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A B S T R A C T   

Compared to the well-known drivers of spatial variability in gross primary productivity (GPP), the relative 
importance of climatic variables, soil properties and plant traits to the spatial variability in net ecosystem ex-
change of CO2 between terrestrial ecosystem and atmosphere (NEE) is poorly understood. We used principal 
component regression to analyze data from 147 eddy flux sites to disentangle effects of climatic variables, soil 
properties and plant traits on the spatial variation in annual NEE and its components (GPP and ecosystem 
respiration (RE)) across global forests and grasslands. Our results showed that the largest unique contribution 
(proportion of variance only explained by one class of variables) to NEE variance came from climatic variables 
for forests (24%-30%) and soil properties for grasslands (41%-54%). Specifically, mean annual precipitation and 
potential evapotranspiration were the most important climatic variables driving forest NEE, whereas available 
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soil water capacity, clay content and cation exchange capacity mainly influenced grassland NEE. Plant traits 
showed a small unique contribution to NEE in both forests and grasslands. However, leaf phosphorus content 
strongly interacted with soil total nitrogen density and clay content, and these combined factors represented a 
major contribution for grassland NEE. For GPP and RE, the majority of spatial variance was attributed to the 
common contribution of climate, soil and plant traits (50% - 62%, proportion of variance explained by more than 
one class of variables), rather than their unique contributions. Interestingly, those factors with only minor in-
fluences on GPP and RE variability (e.g., soil properties) have significant contributions to the spatial variability 
in NEE. Such emerging factors and the interactions between climatic variables, soil properties and plant traits are 
not well represented in current terrestrial biosphere models, which should be considered in future model 
improvement to accurately predict the spatial pattern of carbon cycling across forests and grasslands globally.   

1. Introduction 

Terrestrial ecosystems absorb about 30% of the carbon dioxide (CO2) 
released by fossil fuel emissions and land use change, having great 
impact on climate change mitigation (Denman et al., 2007; Friedling-
stein et al., 2019). The ability of the terrestrial ecosystem to absorb CO2 
is determined by the net CO2 exchange between land and the atmo-
sphere (NEE), which is the balance between gross primary productivity 
(GPP, absorption of CO2 by ecosystem) and ecosystem respiration (RE, 
the release of CO2 by ecosystem) (Chapin et al., 2006). Growing evi-
dence from globally distributed eddy-covariance sites has shown large 
spatial variability in NEE globally, ranging from a carbon (C) sink of 
1000 g C m− 2 year− 1 to a carbon source of 1300 g C m− 2 year− 1 (Bal-
docchi, 2008). Understanding the underlying drivers of the large spatial 
variability in NEE is important for predicting the global carbon budget 
under climate change (Lovenduski and Bonan, 2017; Bonan and Doney, 
2018). 

The spatial variability in NEE can, for example, be driven by climatic 
variables, soil properties and plant traits (Hirata et al., 2008; Fernán-
dez-Martínez et al., 2014a, 2014b; Chen et al., 2019). However, the 
relative importance of these three factors is still controversial. Peichl 
et al. (2013) found that the climate was the most important factor 
determining NEE across nine grasslands, whereas Chen et al. (2015; 
2019) showed that the enhanced vegetation index (EVI) and leaf area 
index (LAI) were more important than climate across both Northern 
Hemisphere and global terrestrial ecosystems. Fernández-Martínez 
et al. (2014a) suggested that 19% of the variance in NEE across global 
forests was explained by nutrient availability, much larger than that 
explained by mean annual temperature (MAT) (9%) or stand age (5%). 
Some researchers suggest that water availability has a larger effect on 
NEE than temperature for Europe and the Northern Hemisphere 
(Reichstein et al., 2007; Chen et al., 2015), while others show the 
opposite pattern across North American forests (Yuan et al., 2009) and 
Asian ecosystems (Chen et al., 2013). 

These inconsistent results could be for several reasons. First, different 
biomes might exhibit differential spatial patterns. Globally, the forests 
and grasslands together cover 54% of the total terrestrial area (Chen 
et al. 2015), with their GPP values up to 53.71± 4.83 Pg C yr− 1 and 
11.00 ± 0.31 Pg C yr− 1, respectively (Ma et al., 2015; Liang et al., 2017). 
Grasslands mainly exist in arid and semiarid regions, and they have 
shallow roots and labile herbaceous tissue (Mason and Zanner, 2005; 
Díaz et al., 2016). Forests, on the other hand, occupy more humid areas, 
have deep roots and produce recalcitrant woody tissues (Boyle 2005; 
Díaz et al., 2016). As a result of these morphological differences, forests 
and grasslands have different sensitivities towards environmental fluc-
tuations (Shi et al., 2014; Song et al., 2014; Gao et al., 2019), and 
thereby climatic variables, soil properties and plant traits give a differ-
ential contribution to spatial variability in NEE. Most studies have 
focused on differential impact of climate on carbon fluxes between 
forests and grasslands (Reichstein et al., 2007; Yuan et al., 2009; 
Anderson-Teixeira et al., 2011; Shi et al., 2014), with little focused on 
effects of soil properties and plant traits, and their relative importance 
on NEE. 

Second, the different conclusions can also result from the perspective 

on whether the factors important to GPP and RE will also be critical to 
NEE. Some studies suggested that the spatial NEE variability was mainly 
caused by factors important to either GPP or RE, such as temperature 
and precipitation (Valentini et al., 2000; Chen et al., 2013; Ahlström 
et al., 2015). Other studies pointed out that the factors critical to GPP or 
RE were not always the exact driver of spatial variability in NEE 
(Luyssaert et al., 2007; Anderson-Teixeira et al., 2011; Xu et al., 2016; 
Han et al. 2020). This is because NEE is a small signal compared to the 
two large opposing fluxes of GPP and RE, which means the parallel ef-
fects of a certain driver on GPP and RE may weaken its influence on NEE. 
Only using such drivers to simulate NEE might be one of the reasons that 
current global biogeochemical models maybe not able to precisely map 
the terrestrial NEE. 

Reliable estimates of the relative importance of climatic variables, 
soil properties and plant traits require methods adequately relating 
these factors to carbon fluxes. However, few studies considered all the 
three classes of drivers, and those focused on one or two classes showed 
that the predictive power of them to the spatial variability in NEE was 
relatively low (10.1%-36.0%, Reichstein et al., 2007; Chen et al., 2013, 
2015; Fernández-Martínez et al., 2014a; Chen et al. 2019). A possible 
reason is that the linear models used in these studies may underestimate 
the associations between carbon fluxes and driving factors if the un-
derlying relationships were nonlinear (Wang et al., 2016; Zhang et al., 
2016). Another difficulty is the collinearity among explanatory vari-
ables, which may mask the relative importance of each variable. To 
overcome these difficulties and obtain reliable estimations of the rela-
tive importance of climatic variables, soil properties and plant traits to 
spatial variability in NEE, we applied principal component regression 
(PCR) integrated principal component analysis (PCA) and generalized 
additive models (GAMs) to analyze a global dataset of multi-year aver-
aged NEE data from 147 eddy covariance flux sites. Specifically, our 
objectives were (1) to estimate the relative contributions of climatic 
variables, soil properties and plant traits to the spatial variability in NEE, 
GPP and RE across global forests and grasslands, and (2) to reveal the 
different mechanisms underlying the spatial pattern of NEE of global 
forests and grasslands. Our results can inform biogeochemical models 
aimed at describing the spatial distribution of the CO2 net exchange of 
terrestrial ecosystems. 

