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Abstract
Both biochar and nitrogen (N) addition have been proposed for enhancing plant pro-
ductivity and increasing carbon (C) sequestration. Although numerous studies have 
been conducted to examine responses of soil greenhouse gas (GHG) fluxes to biochar 
or N addition, biochar is often co- applied with N fertilizer and the interactive effects 
of the two factors still remain unclear. In this study, we performed a meta- analysis 
of manipulative experiments with 267 two- factor observations to quantify the main 
and interactive effects of biochar and N addition on soil GHG fluxes at a global scale. 
Our results showed that biochar addition significantly increased soil CO2 emission 
by 10.1%, but decreased N2O emission by 14.7%. Meanwhile, N addition increased 
both soil CO2 and N2O emissions by 11.6% and 288%, respectively. The combination 
of biochar and N addition also exhibited significant positive effect on CO2 (+18.0%) 
and N2O (+148%) emissions, but there were non- significant changes in CH4 fluxes. 
Consequently, antagonistic interaction between biochar and N addition was observed 
in soil GHG fluxes and their global warming potential (GWP), except for CH4 up-
take showing an additive interaction. This synthesis highlights the importance of the 
interactive effects between biochar and N addition, providing a quantitative basis to 
develop sustainable strategies toward widespread application of biochar to preserve 
cropping system and mitigate climate change.
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1 |  INTRODUCTION

The Earth has experienced approximately 0.85℃ of elevated 
temperature relative to the pre- industrial levels, which was 
mainly caused by the ever- increasing greenhouse gas (GHG) 
emissions from anthropogenic activities (IPCC, 2013). To 
mitigate the global warming, timely and effective negative 
emission technologies are urgently needed to negate GHG 
emissions (i.e., CO2, CH4, and N2O; Meinshausen et al., 
2009; Smith, 2016; Sykes et al., 2020). Conversion of 
plant biomass into biochar, a carbon (C)- rich product de-
rived from biomass by pyrolysis in the absence of oxygen, 
and its application to soils seem to be a promising strategy 
for improving C sequestration to mitigate climate change 
(Lehmann, 2007; Smith et al., 2016; Woolf et al., 2010). 
Meanwhile, biochar amendment also plays an important 
role in improving soil quality, plant productivity, soil water 
holding capacity, and nutrient availability (Deluca et al., 
2015; Gao et al., 2019; He, Yao, et al., 2020; Hui et al., 
2018; Jeffery et al., 2011).

Previous studies have demonstrated that biochar amend-
ment has substantially altered soil GHG emissions (Sarauer 
et al., 2019; Zhang et al., 2012; Van Zwieten et al., 2009). 
Global meta- analyses of diverse studies conducted at the 
global scale indicated that biochar amendment enhanced soil 
CO2 emissions by 3%– 22% on average, but reduced N2O 
emissions by 31%– 54%, and had no effect on CH4  fluxes 
(Cayuela et al., 2014; He et al., 2017; Jeffery et al., 2016; Liu 
et al., 2016). Increases in soil CO2 emission have been linked 
to the biochar- induced changes in soil physical properties and 
labile C inputs as well as growth stimulation of roots and 
microorganisms (Jones et al., 2011; Mukherjee et al., 2014; 
Xiang et al., 2017). In contrast, decreases in soil N2O emis-
sion by biochar amendment have been a result of increases 
in soil aeration, pH alteration, and N immobilization (Case 
et al., 2012; Liu et al., 2019; Yanai et al., 2007). Additionally, 
biochar amendment induced either positive or negative ef-
fects on soil CH4  fluxes in individual studies, which were 
largely determined by the biochar- incurred changes in soil 
methanogenic archaea and methanotrophs (e.g., α-  and γ- 
proteobacteria; Feng et al., 2012; Jeffery et al., 2016; He, 
Yuan, et al., 2020). Consequently, it is likely that biochar ad-
dition may increase the global warming potential (GWP) due 
to the large stimulation of soil CO2 efflux (He et al., 2017).

