeled daily RH from May 
to October in 2009 matched more closely to the observed values both on timing and magnitude, with differ-
ences among models (Figure 3). Most models exhibited similar bias in simulating RH during the growing 
season, which showed an underestimation during the rewetting periods and an overestimation during the 
dry periods, while models with the MRF1 scheme showed that a slight overestimation during rewetting 
periods and an underestimation during dry periods (Figure 3).

We further evaluated the performance of the eight models. The values of DIC varied greatly among different 
MRFs in each model structure (Figure 4). Generally, the RH from microbial models showed higher DICs 
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Figure 2. Time-series of observed RH (red line), soil moisture (black line), precipitation (black rectangle) (a), and the scalar ability of four different moisture 
response functions (MRF) under the conditions of observed soil moisture (b).
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Figure 3. Time-series of observed and simulated daily RH in Inner Mongolia grassland from May to October in 2009. MRF1-MRF4 represent moisture 
response function from CABLE, IBIS, LPJ, and TECO, respectively. (a, c, e, and g) represent conventional models with four different moisture response 
functions, respectively. (b, d, f, and h) represent microbial models with four moisture response functions, respectively (Blue and red range for simulation from 
conventional and microbial models with posterior parameter sets and solid line for models with parameters of maximum likelihood. Block line and range are 
observations). TECO, Terrestrial ECOsystem.

Figure 4. The results of deviance information criterion (DIC) indicate the comparison of overall model agreement 
with observations. A smaller DIC represents the model performs better. MRF1-MRF4 represent moisture response 
functions from four different models (CABLE, IBIS, LPJ, and TECO, respectively). TECO, Terrestrial ECOsystem.
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(ranged from 76 to 156) and larger variances than those in conventional models (ranged from 57 to 140) 
when using the same water scheme (Figure 4). Specifically, the differences between the DIC values for con-
ventional and microbial models were the largest using MRF2 or MRF4 schemes. This result indicated that 
the conventional models show better performance than the microbial models using the same MRF schemes. 
The conventional model using the MRF2 scheme (the water response function from IBIS) had the lowest 
DIC score, showing the best performance among all models (Figure 4).

3.3. Impact of the Moisture Response Function

The moisture-response function mainly regulated the decomposition rate of soil C pools in the model. We 
found that in conventional models with MRF1 or MRF2, the RH mainly came from the decomposition of 
fast soil C, contributing more than 95% of RH, while for MRF3 and MRF4, the fast and slow soil C pools con-
tribute almost equally to the release of CO2 efflux as RH from the soil C (Figure 5). The passive C pool in all 
conventional models contributed negligibly at the seasonal time scale in 2009 (Figure 5).

In the microbial models, the CO2 production from soil C was directly from the process of microbial absorb-
ing C from DOC and indirectly affected by SOC and EBC that affected the size of MBC and DOC. The cu-
mulative changes in SOC, MBC, DOC, and EBC during the whole growing season were about −200 ± 29.5, 
27 ± 3.8, −0.1 ± 0.3, and 0.6 ± 0.1 g C m−2 (Figure 6), indicating that most of the CO2 release or RH and 
the increase in MBC came from the decomposition of the SOC in microbial models. The partial correlation 
analyses further showed a significant correlation between RH and ΔMBC (R = 0.81, P < 0.01) in the model 
with MRF3, and the changes of EBC in models with MRF2 or MRF3 were also positively correlated with RH 
(R = 0.45, P < 0.01 and 0.48, P < 0.01 respectively).