2. Materials and methods 

2.1. Data sources 

2.1.1. Flux-tower-based carbon fluxes 
The site-wise and multi-year averaged NEE, GPP and RE (≥ 4 years, 

from 2000 to 2014) was acquired from the Fluxnet 2015 database 
(Tier1, https://fluxnet.fluxdata.org, Pastorello et al., 2020), Ameriflux 
(https://ameriflux.lbl.gov), Ozflux (http://ozflux.org.au/) and pub-
lished data. In total, there were 980 site-years from 147 sites, including 
74 forests, 44 grasslands, 5 shrublands, 7 wetlands and 17 croplands 
(Fig. 1; Table S1). We aimed to examine differencies in the driving 
factors of spatial variability in NEE among different biomes, and to 
quantify the relative importance of climatic variables, soil properties 
and plant traits. As the number of sites for shrublands, wetlands and 
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croplands were relatively small, we primarily focused on the forests and 
grasslands. The flux sites were combined into four datasets: All sites (a 
total of 147 sites) and forests and grasslands (FG; 118 sites), forests (74 
sites) and grasslands (44 sites). The ecosystems other than forests and 
grasslands were included in dataset ’All sites’ in order to investigate the 
ability of plant traits to explain the spatial variability in carbon fluxes 
regardless of the biome type. 

2.1.2. Climatic variables 
The climatic variables included incoming shortwave radiation (SW), 

mean annual temperature (MAT), mean annual precipitation (MAP), 
mean annual potential evapotranspiration (PET), and number of frost 
days (Frs), which were extracted from global data maps according to the 
geographic coordinates (Table 1). The global maps of monthly MAT, 
MAP, PET and Frs (2001 - 2014) were from the Centre for Environmental 
Data Analysis (version CRU TS 4.00, https://catalogue.ceda.ac.uk), and 
averaged into annual means. SW data (2007 - 2014) was from the NASA 
Earth Observatory (https://neo.sci.gsfc.nasa.gov/view.php?data 
setId=CERES_SWFLUX_M). 

2.1.3. Soil properties 
Soil properties included clay content (Clay), bulk density (BD), soil 

organic carbon (SOC), total nitrogen (TN), ratio of soil carbon and ni-
trogen (C:N), cation exchange capacity (CEC), soil pH and available 
water capacity (AWC, Table 1). BD, TN, AWC and C:N ratio were from 
Global Gridded Surfaces of Selected Soil Characteristics (IGBP-DIS, 
Global Soil Data Task Group, 2000). Clay, SOC, CEC and pH were from 
the Harmonized World Soil Database (version 1.2, Fischer et al., 2008). 
All soil properties were averaged over a soil depth of 0-1.0 m. 

2.1.4. Plant traits 
Plant traits included leaf area index (LAI), plant height (H), specific 

leaf area (SLA), leaf nitrogen content (LN) and leaf phosphorus content 
(LP) (Table 1). Plant height was from Simard et al. (2011). Monthly 
gridded LAI was from NASA’s Earth Observatory Team (MOD15 prod-
uct), which were averaged into annual means. SLA, LN and LP were from 
the TRY database (Kattge et al., 2020), the largest global dataset of plant 
traits. Because of the important roles played by dominant species in 
regulating ecosystem functions (Grime, 1998; Lavorel and Garnier, 
2002; Finegan et al., 2015), the dominant species-based traits were used 
to indicate the ecosystem-level plant traits (see details in Method S1). 

2.2. Quantifying the relative contributions of climatic variables, soil 
properties and plant traits 

The unique (proportion of variance that can be uniquely explained 
by a single predictor) and common contributions (proportion of variance 
that is explained by two or more different variables) of climatic vari-
ables, soil properties and plant traits to the spatial variability in carbon 
fluxes (NEE, GPP and RE) were determined by a deviance decomposition 
method based on principal component regression (PCR, Abdi and Wil-
liams, 2010). We chose to use this PCR approach because it minimizes 
the influence of multicollinearity and has the ability to feasibly account 
for the nonlinear relationships (Abdi and Williams, 2010; Faraway, 
2016). The PCR consisted of two stages. In the first stage, principal 
component analysis was used to extract the principal components of the 
explanatory variables (Abdi and Williams, 2010). In the second stage, 
generalized additive models (GAM) was used to describe the relation-
ships between principal components and carbon fluxes. We used GAM 
rather than a specified functional form in prior to deal with the potential 
nonlinear patterns, due to the complexity of the spatial relationships 
between carbon fluxes and their driving factors across global terrestrial 
ecosystems (Chen et al., 2013; Kondo et al., 2017; Chen et al., 2019; 
Tang et al., 2020). However, we acknowledge that the nonparametric 
methods such as GAM may suffer over-fitting problems and exhibit 
unrealistic relationships. To minimize this problem, we limited the po-
tential degree of freedom (df) of the GAMs (see details below). 

Specifically, we set seven model scenarios containing each class of 
explanatory variables and their potential combinations (Method S2). For 
each model scenario, to obtain the model which best explain the spatial 
variance in the carbon flux (NEE, GPP or RE), we applied a model se-
lection technique. First, a series of candidate GAMs, with the principal 
components (PCs) being explanatory variables and carbon fluxes (NEE, 
GPP or RE) being response variable, were set: 

Carbonflux= s(PC1, k= 3) + s(PC2, k= 3)+…+s(PCi, k= 3) (1)  

where the s() is the spline smoother of a specific PC. All possible com-
binations up to eight PCs were allowed in the GAM. The curvature of 
smoother pattern depends on the df. To minimize the overfitting prob-
lem, we set the largest possible df to 3 for each smoother. Furthermore, if 
the resulting df was close to 1, we used the linear relationship in the 
GAM, to make the model structure as simple as possible. 