Nitrogen (N) deposition, mainly from agricultural ac-
tivities and fossil fuel combustion, has increased more than 
threefold over the past century (Davidson, 2009; Galloway 
et al., 2008), which may interactively affect soil GHG fluxes 
with biochar amendment. Recently, a large number of stud-
ies have examined the responses of soil CO2, N2O, and/or 
CH4 fluxes to biochar in combination with N addition, show-
ing inconsistent results with increase (Sui et al., 2016; Wu 
et al., 2019), decrease (Azeem et al., 2019; Ge et al., 2020), 

or no significant change (Sherman & Coleman, 2020). These 
contradictory reports of soil GHG fluxes with respect to bio-
char and N addition may be caused by the changes in soil 
properties, environmental factors, biochar characteristics, 
and N addition rate (Fernández et al., 2014; Fungo et al., 
2019; He et al., 2016; Sigua et al., 2016). For example, bio-
char and N addition stimulated soil N2O emission in the mid 
of maize- growing season, but decreased it in the late season. 
The difference may result from changes in the underlying mi-
crobial processes largely determined by soil moisture and in-
organic N availability (Edwards et al., 2018). However, how 
these factors influence soil GHG fluxes in response to the 
combined biochar and N addition across the globe remains 
unclear.

Biochar and N addition may interactively (including ad-
ditive, synergistic, or antagonistic) affect soil GHG fluxes 
(He, Yuan, et al., 2020; Lan et al., 2018; Zheng et al., 2012). 
Substantial data from field manipulative experiments have 
demonstrated that the combined effects of biochar and N 
addition on soil GHG fluxes were equal to the sum of the 
single- factor effects (additive), but synergistic and antago-
nistic interactions have also been observed in other studies 
(Jiang et al., 2016; Maestrini et al., 2014; Zhang et al., 2019). 
It is essential to compile all the available data to obtain the 
central tendency of the interactive effects of biochar and N 
additions on soil GHG fluxes, which could help us to miti-
gate GHG emissions and develop C sequestration strategies 
in the changing world (Chen et al., 2019; Edwards et al., 
2018; Shakoor et al., 2021).

In this study, we compiled biochar and N addition stud-
ies across various ecosystems and quantitatively examined 
general patterns of their interactions on soil GHG fluxes and 
GWP over a 100- year time frame using a meta- analysis ap-
proach. The objectives were to (1) quantify the interactive 
effects of biochar and N addition on soil GHG fluxes and 
their GWP and (2) identify the key factors, including soil and 
biochar characteristics that influence responses of soil GHG 
fluxes to the combined biochar and N addition. Our study 
would test whether biochar combined with N addition can 
be effectively used to mitigate soil GHG emissions when the 
optimal yield was sustained.

2 |  MATERIALS AND METHODS

2.1 | Data sources

Publications were searched in Web of Science, China National 
Knowledge Infrastructure, and Google scholar (1900– 2020) 
with the keywords “biochar OR char OR pyrogenic carbon 
(C) AND nitrogen (N) fertilizer AND greenhouse gases 
OR CO2 OR CH4 OR N2O”. To minimize publication bias, 
the following criteria were used to select the publications: 
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(i) experiments had at least one pair of data (including con-
trol, biochar amendment, N fertilizer addition, and the com-
bined biochar and N fertilizer treatments) and measured soil 
CO2, CH4, and/or N2O fluxes; (ii) the methods of the ex-
periments were clearly stated, such as experimental duration, 
the amendment rate of biochar and N fertilizer, biochar and 
soil properties; (iii) plots for these treatment groups had the 
same experimental conditions as the control at the beginning 
of experiments; and (iv) the means, standard deviations/er-
rors, and the sample sizes of the variables in both control and 
treatment pairs could be extracted from the context, tables, or 
digitized graphs. In total, 66 publications (Data S1) with 267 
two- factor observations were selected from more than 800 
peer- reviewed publications, which were mainly distributed in 
the Northern Hemisphere (Figure S1). The studies with mul-
tiple biochar types, biochar amendment rates, soil textures, 
or N fertilizer addition levels were considered as the different 
individual studies. We did not differentiate the responses of 
soil GHG fluxes among different N fertilizer type (e.g., or-
ganic and inorganic materials), since the N fertilizer in many 
publications was not provided.