The water response function also influenced the contribution of different soil C pools to RH (Figures  5 
and 6) through changing the model parameters. In conventional models, the most sensitive parameters 
were the decomposition rate of fast and slow C pools and the fractions of transfer between the two pools. 
Among these parameters, the decomposition rate of fast pools (kf) and the fraction of C transferred from fast 
to slow pools (ffs), and the initial value of fast pool size (ff) in models with MRF1 or MRF2 scheme was higher 
than models with MRF3 or MRF4 scheme (Figure S3a). While the sensitivities for a fraction of C in slow C 
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Figure 5. Time-series of the contributions of different soil carbon pools to soil heterotrophic respiration (RH) in conventional models (MRF1-MRF4 are 
moisture response functions from the model of CABLE, IBIS, LPJ, and TECO, respectively). TECO, Terrestrial ECOsystem.
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pool transferring to fast C pool (fsf), the decomposition rate of slow C pool (ks) and the initial value of slow 
C pool size (fs) in models with MRF3 or MRF4 were higher than models with MRF1 or MRF2 (Figure S3a). In 
microbial models, further analysis showed that the parameter of carbon use efficiency (CUE0) is the most 
sensitive in all microbial models with MRF1 to MRF4 schemes, followed by parameters of the initial sizes 
of MBC, EBC, and DOC (Figure S3b). Besides, MRF affected the sensitivity of the loss rate of the enzyme 
(rEL), maximum catalytic rate of SOC to DOC (Vmax0), and the size of MBC and EBC (fM and fE) in microbial 
models (Figure S3b).

4. Discussions
4.1. Simulated Pulse Dynamics of Soil Heterotrophic Respiration by Different Models

Previous modeling studies have shown that there is controversy about the performance of linear conven-
tional or nonlinear microbial models in simulating nonlinear soil C processes (Lawrence et al., 2009; Shi 
et  al.,  2018; Wieder et  al.,  2013). This study, however, shows that both the conventional and microbial 
models can capture a typical nonlinear C process (i.e., the RH in response to rain pulse effect) in a semi-arid 
grassland (Figure 3). The simulations of the conventional model are even closer to the observed data than 
the microbial models in our study based on the results of the deviance information criterion (Figure 4).

Some laboratory-based experiments have suggested that the response of soil C to drying-rewetting events 
could be better explained by microbial models because they represented more realistic mechanisms of soil 
C-cycle processes (Manzoni et al., 2014, 2016; Salazar et al., 2018). There are great differences between labo-
ratory experiments and field experiments (Poorter et al., 2016; Xu et al., 2019). Meanwhile, the development 
of microbial models must link micro-scale mechanisms to macro-scale models, which has to face sever-
al challenges compared to linear models, such as parameterization (Luo & Schurr, 2020; Wieder, Allison, 
et al., 2015). In our study, the microbial nonlinear model utilizes the enzyme biomass to modify available 
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Figure 6. The changes of soil heterotrophic respiration (RH) and four different carbon pools in the microbial model (soil organic carbon, SOC; microbial 
biomass, MBC; dissolved organic carbon, DOC; enzyme biomass, EBC). The drawings at the top right show cumulative changes in different carbon pools 
(MRF1-MRF4 are moisture response functions from the model of CABLE, IBIS, LPJ, and TECO, respectively). TECO, Terrestrial ECOsystem.
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substrate (DOC), and the microbial biomass and Michaelis-Menten kinetic to adjust the decomposition rate 
of soil C to match the nonlinear pulsed response in RH (Figures 1 and 3). Although this type of microbial 
model characterizes nonlinear soil C processes more realistically than the conventional linear model, the 
latter has prevailed in simulations of linear or nonlinear soil C processes on regional or global scales over 
long periods due to the simpler C pool structure (Lawrence et al., 2009; Waring & Powers, 2016; Wieder, Al-
lison, et al., 2015). The conventional linear model based on the CENTURY-like C pool structure (Jenkinson 
et al., 1991; Parton et al., 1987) describes the observed nonlinear response of soil C-released CO2 well by 
incorporating appropriate environmental response parametrization schemes (e.g., soil moisture-response 
functions in this study) with optimized decomposition rate parameters (Figures 3 and 5). Other studies have 
also shown the conventional models performed well in simulating the nonlinear soil C processes. For ex-
ample, Waring and Powers (2016) have reported that the modified linear model could reproduce the pulsed 
dynamics of RH based on the field experiments in a tropical dry forest.

The development of microbial models is ongoing, and whether the linear conventional model can capture 
the nonlinear soil C processes as well as the microbial model remains debatable. We argue that these two 
types of models can both be improved to simulate nonlinear phenomena of soil C processes. Different mod-
el structures could be beneficial for unraveling the mechanisms underlying the different nonlinear soil C 
processes.