The best model for each scenario was determined by model selection 

Fig. 1. Flux sites included in this study. We used 74 forest and 44 grassland ecosystems. In addition, there were 29 other ecosystems, including 5 shrublands, 7 
wetlands and 17 croplands sites. MAT, mean annual temperature; MAP, mean annual precipitation. 
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procedure based on Akaike information criterion (AIC) and Bayesian 
information criterion (BIC). It has been a long debate about the appli-
cations of AIC and BIC for model selection. Generally, AIC is more 
suitable in situations where sample size of data is relatively small 
compared to the complexity of true underlying processes (in which case 
the true model is usually not included in the candidate model set), while 
BIC is more suitable in situations when the sample size largely exceeds 
the complexity of true processes (in which case the true model can be in 
the candidate model set, Aho et al., 2014). Considering the potential 
differences of underlying mechanisms among different biomes (Archi-
bald et al., 2009; Ahlström et al., 2015; Wood et al., 2012; Johnston 
et al., 2021), we used both AIC and BIC as the model selection criteria. If 
the results based on these two criteria were similar, our conclusions 
could be regarded as robust. In detail, the best model was the model with 
the largest deviance explained (DE) among models whose IC (AIC or 
BIC) values were between the minimum IC (ICmin) and ICmin + 2, since 
the models with ΔAIC or ΔBIC less than 2 being considered not signif-
icantly different from the best model (Burnham and Anderson, 2002; 
Kass and Raftery, 1995). Once all the seven best models were obtained 
(one for each scenario), the unique and common contributions of cli-
matic variables, soil properties and plant traits were quantified ac-
cording to the DEs of the seven best models (Method S2). 

In addition to the relative contribution of the three classes of vari-
ables, we also quantified the unique contribution of each original vari-
able by using a similar procedure. For each variable i, a principal 
component analysis of the remaining 17 variables was conducted and 
the derived PCs were used as the potential explanatory variables of the 
GAMs. Model selection for the remaining 17 variables based on ICs and 

DE, was used to obtain a best model (N1) excluding the variable i, whose 
DE was then indicated as DE18-i. Then the variable i was added to the 
above best model (N2), and the corresponding DE was DEi. The unique 
contribution of i was calculated as the difference between DEi and DE18- 

i. When the unique contribution of a given factor was higher than the 
average value, its impact on NEE was shown based on N2. 

2.3. Detecting the interactive effects among climatic variables, soil 
properties and plant traits 

We also detected the interactive effects among climatic variables, 
soil properties and plant traits on spatial variability in carbon fluxes 
(NEE, GPP and RE). All possible two- and three-way interactive effects 
were detected based on the GAMs. For a certain interactive term, we 
constructed two GAMs to predict NEE, one with (M1) and another 
without (M2) the interactive term. The corresponding ICs (AICs or BICs) 
were IC1 (AIC1 or BIC1) and IC2 (AIC2 or BIC2), respectively. If IC2 – IC1 
> 2, we considered the interactive effect statistically significant (Kass 
and Raftery, 1995; Burnham and Anderson, 2004). 

The relative importance of each interactive effect was calculated as 
the weight (wj, Akaike weight and posterior model probability for AIC 
and BIC, respectively) of the model containing this effect (Burnham and 
Anderson, 2004): 

wj =

exp
(

− 1
2Δj

)

∑
exp

(

− 1
2Δj

) (2) 

Table 1 
The climatic variables, soil properties and plant traits used in this study. CEDA, Centre for Environmental Data Analysis; IGBP-DIS, Global Gridded Surfaces of Selected 
Soil Characteristics; HWSD, Harmonized World Soil Database.  

Explanatory variables Abbreviation Unit Year Soil 
depth 

Resolution Data source 

Climatic variables       
Mean annual temperature MAT ◦C 2001- 

2014  
0.5◦ CEDA (CRU TS 4.00) 

Mean annual precipitation MAP mm 2001- 
2014  

0.5◦ CEDA (CRU TS 4.00) 

Incoming shortwave radiation SW W m− 2 2001- 
2007  

0.25◦ NASA Earth Observatory 

Mean annual potential 
evapotranspiration 

PET mm 2001- 
2014  

0.5◦ CEDA (CRU TS 4.00) 

Number of frost days Frs days yr− 1 2001- 
2014  

0.5◦ CEDA (CRU TS 4.00) 

Soil properties       
Clay content Clay %mass  0-100 

cm 
6%-46% 30 arc- 
second 

HWSD (version 1.2) 

Bulk density BD g cm− 3  0-100 
cm 

0.0833333◦ IGBP-DIS 

Soil organic carbon SOC %mass  0-100 
cm 

6%-46% 30 arc- 
second 

HWSD (version 1.2) 

Total nitrogen density TN g m− 2  0-100 
cm 

0.0833333◦ IGBP-DIS 

Available water capacity AWC mm  0-100 
cm 

0.0833333◦ IGBP-DIS 

Ratio of soil carbon and nitrogen C:N -  0-100 
cm 

0.0833333◦ IGBP-DIS, calculated as total soil carbon density 
divided by TN 

Soil pH pH -  0-100 
cm 

6%-46% 30 arc- 
second 

HWSD (version 1.2) 

Cation exchange capacity CEC mmol 
kg− 1  

0-100 
cm 

6%-46% 30 arc- 
second 

HWSD (version 1.2) 

Plant traits       
Leaf area index LAI - 2000- 

2014  
0.1◦ NASA Earth Observatory 

Specific leaf area SLA cm2 g− 1   - TRY database 
Leaf nitrogen (N) content per leaf dry 

mass 
LN %   - TRY database 

Leaf phosphorus (P) content per leaf dry 
mass 

LP %   - TRY database 

Plant height H m   - Simard et al., 2010  
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where Δj is the difference between IC1 of the M1 model with interaction j 
(AIC1j or BIC1j) and the minimum IC of all the M1 models ICmin (AICmin or 
BICmin). The relative importance of interactive effects were detected 
according to wj. Only when the wj was greater than 10.0% were the 
interactive effects of factors on NEE displayed. 

2.4. Statistical analysis 

The t-test was used to test the difference in NEE between forests and 
grasslands. Levene’s test was applied to compare the spatial variance in 
NEE between forests and grasslands. All analyses were implemented in R 
version 4.0.2 (R Core Team, 2019). PCA, GAM and Levene’s test were 
conducted by functions prcomp, gam (in mgcv package, Wood and Wood, 
2015) and leveneTest (in car package, Fox et al., 2007), respectively. 

3. Results 

3.1. Spatial variability in NEE 

Annual NEE greatly varied across the global terrestrial ecosystems 
(-226 ± 304 g C m− 2 yr− 1, mean ± SD), with most ecosystems (118 of 
147 sites) being carbon sinks (i.e., negative NEE). Both the magnitude 
and spatial variability of NEE in forests (-312 ± 363 g C m− 2 yr− 1) were 
larger than those in grasslands (-103 ±180 g C m− 2 yr− 1) (t113.02 = -4.16, 
P < 0.001; F1,116 = 8.33, P < 0.001). For both forests and grasslands, the 
spatial variability in NEE was driven by the covariance of GPP and RE, 
rather than the variance in GPP or RE (Fig. S1). 