Five categories of data were collected from the papers 
of biochar and N fertilizer amendment experiments: (1) soil 
GHG fluxes (CO2, N2O, and/or CH4); (2) soil properties, in-
cluding soil organic C, soil total N, C/N ratio, pH, and soil 
texture; (3) biochar properties, including C and N content, 
C/N ratio, pH, feedstock types (wood, herb, and biowaste), 
pyrolysis temperature, and addition rate (t ha−1); (4) N fer-
tilizer addition rate (kg N ha−1); and (5) additional auxiliary 
variables, including latitude and longitude, experimental 
types (field studies, pot experiments, and laboratory incuba-
tions), plants (with or not), and experimental duration). The 
above variables mentioned in (2), (3), (4), and (5) were used 
to explain the variation in soil GHG fluxes in response to 
biochar and N fertilizer addition.

2.2 | Data analysis

2.2.1 | Individual and combined effects

The individual effect of biochar, N addition, and the com-
bined two factors was calculated by the response ratio (RR), 
which was described in the Hedges et al. (1999) and Luo 
et al. (2006). Specifically, the RR was calculated using the 
natural log of the ratio of the mean value in treatment than 
that in control as the following equation:

where xc and xt represent the means of the control and treatment 
groups, respectively. The detailed calculation of the variance 

(v) and the weight (w) of RR and the weighed RR (RR++) is 
described in He et al. (2017).

We also quantified global warming potential (GWP) as 
follows:

All fluxes were converted to CO2 equivalents according 
to the 100- year GWP (t CO2 equivalent ha−1) of 298 for N2O 
and 25 for CH4 (IPCC, 2007).

2.2.2 | Interactive effects

In this synthesis, main effect of biochar addition refers to the 
difference by comparing its net effect in the presence and 
absence of N addition, which is similar to main effect tests 
in ANOVA (Crain et al., 2008; Zhou et al., 2016). The in-
teractive effects are the simultaneous effects of biochar and 
N addition on soil GHG fluxes, in which their joint effect is 
more or less than the sum of the single effect, including syn-
ergistic, antagonistic, and additive effects (Crain et al., 2008; 
Zhou et al., 2016). The Hedge's d, which was employed by 
Gurevitch et al. (1992) and Zhou et al. (2019), was used to 
evaluate the main effect size of two factors and their interac-
tive effects on the variables. We used the following equations 
to estimate the main effect of biochar (dB) and N addition 
(dN) as well as their interactions (dBN).

where X
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where nC, nB, nN, and nBN were the sample sizes of control, 
biochar, N addition, and their combination treatment groups, 
respectively. SC, SB, SN, and SBN were the standard deviation of 
control, biochar, N addition, and their combination treatment 
groups, respectively. The variance (v) of the main effects and 
interactions was estimated by Equation 9.

The weight (w) is the reciprocal of the variance. The de-
tailed weighted d (d++) and standard error s [s(d++)] were 
described in Zhou et al. (2016).