4.2. The Role of Moisture-Response Parameterization

In our study, we found that differences among the schemes of moisture-response function dominated the 
uncertainties of models in simulating the rain-pulsed dynamics of RH (Figures 3 and 4). However, the em-
pirical moisture-response functions vary widely among models (Lei et al., 2018; Sierra et al., 2015), and their 
values used to modify the decomposition processes are greatly different within the same variation range 
of soil moisture (Figure S1). This study highlights the importance of the moisture-response function in 
conventional or microbial models to better simulate the nonlinear soil C processes. The moisture-response 
function in conventional models affects the decomposition rates of different soil C pools and their response 
to environmental changes (Moyano et al., 2013), while in microbial models, the moisture-response func-
tion is generally considered to modify the function of Michaelis-Menten kinetics when microbial mecha-
nisms are embedded in models (Abramoff et al., 2018; Wieder et al., 2013). Other factors can also affect the 
mechanistic relationship between the RH and soil moisture, such as soil properties in pore-scale models 
(Moyano et al., 2012, 2013), microbial dormancy (Salazar et al., 2018), and soil water transfer processes 
(Manzoni et al., 2014, 2016; Sánchez-García, Doerr, et al., 2020; Sánchez-García, Oliveira, et al., 2020). Yan 
et  al.  (2018) have also considered primary physicochemical and biological processes to develop a novel 
moisture function of RH.

This study further shows different moisture-response functions lead to great variability in the estimated 
values of some parameters among models (e.g., kf in conventional models and CUE0 in microbial mod-
els) (Figure S2). Such different parameters further cause different contributions of multiple C pools to RH 
among models (Figures 5–6). As a result, the variation in predicting soil C dynamics is further increased 
among different models. Thus, it is crucial to use the data assimilation approach to constrain the parameters 
for different models. Meanwhile, more informative datasets should be used to improve model parameter-
ization in simulating the soil C dynamics in response to environmental changes (Luo & Schurr, 2020; Shi 
et al., 2018; Wang et al., 2009; Xia et al., 2020).

4.3. The Implications for the Development of Soil Carbon Models

This study indicates that conventional linear models with optimized parameterizations (e.g., moisture-re-
sponse functions) could reproduce non-linear response processes of soil C dynamics (e.g., pulse dynamic 
of RH in grasslands) as well as microbial non-linear models do. This finding implies that parameterization 
schemes representing the mechanisms of soil C response to environmental factors are still very important 
for the development of both conventional linear or microbial models. According to previous studies, the un-
certainty due to parameterizations of environmental response functions is comparable to that from external 
climate changes and biogeochemical nutrient limitation (Exbrayat et al., 2013; Moyano et al., 2013; Nishina 
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et al., 2014). Microbial models, which reflect more realistic non-linear soil C processes than conventional 
models, are one of the promising future developments in Earth system models (Luo et al., 2016; Manzoni 
et al., 2016; Schimel & Weintraub, 2003; Shi et al., 2018; Wieder et al., 2013). In this study, we highlight the 
importance of environmental response functions (e.g., moisture-response functions) in determining the 
uncertainty of soil C dynamics (Figure 4).

5. Conclusions
Our results show that linear conventional models can capture the pulse dynamics of soil heterotrophic res-
piration in a semi-arid grassland as well as nonlinear microbial models do. Parameterization with a suitable 
moisture-response function dominates the performances of these two types of models. This study implies 
that the capability of the current Earth system models in simulating nonlinear soil C phenomena can be 
improved by not only the incorporation of soil microbial dynamics but also by more accurate parameteriza-
tions of environmental impacts. In grassland ecosystems, as shown in this study, an improved parameteri-
zation of soil moisture functions is important in reducing the model uncertainty on soil C cycling. Thus, we 
recommend more in situ observations of nonlinear C phenomena for improving parameter estimates under 
alternative carbon-cycle model structures.

Data Availability Statement
We have archived the observational data in Figshare (doi.org/10.6084/m9.figshare.13114637).
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