3.2. Relative contributions of climatic variables, soil properties and plant 
traits to spatial variability of NEE 

Climatic variables, soil properties and plant traits influenced annual 
NEE differently (Fig. 2; Table S2). For NEE, GAMs including all three 
classes of variables explained 39.4%-40.2%, 53.7%-56.5% and 80.0%- 

Fig. 2. Relationships between NEE and driving factors across forests, grasslands and other ecosystems. Only the significant relationships are shown (P < 0.05). The 
regression lines are based on the generalized additive models (GAMs). MAT, mean annual temperature; MAP, mean annual precipitation; PET, mean annual potential 
evapotranspiration; TN, soil total nitrogen density; AWC, available water capacity; SLA, specific leaf area; LP, leaf phosphorus content; H, plant height. 

H. Zhou et al.                                                                                                                                                                                                                                    



Agricultural and Forest Meteorology 307 (2021) 108506

6

81.0% of the spatial variability across all sites, forests and grasslands, 
respectively (Fig. 3; Table S3). For GPP and RE, however, the climatic 
variables, soil properties or plant traits alone explained a large propor-
tion (24.5%-71.4%) of the spatial variability (Table S3). In the dataset 
FG, models distinguishing biome type better explained the spatial 
variability in NEE than models not considering the biome type 
(Table S3). 

The general pattern of the unique and common contributions of 
climate, soil properties and plant traits were similar between the results 
based on AIC and those based on BIC, except for a few differences in the 
exact values. For forests, both the results based on AIC and BIC showed 
that climatic variables had the highest unique contribution to the spatial 
variability in NEE (23.8%-30.4%). The common contributions of two or 
three classes of explanatory variables were less than the unique contri-
butions of these variables (Figs. 4a and S4a). Interestingly, for grass-
lands, the soil properties were the most important factors (41.4%- 
53.5%). The common contribution of all the three classes of variables 
was negative (-13.7%–9.4%, Figs. 4d and S4d). The negative common 
contribution meant there were interactive effects on spatial variaibility 
in carbon fluxes from two or three classes of factors, because the 

combined two or three classes of factors explained more variance than 
the separate classes did (Figs. 4a, d and S4a, d). 

With respect to the spatial variability in GPP and RE, the unique 
contributions of climatic variables were higher than those of soil prop-
erties and plant traits across both forests and grasslands (Figs. 4b, c, e, f 
and Figs. S4b, c, e, f). Moreover, the common contributions explained 
49.7% - 62.0% of the total variance in GPP or RE, much larger than the 
unique contributions. The unique contribution of plant traits to carbon 
fluxes for all sites was larger than that in FG, when not considering the 
biome type. However, the unique contribution of plant traits largely 
decreased when forests were distinguished from grasslands (Figs. S2 and 
S3). 

3.3. Effects of individual variables on the spatial variability in NEE 

The importance of individual variables showed negligible differences 
between AIC and BIC results, and did not change the general pattern. For 
forests, mean annual precipitation (MAP) and mean annual potential 
evapotranspiration (PET) were the most important climatic variables 
driving the spatial variability in NEE (Figs. 5a and S5a). NEE first 

Fig. 3. The relationship between modeled and observed NEE under different model scenarios with differential combinations of explanatory variables. The regression 
lines are based on the principal component regression integrated principal component analysis with generalized additive models. The dashed lines are the 1:1 lines. 
DE is deviance explained and BIC is the Bayesian information criterion. 
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decreased, but thereafter increased with increases in MAP and PET 
(Figs. 6a and b; Figs. S6a and b). Of the soil properties, clay content had a 
negative relationship with NEE while available water capacity showed a 
nonlinear influence with lowest NEE at intermediate levels (Figs. 6c and 
e; Figs. S6c and d). Within plant traits, the NEE first increased and then 

decreased with increasing specific leaf area (SLA), whereas it mono-
tonically decreased with the increasing plant height (Figs. 6f and g; 
Figs. S6e and f), indicating a higher carbon sink. 

For grasslands, both AIC and BIC results showed that soil properties 
had much higher unique contributions to the spatial variability in NEE 

Fig. 4. Contributions (%) of climatic variables, soil properties and plant traits to spatial variation in carbon fluxes (NEE, GPP and RE) across forests (a, b, c) and 
grasslands (d, e, f). These results are from the best models based on BIC. The corresponding results based on AIC are shown in Fig. S2. 

Fig. 5. Unique contributions of climatic variables, soil properties and plant traits to spatial variability in NEE across forests (a) and grasslands (b). The horizontal 
dashed line indicates the average unique contribution. MAT, mean annual temperature; MAP, mean annual precipitation; SW, incoming shortwave radiation; PET, 
mean annual evapotranspiration; Frs, number of frost days; Clay, clay content; BD, bulk density; SOC, soil organic carbon; TN, total nitrogen density; C:N, ratio of soil 
carbon and nitrogen; pH, soil pH; CEC, cation exchange capacity; AWC, available water capacity; LAI, leaf area index; SLA, specific leaf area; LN, leaf nitrogen 
content; LP, leaf phosphorus content; H, plant height. These results are based on BIC, whereas those based on AIC are shown in Fig. S5. 
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than climatic variables or plant traits did (Figs. 5b and S5b). Within the 
soil properties, clay content (Clay) had positive effects while bulk den-
sity (BD), cation exchange capacity (CEC) and available water capacity 
had negative effects on NEE (Figs. 7a, b, d, e and S7c, d, f, g). For plant 
traits, leaf phosphorus content (LP) decreased NEE whereas the SLA had 
little influence (Figs. 7f and g; Figs. S7h and i). The AIC results indicated 
that PET and number of frost days (Frs) were important climatic vari-
ables for NEE but BIC results suggested that none of the climatic vari-
ables was important (Fig. 5b vs Fig. S5b). 

3.4. Interactive effects among explanatory variables 

The two- and three-way interactive effects among climatic variables, 
soil properties and plant traits were examined. For forests, a few dif-
ferences between the results based on AIC and those based on BIC were 
observed. The interactions between soil C:N ratio, soil pH and leaf area 
index (C:N-pH and C:N-pH-LAI) were the most important according to 
BIC, while those between mean annual temperature, soil C:N ratio and 
soil pH (MAT-C:N-pH) were the most important according to AIC (Ta-
bles 2 and S4). Specifically, the effect of C:N ratio on NEE was stronger 
for forests with higher MAT, LAI and pH (Figs. 8a and c; Figs. S8a and b). 

Across grasslands, the results based on AIC were consistent with 
those based on BIC, showing that the interactive effects within soil 

properties (i.e., those among soil clay content, soil total nitrogen density 
and cation exchange capacity, Clay-TN-CEC) were the most important, 
followed by the interactive effects between soil properties and plant 
traits (i.e. the interaction of clay, total nitrogen density of soil and leaf 
phosphorus content, Clay-TN-LP, Table 2 and Table S4). Specifically, the 
effect of total nitrogen density of soil on NEE was stronger in grasslands 
with lower soil clay and higher CEC (Figs. 8d, f). The effect of Clay on 
NEE was weaker in grasslands with higher leaf phosphorus content 
(Fig. 8e). Both for forests and grasslands, the interactions important to 
NEE showed little influence on the spatial variability in GPP or RE 
(Table 2 and Table S4). 