When the number of sampling points was more than 20, 
the 95% confidence interval (CI) of d++ and RR++ was cal-
culated as d++ ± Cα/2 × s (d++) and RR++ ± Cα/2 × s (RR++), 
respectively. The Cα/2 is the two- tailed critical value of the 
standard normal distribution. While the number was less than 
20, a bootstrapping method was used to resample data based 
on 5000 iterations to obtain the highest and lowest 2.5% 
value. Three types of interactive effects were identified as ad-
ditive, synergistic, and antagonistic. If the 95% CI overlapped 
with zero, the interactive effects were classified as additive. 
When the individual effects were both positive, the interac-
tive effect size is greater than zero recognized as synergistic 
(<0 is antagonistic). In case the individual effects were either 
both negative or one positive and one negative, the interac-
tions were established in the reverse pattern (>0 is antagonis-
tic). In addition, the between- group heterogeneity (Qb) was 
used to investigate the combined effect of biochar and N ad-
dition among different sub- grouping categories. Publication 
bias was tested using funnel plot and Kendall's Tau methods 
(Møller & Jennions, 2001; Rosenberg, 2005).

3 |  RESULTS

3.1 | Effects of biochar and/or nitrogen 
addition on soil GHG fluxes

On average, biochar amendment significantly increased 
soil CO2 emission by 10.1% with a mean weighted RR++ of 
0.10 [CI  =  (0.03, 0.17)], but decreased soil N2O emission 
by 14.7% with a RR++ of −0.14 [CI = (−0.25, −0.03)] and 
had no significant effects on soil CH4 emission [CI = (−0.12, 
0.34)] and CH4 uptake [CI = (−0.27, 0.92)]. Meanwhile, N 
addition significantly increased soil CO2 and N2O emissions 
by 11.6% and 288%, respectively, but did not affect soil CH4 
emission and uptake (Figure 1). Similarly, the combined bio-
char and N addition significantly increased soil CO2 and N2O 
emissions by 18.0% and 148%, respectively, but induced no 
changes on soil CH4 fluxes (Figure 1).

Biochar amendment had no significant effect on global 
warming potential (GWP) but N addition increased GWP by 
160% with a RR++ of 0.96 [CI = (0.57, 1.44)] (Figure 1e). 
Meanwhile, the combined biochar and N addition signifi-
cantly increased GWP by 83.7% [RR++ = 0.61, CI = (0.32, 
0.90)] (Figure 1e). In addition, publication bias was not found 
for soil GHG fluxes and GWP in response to biochar, N ad-
dition, and their combination, except for CH4 uptake under 
single biochar addition with only 13 samples (Table S1).

3.2 | Interactive effects of biochar and N 
addition on soil GHG fluxes

The main effect of biochar addition, which represents the dif-
ference between its net effect in the presence and absence of 
N addition, on soil CO2 emission was significantly positive, 
but negative on soil N2O emission. Similarly, N addition sig-
nificantly increased soil CO2 and N2O emissions and GWP, 
but decreased CH4 uptake (Figure S2). Interactive effects of 
biochar and N addition on soil GHG fluxes were mainly an-
tagonistic, with the exception of soil CH4 uptake showing 
an additive interaction (Figure 2a). Although antagonistic 
effects for soil CO2, N2O, CH4  fluxes, and GWP were ob-
served, additive interaction still showed a dominance for the 
number of studies as revealed by the frequency distribution 
of interaction types among individual observations (Figure 
2b). Specifically, the additive interactions accounted for 
78.7%, 56.7%, 57.6%, 53.8%, and 71.4% on soil CO2, N2O, 
CH4 emission, CH4 uptake, and GWP, respectively (Figure 
2b). Furthermore, the antagonistic interactions on soil CO2 
(19.4% vs. 1.9%) and N2O emissions (38.5% vs. 4.8%) were 
more frequent than synergistic ones (Figure 2b).

The summed effects of biochar and N addition were cal-
culated and compared with the combined biochar and N addi-
tion for soil GHG fluxes and their GWP. Our results showed 
that the summed effects were higher than the combined ef-
fects for soil CO2 and N2O fluxes, with the deviation of 28.5% 
and 17.8%, respectively. However, no significant differences 
were observed in soil CH4 fluxes and GWP (Figure 3).

3.3 | Regulation of moderator variables on 
soil GHG fluxes

The responses of soil GHG fluxes to the combined biochar 
and N addition treatment were significantly influenced by 
experimental methods (e.g., field studies, pot experiments, 
and laboratory incubations), N addition rates, soil and bio-
char properties (Table 1). Specifically, the responses of soil 
CO2 emission to the combined biochar and N addition in-
creased with biochar TN (R2 = 0.09, p < 0.01) and N addi-
tion rate (R2 = 0.15, p < 0.01), but decreased with biochar 
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C/N ratio (R2 = 0.06, p < 0.05). Meanwhile, negative cor-
relation between biochar TN and soil N2O emission was ob-
served (R2 = 0.06, p < 0.01), but positive correlations of both 
biochar C/N (R2 = 0.03, p < 0.05) and soil pH (R2 = 0.03, 
p < 0.05) with soil N2O emission were found in this study. 
Likewise, the responses of soil CH4 emission increased with 
biochar TN (R2 = 0.18, p < 0.05) and addition rate (R2 = 0.28, 
p < 0.01), but decreased with biochar C/N ratio (R2 = 0.17, 
p < 0.05; Figure 4).

Experimental method and soil texture induced a signifi-
cant effect on soil GHG fluxes with respect to the combined 
biochar and N addition treatment (Table 1). Among the field, 
pot and laboratory studies, pot studies showed the highest in-
creases in soil CO2 emission, but the lowest increases in soil 
N2O emission in the combined biochar and N addition treat-
ment (Figure S3). Positive effects of the combined biochar 
and N addition on soil CO2 emission occurred in soils with 
fine texture, but no significant effect was observed in soils 
with coarse and medium texture (Figure S4).

4 |  DISCUSSION

4.1 | Individual effects of biochar or N 
addition on soil GHG fluxes

Both biochar and N addition generally increase soil GHG 
fluxes (Deng et al., 2020; He et al., 2017; Liu & Greaver, 
2009). In this study, biochar addition stimulated soil CO2 
emission, but depressed soil N2O emission and induced no 
significant effects on soil CH4 emission and uptake (Figure 
1). Meanwhile, N addition facilitated soil CO2 and N2O 
emissions, but had no changes on CH4 fluxes (Figure 1). The 
significant positive effects of biochar and N addition on soil 
GHG fluxes are supported by the findings of previous meta- 
analyses (Cayuela et al., 2014; Jeffery et al., 2016; Shcherbak 
et al., 2014; Zhou et al., 2014).

The potential mechanisms underlying the stimulation of 
soil CO2 emission by biochar amendment were well synthe-
sized in previous studies, largely due to positive responses 

F I G U R E  1  Effects of biochar (B), N 
addition (N) and their combination (BN) on 
soil GHG fluxes (CO2, N2O, and CH4), and 
their global warming potential (GWP) are 
shown as mean response ratio (RR++). Mean 
effect and 95% confidence interval (CI) are 
shown. If the CI did not overlap the zero, the 
response was considered as significant (‘*’). 
Numerals mean the number of observations
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of leaf photosynthesis rate, shoot and root biomass, soil mi-
crobial activities, and soil organic C (SOC) status, and then 
increasing root and/or microbial respiration (Bai et al., 2015; 
He, Yao, et al., 2020; Laird, 2008; Nguyen et al., 2016; Olmo 
et al., 2016). The biochar- induced suppression of soil N2O 
emission was probably driven by the reduction of electron 
donors and acceptors for denitrification, which might be 
attributed to sorption and/or immobilization of NO−

3
 and 

NH+
4

 onto biochar, and the decrease in microbial denitrifi-
cation induced by the improved soil aeration (Cayuela et al., 
2015; Harter et al., 2014; Xu et al., 2014). Furthermore, the 

decrease in soil N2O emission following biochar addition 
might stem from the stimulation of N2O- reducing bacteria 
community with the increased soil pH and dissolve organic C 
(Ameloot et al., 2016; Ji et al., 2020).