4. Discussion 

4.1. Relative importance of climate, soil properties and plant traits to 
spatial variability in NEE 

Current carbon cycle models have limited ability to spatially repre-
sent NEE distribution in terrestrial ecosystems (Cox, 2001; Arora, 2003; 
Lawrence et al. 2019). One reason is that there is still confusion about 
the main drivers of NEE (Fernández-Martínez et al., 2014a; Michaletz 
et al., 2018; Chen et al., 2019; Luo et al., 2019; Ji et al., 2020; Tang et al., 
2020). In this study, we applied a principal component regression (PCR) 

Fig. 6. Impact of important factors on NEE across forests. Shaded areas indicate the 95% confidence interval of regression lines. A NEE increase means less carbon 
uptake or more carbon loss. MAP, mean annual precipitation; PET, mean annual potential evapotranspiration; Clay, clay content; TN, soil total nitrogen density; 
AWC, available water capacity; SLA, specific leaf area; H, plant height. Blue lines display the effect of climatic variables on NEE, red lines the effect of soil properties, 
green lines the effect of plant traits. These results are based on BIC, whereas those based on AIC are shown in Fig. S6. 

H. Zhou et al.                                                                                                                                                                                                                                    



Agricultural and Forest Meteorology 307 (2021) 108506

9

method, which integrated principal component analysis (PCA) and 
generalized additive models (GAMs), to analyze the effects of climatic 
variables, soil properties, and plant traits on carbon fluxes (NEE, GPP 

and RE) across 147 eddy-flux sites globally. We found that the spatial 
variability in NEE was mainly driven by climatic variables across forests 
and by soil properties across grasslands regardless of the model selection 

Fig. 7. Impact of important factors on NEE of grasslands. Shaded areas indicate the 95% confidence interval of regression lines. An NEE increase means less carbon 
uptake or more carbon loss. Clay, clay content; BD, bulk density; SOC, soil organic carbon; CEC, cation exchange capacity; AWC, available water capacity; SLA, 
specific leaf area; LP, leaf phosphorus content. Blue lines display the effect of climatic variables on NEE, red lines the effect of soil properties, green lines the effect of 
plant traits. These results are based on BIC, whereas those based on AIC are shown in Fig. S7. 

Table 2 
The top five most important interactions with the spatial variability in NEE of forests and grasslands ranked in all detected two and three-way interactions of climatic 
variables, soil properties and plant traits. wj is the importance weight of the specific interaction to all interactions for the spatial variability in NEE. wj,BIC and wj,AIC refer 
to wj for BIC and AIC, respectively.  

Biome types Interactions wj,BIC wj,AIC 

NEE GPP RE NEE GPP RE 

Forests C:N-pH 0.52 <0.01 <0.01 <0.01 <0.01 <0.01 
C:N-pH-LAI 0.15 <0.01 <0.01 0.08 <0.01 <0.01 
MAT-C:N-pH 0.06 <0.01 <0.01 0.72 0.01 <0.01 
MAT-Frs 0.04 <0.01 <0.01 <0.01 <0.01 <0.01 
MAP-C:N-pH 0.03 <0.01 <0.01 0.04 <0.01 <0.01 

Grasslands Clay-TN-CEC 0.43 <0.01 <0.01 0.65 <0.01 <0.01 
Clay-TN-LP 0.18 <0.01 <0.01 0.13 <0.01 <0.01 
Clay-BD-CEC 0.08 <0.01 <0.01 0.05 <0.01 <0.01 
Clay-C:N-AWC 0.07 <0.01 <0.01 0.05 <0.01 <0.01 
Clay-CEC-AWC 0.07 <0.01 <0.01 0.03 <0.01 <0.01 

MAT, mean annual temperature; MAP, mean annual precipitation; SW, incoming shortwave radiation; PET, mean annual potential evapotranspiration; Frs, number of 
frost days; Clay, soil clay content; BD, bulk density; SOC, soil organic carbon; TN, total nitrogen density; C:N, ratio of soil carbon and nitrogen; pH, soil pH; CEC, cation 
exchange capacity; AWC, available water capacity; LAI, leaf area index; SLA, specific leaf area; LN, leaf nitrogen content; LP, leaf phosphorus content; H, plant height. 
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criteria (Figs. 4 and S4). 
The importance of climatic variables to forest NEE has been well 

documented (Yi et al., 2010; Yu et al., 2013). However, by applying 
general linear models (GLM) to a global forest dataset, Fernández--
Martínez et al. (2014a) showed that nutrient availability exerted a 
stronger control on NEE than climatic variables. The discrepancy be-
tween Fernández-Martínez et al. (2014a) and our results might be due to 
the differences in classification of factors and statistical approaches. For 
example, Fernández-Martínez et al. (2014a) also used the plant traits 
(leaf nitrogen and phosphorus contents), in addition to soil nutrient 
content as the indicators of nutrient availability, whose contributions 
could highly overlap with those of climate (Figs. 4a and S4a), potentially 
overstating the explanatory power of climate and nutrient availability. 
Du (2015) pointed out that the outliers of very young forests (<5 years) 
in the linear model used in Fernández-Martínez et al. (2014a) may have 
biased the importance of nutrient availability. In our study, nonlinear 
relationships between climatic variables and NEE were observed 
(Figs. 6a and b; Figs. S6a and b). Furthermore, Chen et al. (2019) sug-
gested that leaf area index (LAI) might have a larger effect on spatial 
variability in NEE than climate. However, our results showed the 
opposite pattern (Figs. 5a and S5a). As Chen et al. (2019) did not 
differentiate forests from grasslands, it was unclear if their conclusion 
was robust within forest ecosystems. 

Few studies have investigated the relative importance of climatic 
variables, soil properties and plant traits to spatial variability in NEE 
across grasslands. Some studies have shown a larger contribution of 
climatic variables than soil properties to the temporal variability in 
grasslands (Peichl et al., 2013; Zhang et al., 2017; Liang et al., 2020). 
However, such results are difficult to extend to large spatial scales 
because of the spatial heterogeneity of soil properties (Stark, 1994; Ryel 
et al., 1996), which might cause the uncertainty in predicting carbon 
sequestration of grasslands. 

4.2. Unique contribution of each explanatory variable to spatial 
variability in NEE 

Among the climatic variables, the water conditions (MAP and PET) 
were the most important drivers of the spatial pattern in NEE across 
forests (Figs. 5a and S5a). Specifically, NEE first declined (increase in C 
uptake) and then increased (increase in C loss) with MAP (Figs. 6a and 
S6a). This might be because the positive effect of MAP on GPP decreased 
with increasing water availability, while that of RE did not change 
(Chen et al., 2013; Li et al., 2013) or decreased to a lesser extent (Liu 
et al., 2018), causing a nonlinear change of NEE with MAP. However, for 
grasslands, the effect of climate on spatial variability in NEE need to be 
further confirmed due to uncertainties in the results (Figs. 5b vs S5b). 