The stimulation of soil CO2 emissions in response to 
N addition might be due to the increased plant produc-
tivity and soil C pools, enlarging the size and activity 
of soil microbial population, especially in cropland and 
grassland biomes (Lu, Yang, et al., 2011; Ye et al., 2018; 
Zhou et al., 2014). Likewise, additional N inputs would en-
hance the readily N supply for nitrifying and denitrifying 

F I G U R E  2  The interaction types of biochar and nitrogen in soil GHG (CO2, N2O, and CH4) fluxes and their global warming potential (GWP, 
a). The percentage of the three interaction types in all studies is shown (b)

F I G U R E  3  The weighted response 
ratio (RR++) of the summed and combined 
effects on GHG (CO2, N2O, and CH4) 
fluxes and global warming potential (GWP). 
Different lower case letters mean significant 
different between the summed effect (B+N) 
and the combined effect (BN) at p < 0.05. 
Summed effect represents the sum of 
individual biochar and N addition effect, 
where the combined effect means the effect 
of biochar co- applied with N addition
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microorganisms, leading to the increase in soil N2O emis-
sion (Deng et al., 2020; Fu et al., 2015; Liu & Greaver, 
2009). In this study, the responses of soil CH4 emission and 
uptake to N addition were much more uncertain due to the 
small sample size and the great heterogeneity in biochar 
and N addition treatments.

4.2 | Combined and interactive effects of 
biochar and N addition on soil GHG fluxes

Understanding the combined and interactive effects of bio-
char and N addition on soil GHG fluxes is crucial for de-
veloping a more optimized strategy towards biochar addition 
worldwide to mitigate global climate change. In this study, 
we found that the interactive effects of biochar and N ad-
dition on soil GHG fluxes were generally antagonistic (i.e., 
the combined effect is weaker than the sum of the two indi-
vidual effects), rather than additive or synergistic (Figure 2). 
Meanwhile, the interactions between biochar and N addition 
also exhibited a significant antagonistic influence on GWP 
because of the significant antagonistic effect of soil CO2 
and N2O emissions. Our findings indicate that the combined 
biochar and N addition is potentially sustainable to improve 
crop yields (Alburquerque et al., 2013; Ali et al., 2020), and 
simultaneously negate soil GHG emissions compared with 
N addition.

Specifically, the combined biochar and N addition sig-
nificantly stimulated soil CO2 emission by 18%, which was 

significantly smaller than the sum of two individual ef-
fects (26%, Figure 3). The antagonistic interaction on soil 
CO2 emission could be ascribed to the sorption of exoge-
nous N (NO−

3
 and NH+

4
) to biochar with high surface area 

and porosity (Clough et al., 2013; Li et al., 2020; Nguyen 
et al., 2017), thus reducing N availability for microorgan-
isms. Furthermore, biochar amendment would stimulate soil 
organic matter (SOM) mineralization, causing a positive 
priming effect (Wang et al., 2016; Yu et al., 2018). With alle-
viating N limitation for soil microbes following N inputs, the 
priming effects on SOM decomposition are diminished (Feng 
& Zhu, 2021), thereby having a decline in CO2 emission.

Soil N2O emission showed a more dominant antagonism 
interactions compared with synergism (Figure 2b). It could 
be because biochar amendment counteracted the significant 
positive effects of additional N inputs on soil N2O emission. 
Previous studies have suggested that the combined biochar 
and N addition remarkably boosted plant productivity, which, 
in turn, increased plant N demands (Backer et al., 2017; Song 
et al., 2020). Thus, the increase in N uptake by plants and N 
immobilization by biochar particles probably decreased soil 
N availability for nitrification and denitrification, resulting in 
an antagonistic interaction between biochar and N addition. 
Additionally, N addition to biochar- treated soil can sustain 
increases in plant productivity, and thus maintain organic C 
inputs to soils (Liao et al., 2020; Van Zwieten et al., 2010). 
The inputs of readily available C substrate would accelerate 
both nitrification and denitrification processes while the in-
creased transcription of N2O reductase genes (NosZ) might 