Soil provides most of nutrients and water for plant growth, and 
mediates the decomposition of organic matter, which can influence the 
NEE. The effects of available water capacity on NEE observed in both 
forests and grasslands mainly reflected the influence of water avail-
ability. The NEE decreased with soil clay content in forests but increased 
in grasslands (Figs. 6c and 7a; Figs. S6c and S7c) because forests have a 
larger proportion of particulate organic matter, consisting of small pores 
that are not accessible to microbes (van Lutzow et al., 2006; Guidi et al., 
2015; Cotrufo et al., 2019). Physical protection mechanisms are stronger 
in soils with higher clay content and thus reduce soil respiration. The 
proportion of particulate organic matter being much lower in grasslands 
(Cotrufo et al., 2019) made the protective effect of clay on soil organic 
carbon (SOC) not as important as in forests. As a result, the higher 
substrate in soils with higher clay content accelerated the decomposition 
of organic carbon and increased the NEE (Figs. 7a). 

In grasslands, NEE also decreased with cation exchange capacity 
(CEC) and bulk density (Figs. 7b and d; Figs. S7d and f), probably 
because metal cations such as Ca2+ and Fe3+ strengthened the bonds 
between the mineral matrix and the organic matter (Six et al., 2004; 
Kögel-Knabner et al., 2008). High bulk density leads to lower soil 
porosity and oxygen concentration, thus suppressing the activities of 

Fig. 8. Interactive effects of climatic variables, soil properties and plant traits on NEE across forests (a-c) and grasslands (d-f). Interactions between soil C:N ratio, soil 
pH and leaf area index (C:N-pH and C:N-pH-LAI) are the most important interactive effect on NEE of forests. Interactions between soil clay content, soil total nitrogen 
density, soil cation exchange capacity and leaf phosphorus content (Clay-TN-C:N, Clay-TN-LP) are the most important interactive effect on NEE of grasslands. These 
results are based on BIC selected best models, whereas the corresponding unique contributions based on AIC selected best models are shown in Fig. S8. 
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roots and microbes, and reducing decomposition rates (Yang et al., 
2019). Moreover, high CEC is also an indication of higher availability of 
essential elements (Mg2+, K+ and Ca2+) for plant growth (Tränkner 
et al., 2018; Wang et al., 2019). The effects of CEC and bulk density on 
NEE were not observed in forests because the surface organic soil layer 
and particulate organic matter in forest soils are more susceptible to 
climate and disturbance than in grasslands (Guidi et al., 2015; Cotrufo 
et al., 2019). 

Among plant traits, the specific leaf area (SLA) and plant height were 
important drivers of NEE in forests (Figs. 5a and S5a). Many studies have 
found that plant growth rate, ecosystem productivity and litter decom-
position increase with SLA (Santiago and Wright, 2007; Cornwell et al., 
2008; Liu et al., 2018). Small SLA values are usually found in cold and 
arid ecosystems with relatively short period for carbon sequestration 
(Schulze et al., 2006; Rosbakh et al., 2015). As the carbon uptake period 
increases, the relative contribution of RE decreased while that of GPP 
increased, resulting in the nonlinear relationship between NEE and SLA. 
Tree height is directly related to the biomass and stand age (Feldpausch 
et al., 2012; Tilly et al., 2015; Pugh et al. 2019), which in turn can 
strongly affect ecosystem productivity (Chu et al., 2016). As a result, 
NEE decreased with tree height (Figs. 6g and S6f). NEE in grasslands was 
regulated by leaf phosphorus content. Phosphorus is an essential 
element of phospholipids (Hammond and White, 2007) and 
energy-carrying molecules (e.g., ATP and NADPH), which are critical to 
GPP at the ecosystem level (Walker et al., 2014; Taiz and Zeiger, 2010). 
A recent study suggests that the plant conservation of phosphorus is 
more important in grasslands than forests (Du et al., 2020), which might 
be the reason why leaf phosphorus content had a stronger relationship 
with carbon fluxes in grasslands than in forests (Figs. 5 and S5). 

4.3. Interactive effects among climatic variables, soil properties and plant 
traits 

Many researchers have suggested that interactions between climatic 
variables can considerably affect the ecosystem carbon cycle (Chen 
et al., 2013; Chen et al., 2019). Similarly, other interactive effects among 
climatic variables and non-climate factors (e.g. soil moisture, leaf traits, 
nutrient availability and evolutionary factors) have also been reported 
to be important in carbon-related processes (Wang et al., 2014; 
Fernández-Martínez et al., 2014b; Michaletz et al., 2016; Reich et al., 
2018; Shao et al., 2019). However, we found that, for spatial variability 
in NEE, the interactions between climatic variables and non-climatic 
factors, and those among non-climate factors, were more important 
than those within climatic variables (Table 2 and Table S4). These re-
sults suggested that the interactions related to soil properties (such as C: 
N and soil pH) might play a more important role in driving the spatial 
variability in NEE than those of climatic varaibles and plant traits do. 

Specifically, the interactive effects among soil clay content, total 
nitrogen density and CEC (Clay-TN-CEC), and those among soil clay 
content, total nitrogen density and leaf phosphorus content were iden-
tified in grasslands (Clay-TN-LP, Table 2 and Table S4). The effect of 
total nitrogen density on NEE was weaker in higher soil clay (Fig. 8d and 
S8d). In grasslands, NO3

− can easily be lost from the ecosystem as a result 
of leaching (Brust, 2019). High clay may reduce the NH4

+ use by plants 
and microbes, partly by absorption (Hazelton and Murphy, 2007) and 
partly due to the smaller soil pores decreasing the accessibility of SOC to 
microbes (Wei et al., 2014). The effect of clay on NEE was weaker in 
grasslands with higher leaf phosphorus content (Fig. 8e and S8e). Eco-
systems with high soil phosphorus content are generally located at high 
latitudes (Chadwick et al., 1999; Reich and Oleksyn, 2004), where the 
temperature can be more influential on decomposition rate than sub-
strate availability (Davidson and Janssens, 2006), therefore weakening 
the contribution of clay content to soil respiration. The effect of soil total 
nitrogen density on NEE was stronger at high CEC (Fig. 8f and S8f), 
because high CEC means high capacity of nutrient holding elements, 
which may alleviate the co-limitation of K+, Ca2+ and Mg2+ on plant 

growth and ecosystem productivity (Wells and Wood, 2007). 

4.4. Implications for future research and model improvement 

Our study quantified the relative importance of climatic variables, 
soil properties and plant traits to the spatial variability in NEE across 
forests and grasslands. Although recent carbon cycle models adopt trait- 
based approaches to account for the effects of plant morphological, 
physiological and phenological features on ecosystem function 
(Lamarque et al., 2014; Fry et al., 2019), our results showed that plant 
traits generally had lower unique contributions to the spatial variability 
in NEE, GPP and RE than climatic variables and soil properties (Figs. 4 
and S2-4). This finding is consistent with empirical models showing that 
climate alone can be a better predictor of ecosystem function than 
detailed process-based land surface models (Haughton et al., 2018). 
However, a large proportion of variability could be explained by the 
common contributions of plant traits with climatic variables and soil 
properties (Fig. 5). Accommodation of vegetation under long-term 
environmental filtering may lead to covariation of climate, soil and 
plant traits across the landscape. If the vegetation type shifts under 
future climate change (Svenning and Sandel, 2013; Franklin et al., 
2020), plant traits may have independent effects on carbon fluxes, the 
importance of which may be further amplified by the potential in-
teractions among plants traits, climatic variables and soil properties 
(Fig. 8, Hu et al., 2020; Reichstein et al., 2014). 

In order to simplify model structure, terrestrial biosphere models 
usually explicitly consider the dominant drivers and ignore drivers with 
small impacts on GPP and RE (Cox, 2001; Arora, 2003; Lawrence et al., 
2019). However, we found that the factors important to GPP and RE 
were not necessarily the same as for NEE. For example, soil properties 
had very small effects on GPP and RE across both forests and grasslands, 
but induced large effects on NEE (Figs. 4 and S4). Similar patterns were 
also found for the interactive effect of soil clay content, total nitrogen 
density and CEC in grasslands (Table 2 and Table S4). These emergent 
factors, as well as the interactions between climate, soil and plant traits 
are not well represented in current terrestrial biosphere models. 

Effects of some factors (e.g., forest age, fire) on spatial variability of 
NEE (Pugh et al., 2019; Beringer et al., 2015) might be important but 
could not be investigated in this study due to insufficient data. With the 
expansion of the global eddy flux network (e.g. Fluxnet: https://fluxnet. 
fluxdata.org), further research integrating more accurate global obser-
vations, such as plant traits (e.g., the ongoing yearly information of plant 
traits at site level, ICOS, https://www.icos-cp.eu/) and natural or 
human disturbance (e.g., fire, insect attacks and harvesting) could help 
to disentangle the underlying mechanisms, and accurately predict the 
spatial pattern of carbon cycling across global forests and grasslands. 

Another source of uncertainty might be the result of the interannual 
variability in carbon fluxes, which may confound the spatial patterns. 
Fortunately, the absolute magnitude of interannual variability in NEE 
(0~30 gC m− 2 year− 1, Piao et al., 2020) was far smaller than the spatial 
variability (-2400~600 gC m− 2 year− 1, Pastorello et al., 2020) based on 
eddy flux data. Some studies suggested that both the temporal and 
spatial patterns of carbon fluxes were strongly influenced by climate and 
nutrient availability (Ahlström et al., 2015; Wieder et al., 2015; O’Sul-
livan et al., 2019; Figs. 5 and S5). However, the importance of soil 
physicochemical properties (e.g., Clay, BD, CEC) for spatial variability in 
NEE (Figs. 5b and S5b) has been rarely studied for the temporal vari-
ability in carbon fluxes. Greater attention should be paid to soil prop-
erties to accurately predict the spatio-temporal variability in carbon 
fluxes of terrestrial ecosystems. 

5. Conclusions 

The large spatial variability in NEE across terrestrial ecosystems is 
driven by climatic variables, soil properties and plant traits, but the 
relative importance of these drivers is under debate. We took advantage 
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of 147 eddy-flux sites across the globe and investigated the effects of 
climatic variables, soil properties and plant traits to spatial variability in 
NEE of forests and grasslands. Our results showed that the spatial vari-
ability in NEE was mainly driven by climatic variables across forests and 
by soil properties across grasslands. Plant traits had much lower unique 
contribution than the other two classes of variables, but the leaf phos-
phorus content strongly interacted with soil total nitrogen density and 
clay content in grasslands. There were also interactive effects of soil clay 
content, total nitrogen density and CEC on NEE in grasslands. These 
driving factors (i.e., the soil properties and the interactive effect among 
climatic variables, soil properties and plant traits) for NEE should be 
integrated into land surface models to better inform the spatial pattern 
in NEE across terrestrial ecosystems. 

Declaration of Competing Interest 

The authors declare no competing financial interests. 

Acknowledgment 

The authors thank the anonymous reviewers for their insightful 
comments. This research was financially supported by the National 
Natural Science Foundation of China (Grant No. 31930072, 32071593, 
31600352, 31600387, 32001135) and Shanghai Sailing Program 
(19YF1413200), the Program for Professor of Special Appointment 
(Eastern Scholar) at Shanghai Institutions of Higher Learning, “Thou-
sand Young Talents” Program in China and the special funding for the 
international conference of graduate students from East China Normal 
University. The study has been supported by the TRY initiative on plant 
traits (http://www.try-db.org). The TRY initiative and database is hos-
ted, developed and maintained by J. Kattge and G. Bönisch (Max Planck 
Institute for Biogeochemistry, Jena, Germany). TRY is currently sup-
ported by DIVERSITAS/Future Earth and German Centre for Integrative 
Biodiversity Research (iDiv) Halle-Jena-Leipzig. Mana Gharun was 
funded by Swiss National Science Foundation project ICOS-CH Phase 2 
20FI20_173691. Torbern Tagesson was funded by the Swedish National 
Space Board (SNSB; Dnr 95/16). This work used eddy-covariance data 
acquired and shared by the FLUXNET community, including these net-
works: AmeriFlux, AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, 
CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada, GreenGrass, ICOS, 
KoFlux, LBA, NECC, OzFlux-TERN, TCOS-Siberia, and USCCC. The ERA- 
Interim reanalysis data are provided by ECMWF and processed by LSCE. 
The FLUXNET eddy-covariance data processing and harmonization were 
carried out by the European Fluxes Database Cluster, AmeriFlux Man-
agement Project, and Fluxdata project of FLUXNET, with the support of 
CDIAC and ICOS Ecosystem Thematic Center, and the OzFlux, ChinaFlux 
and AsiaFlux offices. Funding for AmeriFlux data resources was pro-
vided by the U.S. Department of Energy’s Office of Science. Data 
collection from CZ_Bk1 and CZ_wet was supported by the Ministry of 
Education, Youth and Sports of CR within the CzeCOS program, grant 
number LM2018123. We acknowledge all researchers who have con-
tributions to the eddy covariance flux measurements and support valu-
able data to this research. 

Supplementary materials 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.agrformet.2021.108506. 

References 

Abdi, H., Williams, L.J., 2010. Principal component analysis. Wiley Interdiscip. Rev. 
Comput. Stat. 2, 433–459. 