T A B L E  1  Between- group variability (Qb) among observations (n) suggesting their potential as predictive variables influencing soil GHG 
fluxes to biochar combined with N addition

Variables

CO2 N2O CH4- emission CH4- uptake

Qb n Qb n Qb n Qb N

Experimental factors Exp. Method 24.91*** 108 13.57** 187 2.31 33 1.74 13

Exp. Duration 0.14 108 0.01 178 0.28 33 0.43 13

Latitude 0.05 108 4.00* 187 0.70 33 1.27 13

With plant 0.01 108 2.81 187 1.06 33 1.74 13

Nitrogen N addition rate (t ha−1) 15.24*** 98 0.06 172 0.34 31 0.01 12

Soil properties Soil texture 7.7* 85 2.66 148 5.67 21 9.90** 9

Soil pH 1.98 104 4.78* 180 0.06 33 0.35 11

Soil C/N 0.34 80 1.37 124 7.36** 23 0.003 10

Biochar properties Source 1.34 108 2.24 187 0.94 33 1.54 13

Pyrolysis temp. (oC) 0.18 108 0.73 181 13.57*** 29 3.80 13

Biochar C/N 2.32 86 6.37* 178 13.54*** 33 1.48 11

Biochar pH 2.00 101 0.01 182 1.05 33 0.77 11

Biochar addition rate 
(t ha−1)

0.85 92 0.46 161 0.22 27 0.26 10

Biochar TN (g kg−1) 8.84** 100 9.10** 175 5.25* 33 0.06 7

Note: A variation with larger Qb can be a better predictor than the small one. Statistical significance of Qb: *p < 0.05; **p < 0.01; ***p < 0.001.
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enhance further reduction of soil N2O to N2 (Anderson et al., 
2011; Xu et al., 2014).

Although the combined effects of biochar and N addi-
tion showed non- significant effect on soil CH4 emission 
(Figure 1c), the interaction between these two drivers 
was exhibited as antagonism (Figure 2b). The combined 
biochar and N addition induced higher rhizodeposition, 
above-  and belowground biomass, which have been re-
ported in recent studies (He, Yuan, et al., 2020; Shaukat 
et al., 2019). Thus, the increased available C substrates 
further stimulate activity of methanotrophs and CH4 ox-
idation (Feng et al., 2012; Wang et al., 2019), resulting 
in an antagonistic interaction. However, the interactive ef-
fects of biochar and N addition on soil CH4 uptake were 

found to be additive, which may be attributed to the small 
sample sizes for these two drivers to conceal potential an-
tagonistic or synergistic effects.

4.3 | Influences of moderator variables

Biochar and soil properties have been widely demonstrated 
to influence soil C and N cycling in response to biochar and/
or N addition (Cayuela et al., 2015; Farrar et al., 2021; He 
et al., 2017). Our results showed that effects of the combined 
biochar and N addition on soil CO2 emission exhibited a 
positive correlation with N addition rate and biochar total N 
content (TN), but a negative relationship with biochar C/N 

F I G U R E  4  Bubble plots of the meta- regression results between the response ratio of soil greenhouse gas fluxes and biochar properties 
(biochar TN, biochar C/N), biochar and N addition rate, and soil pH. Sizes of circles represent the weights of each observation in meta- regressions. 
Weights for each observation are the inverses of sum of variance and tau2
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ratio (Figure 4). These suggested that soil CO2 emission in-
creased with soil available N, which was consistent with the 
results from Zhou et al. (2014). Meanwhile, the combined 
biochar and N addition induced a positive effect on CO2 
emission in fine- textured soils while no significant effects 
were observed in coarse and medium texture soils (Figure 
S4). It might be attributed to the fact that soil aeration in-
creased in the biochar treatment, which was exceptionally 
porous with a high cation exchange capacity (CEC) and 
surface area, hence improving soil retention of water and 
nutrients. In addition, biochar and N addition may enhance 
the growth of aerobic microorganisms, thereby stimulating 
SOC decomposition (Chan & Xu, 2009; McCormack et al., 
2019; Wardle et al., 2008).