Ahlström, A., Raupach, M.R., Schurgers, G., Smith, B., Arneth, A., Jung, M., 
Reichstein, M., Canadell, J.G., Friedlingstein, P., Jain, A.K., Kato, E., Poulter, B., 
Sitch, S., Stocker, B.D., Viovy, N., Wang, Y.P., Wiltshire, A., Zaehle, S., Zeng, N., 

2015. The dominant role of semi-arid ecosystems in the trend and variability of the 
land CO2 sink. Science 348, 895–899. https://doi.org/10.1126/science.aaa1668. 

Aho, K., Derryberry, D., Peterson, T., 2014. Model selection for ecologists: the 
worldviews of AIC and BIC. Ecology 95, 631–636. https://doi.org/10.1890/13- 
1452.1. 

Anderson-Teixeira, K.J., Delong, J.P., Fox, A.M., Brese, D.A., Litvak, M.E., 2011. 
Differential responses of production and respiration to temperature and moisture 
drive the carbon balance across a climatic gradient in New Mexico: Carbon Balance 
Across NM elevational gradient. Glob. Change Biol. 17, 410–424. https://doi.org/ 
10.1111/j.1365-2486.2010.02269.x. 

Archibald, S.A., Kirton, A., van der Merwe, M.R., Scholes, R.J., Williams, C.A., Hanan, N., 
2009. Drivers of inter-annual variability in Net Ecosystem Exchange in a semi-arid 
savanna ecosystem. South Africa. Biogeosciences 6, 251–266. https://doi.org/ 
10.5194/bg-6-251-2009. 

Arora, V.K., 2003. Simulating energy and carbon fluxes over winter wheat using coupled 
land surface and terrestrial ecosystem models. Agric. For. Meteorol. 118, 21–47. 
https://doi.org/10.1016/S0168-1923(03)00073-X. 

Baldocchi, D., 2008. Breathing” of the terrestrial biosphere: lessons learned from a global 
network of carbon dioxide flux measurement systems. Aust. J. Bot. 56, 1. https://doi. 
org/10.1071/BT07151. 

Beringer, J., Hutley, L.B., Abramson, D., Arndt, S.K., Briggs, P., Bristow, M., Canadell, J. 
G., Cernusak, L.A., Eamus, D., Edwards, A.C., Evans, B.J., Fest, B., Goergen, K., 
Grover, S.P., Hacker, J., Haverd, V., Kanniah, K., Livesley, S.J., Lynch, A., Maier, S., 
Moore, C., Raupach, M., Russell-Smith, J., Scheiter, S., Tapper, N.J., Uotila, P., 2015. 
Fire in Australian savannas: from leaf to landscape. Glob. Change Biol. 21, 62–81. 
https://doi.org/10.1111/gcb.12686. 

Bonan, G.B., Doney, S.C., 2018. Climate, ecosystems, and planetary futures: The 
challenge to predict life in Earth system models. Science 359, eaam8328. https:// 
doi.org/10.1126/science.aam8328. 

Boyle, J.R., 2005. FOREST SOILS. In: Hillel, D. (Ed.), Encyclopedia of Soils in the 
Environment. Elsevier, Oxford, pp. 73–79. https://doi.org/10.1016/B0-12-348530- 
4/00033-3. 

Brust, G.E., 2019. Management strategies for organic vegetable fertility. Safety and 
Practice for Organic Food. Elsevier, pp. 193–212. https://doi.org/10.1016/B978-0- 
12-812060-6.00009-X. 

Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference: A 
Practical Information-Theoretic Approach, 2nd ed. Springer Science & Business 
Media, New York. https://doi.org/10.2307/3802723.  

Burnham, K.P., Anderson, D.R., 2004. Multimodel Inference: Understanding AIC and BIC 
in Model Selection. Sociol. Methods Res. 33, 261–304. https://doi.org/10.1177/ 
0049124104268644. 

Chadwick, O.A., Derry, L.A., Vitousek, P.M., Huebert, B.J., Hedin, L.O., 1999. Changing 
sources of nutrients during four million years of ecosystem development. Nature 
397, 491–497. https://doi.org/10.1038/17276. 

Chapin, F.S., Woodwell, G.M., Randerson, J.T., Rastetter, E.B., Lovett, G.M., 
Baldocchi, D.D., Clark, D.A., Harmon, M.E., Schimel, D.S., Valentini, R., Wirth, C., 
Aber, J.D., Cole, J.J., Goulden, M.L., Harden, J.W., Heimann, M., Howarth, R.W., 
Matson, P.A., McGuire, A.D., Melillo, J.M., Mooney, H.A., Neff, J.C., Houghton, R.A., 
Pace, M.L., Ryan, M.G., Running, S.W., Sala, O.E., Schlesinger, W.H., Schulze, E.-D., 
2006. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9, 
1041–1050. https://doi.org/10.1007/s10021-005-0105-7. 

Chen, J., Chen, Jin, Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., Lu, M., 
Zhang, W., Tong, X., Mills, J., 2015. Global land cover mapping at 30m resolution: A 
POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 103, 7–27. 
https://doi.org/10.1016/j.isprsjprs.2014.09.002. 

Chen, S., Zou, J., Hu, Z., Lu, Y., 2019. Climate and vegetation drivers of terrestrial carbon 
fluxes: a global data synthesis. Adv. Atmos. Sci. 36, 679–696. https://doi.org/ 
10.1007/s00376-019-8194-y. 

Chen, Z., Yu, G., Ge, J., Sun, X., Hirano, T., Saigusa, N., Wang, Q., Zhu, X., Zhang, Y., 
Zhang, J., Yan, J., Wang, H., Zhao, L., Wang, Y., Shi, P., Zhao, F., 2013. Temperature 
and precipitation control of the spatial variation of terrestrial ecosystem carbon 
exchange in the Asian region. Agric. For. Meteorol. 182–183, 266–276. https://doi. 
org/10.1016/j.agrformet.2013.04.026. 

Chen, Z., Yu, G., Ge, J., Wang, Q., Zhu, X., Xu, Z., 2015. Roles of climate, vegetation and 
soil in regulating the spatial variations in ecosystem carbon dioxide fluxes in the 
northern hemisphere. PLoS One 10, e0125265. https://doi.org/10.1371/journal. 
pone.0125265. 

Chu, C., Bartlett, M., Wang, Y., He, F., Weiner, J., Chave, J., Sack, L., 2016. Does climate 
directly influence NPP globally? Glob. Change Biol. 22, 12–24. https://doi.org/ 
10.1111/gcb.13079. 

Cornwell, W.K., Cornelissen, J.H.C., Amatangelo, K., Dorrepaal, E., Eviner, V.T., 
Godoy, O., Hobbie, S.E., Hoorens, B., Kurokawa, H., Pérez-Harguindeguy, N., 
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