Surprisingly, our study showed that the responses of N2O 
emissions to the combined biochar and N addition displayed 
no significant correlation with N addition rate (Table 1), 
probably resulting from the biochar- induced facilitation of 
complete denitrification to N2 (Anderson et al., 2011; Wei 
et al., 2020; Xu et al., 2014). Moreover, the combined biochar 
and N addition exerted a consistent and significant positive 
effect on soil N2O emission across experimental methods, 
with the lowest positive response of N2O emission observed 
in pot experiments (Figure S3). Biochar addition rates in pot 
experiments were generally higher than those in laboratory 
or field studies (Liu et al., 2016). Hence, the reduction in soil 
N2O emissions could be due to more available N (NO−

3
 and 

NH+
4

) being immobilized by biochar. Additionally, the com-
bined effect of biochar and N addition on soil CH4 emission 
largely depends on biochar characteristics and its application 
rate. Soil CH4 emission mainly depends on the balance be-
tween methanogenic archaeal and methanotrophic commu-
nities (Bodelier & Lannbroek, 2004). Therefore, soil CH4 
emission increased with biochar TN and addition rate, proba-
bly resulting from the increased ratio of soil methanogenic to 
methanotrophic abundance (Jeffery et al., 2016; Singla et al., 
2014).

4.4 | Implications for future 
studies and management

Over the past two decades, several meta- analyses have re-
ported the responses of plant performance, ecosystem C and 
N- cycles to biochar or N addition (Biederman & Harpole, 
2013; He, Yao, et al., 2020; He et al., 2017; Lu, Yang, et al., 
2011; Lu, Zhou, et al., 2011; Nguyen et al., 2017; Zhou et al., 
2014), but relatively few studies have examined their com-
bined and interactive effects. This synthesis offers some in-
sights for future manipulative experiments and management 
towards biochar widespread application. First, our findings 
reveal an antagonistic effect of biochar and N addition on 
soil GHG fluxes at the global scale. To achieve the targets of 

limiting global warming to 1.5℃ above pre- industrial levels, 
which was launched at the 21st session of the Conference of 
the Paris to the United Nations Framework Convention on 
Climate Change (UNFCCC, 2015), negative emissions tech-
nologies (including biochar amending to land) were deployed 
at the large scale. Since the antagonistic effect of biochar and 
N addition on GWP was mainly attributed to the significant 
antagonistic effect of soil CO2 and N2O emissions, biochar 
amendment with N fertilizer may be one of the good strat-
egies for both the crop yield and the mitigation of climate 
change.

Second, we found that the responses of soil GHG fluxes 
to biochar and N addition were influenced by biochar and soil 
properties, implying that biochar combined with relatively 
low N addition rate appears to be a good strategy to mitigate 
climate warming in acidic soils on the basis of crop yield 
being guaranteed. Meanwhile, the influence of biochar and N 
addition on soil GHG fluxes is site-  and ecosystem- specific, 
suggesting that more field experiments from several hotspot 
regions (e.g., Africa, South America, and Australia areas) are 
urgently needed to improve the global perspective. Third, the 
majority of current studies focus on individual and combined 
effect of biochar and N addition to ecosystem function and 
nutrients cycling (Borchard et al., 2019; Oladele et al., 2019; 
Shi et al., 2020). How and to what extent the interactive ef-
fects of biochar and N addition combined with other global 
change factors (e.g., warming, precipitation changes, and 
land- use change) on C and N cycling is still a knowledge gap 
to be addressed in the near future.
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