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ABSTRACT Tree species diversity plays a significant role in our ecosystem. In order to monitor forest
dynamics, hyperspectral remote sensing equipped on a small unmanned aerial vehicle (UAV) is commonly
applied, such as individual tree detection and classification. However, low resolution, positioning errors and
the imaging perspective of small UAV affected by wind speed/direction, complex terrain, battery capacity,
aircraft posture, flying height and other human factors result in relatively large positional errors (i.e., GPS
errors) in such hyperspectral images, and the precise forest dynamics monitoring is limited, especially in
spatial analysis. In order to reduce the positional errors of hyperspectral images captured from a small
UAV and provide a precise forest dynamics monitoring, we present a novel spatial coordinates correction
approach by registering low-altitude UAV visible light and hyperspectral images. The proposed method first
employs visible light images and ground control points to stitch a geographic coordinate system as our
groundtruth. Hyperspectral images (UHI) are then registered onto the stitched visible light image (UVI) via
a novel image registration method. Finally, spatial coordinates of the registered hyperspectral images are
updated by using the aforementioned groundtruth. Extensive experiments on image registration and spatial
coordinates correction demonstrate the favorable performance of our method. Compared against four state-
of-the-art registration methods, our method shows the best registration performance, and the positional errors
of hyperspectral images are significantly reduced. Such accuracy is considered very high in this research.

INDEX TERMS Forest dynamics, small unmanned aerial vehicle, multi-sensor image registration, spatial
coordinates correction, hyperspectral images.

I. INTRODUCTION
Forest management can effectively change the structure of
forest habitats and affect their biodiversity [1]. The forest
species richness is one of the important indicators in forest
ecosystem services. Meanwhile, forest can strongly influ-
ence the urban physical/biological environment by moderat-
ing climate, conserving energy, improving urban air quality,
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controlling rainfall runoff and flooding, reducing noise levels
and sheltering wildlife [2]. Precise evaluation of ecosystem
services in forest relies on accurate information of species
diversity and spatial distribution of dominant and rare species.
However, human activity, soil erosion, pests and natural dis-
aster are causing a drastic decrease in tree species diversity,
which requires long-term research and monitoring. Since
traditional manual survey based on field inventory work is
time-consuming and labor-intensive, there is an urgent need
to monitor forest and its dynamics different temporal scales
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using a light-weight and low-cost dynamic monitoring tech-
nology.

With the technological advances of aerial remote sensing,
using aerial images is one of the effective ways for dynamic
monitoring of tree species diversity [3]–[7]. Compared with
the use of aircrafts or satellites, small UAV remotely infor-
mation can be cheaper and faster acquired in especially
if a higher temporal resolution(even a few centimeters) is
required [8], [9]. Therefore, due to the urgent need for very
high spatial resolution, it is more common to use a small
UAV to carry a complementary metal-oxide semiconductor
(CMOS) /hyperspectral camera for monitoring species diver-
sity. Recently, the use of UAV for civilian applications has
emerged as an attractive and flexible option for the monitor-
ing of various aspects of forestry and environment [10], [11].
For example, Hassaan et al. [12] described an approach
based on visible light imagery of UAV to monitor and count
trees in urban environment, solving the problem of forest
degradation and deforestation. Zhang et.al. [13] proposed a
UAV images registration with large viewpoint, providing an
accurate mapping between different viewpoint images for
monitoring forest land. Song et.al. [14], [15] presented a
small UAV-based multi-temporal change detection method to
monitor cultivated land cover changes inmountainous terrain.
Due to hyperspectral remote sensing data obtaining rich spec-
tral information of vegetation, tree species classification is
usually based on multispectral/hyperspectral data [16]–[18].
In [19], a method for the precise classification of crops is
proposed by using spectral-spatial-location fusion based on
conditional randomfields (SSLF-CRF) for UAV-borne hyper-
spectral remote sensing imagery. Khaliq et.al. [20] provided
a detailed analysis and comparison of vineyards MSI, pro-
vided by a decametric resolution satellite and low altitude
UAV platforms. Rizeei and Pradhan [21] proposed a method
of orthorectfiying VHR WorldView-3 images by integrating
light detection and ranging (LiDAR) data to enhance the
urban mapping accuracy.

Compared with satellite and other aerial remote sensing,
using small UAV for monitoring tree species diversity has
strong flexibility, high efficiency, easy operation, low cost
and other advantages. However, issues like the following still
exist, hindering the further study: (i) Airborne pushbroom
hyperspectral imager has small imaging range and low res-
olution compared to airborne visible light camera, which
inevitably leads to low stitching efficiency, high cost and
large geometric error in final result. (ii) Since the imaging
perspective is vulnerable to wind speed/direction, complex
terrain, battery capacity, aircraft posture, flying height and
other human factors, images of the same scene captured
by small UAV are always accompanied by multi-viewpoint,
which are directly used for stitching to cause stitched image
stretching and geometric distortion. (iii) Some small drones
can carry direct georeferencing sensors [8], [22]. However,
for economy of weight and cost, small UAV hyperspectral
imaging system often can not carry position and orientation
system with high-precision and high sampling frequency.

FIGURE 1. The UAV survey in a 20 ha plot in an evergreen broad-leaved
forest. (a) a stitched visible light image from data set (I). (b)-(d) different
regions from (a). (e)-(g) the hyperspectral images from data set (II), which
correspond to (b)-(d), respectively.

(iv) The high-overlap of hyperspectral data shooting easily
leads to inefficient work. Especially the hyperspectrum is
also susceptible to the weather, the work time is very pre-
cious. High-overlap collection is extremely time-consuming
and inefficient in mountain forests. Moreover, as the posi-
tional error of hyperspectral image is mainly caused by the
eccentric angle between the inertial measurement unit (IMU)
system of the UAV and the spectral sensor in the UAV push-
broom hyperspectral image [23], [24], the positioning of a
single hyperspectral image is inaccurate. The presence of
these cumulative errors cause large positional errors, which
impedes the elaborate spatial analysis in forest management,
such as location-based management.

The above issues have led to the fact that the hyperspectral
images captured by small UAV can hardly provide a pre-
cise forest dynamics monitoring. Hence, we need a spatial
coordinates correction approach by registering low-altitude
UAV visible light and hyperspectral images to reduce the
positional errors of hyperspectral images. To further facilitate
the understanding of the problem of UAV survey, a rep-
resentative example is provided in Fig 1. In this example,
the visible UAV image of the study area in (a) is com-
posed of about 10 visible light images, but it takes about
100 shots with a hyperspectral camera. Meanwhile, the spec-
tral imaging system of small UAV has its own errors and
low resolution, which greatly increases the offset of overall
position error after plenty of the hyperspectral images are
stitched.

A novel approach is proposed to precisely align the
low-altitude visible light and hyperspectral images into geo-
graphic coordinate system to reduce the positional errors of
hyperspectral images. The proposed method first employs
visible images and ground control points to stitch a geo-
graphic coordinate system as our groundtruth. Then, hyper-
spectral images are registered onto the stitched visible image
via a novel image registration method. Finally, spatial coordi-
nates of the registered hyperspectral images are updated to the
proper positions by using the aforementioned groundtruth.
This study can greatly improve the efficiency of hyperspectral
information acquisition and avoid the traditional high-overlap
data acquisition.
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FIGURE 2. Location of Chenshan Botanical Garden.

The rest of the paper is organized as follows: Section II
introduces the study area and data; Section III develops the
main ideas of this work and discuss the computational com-
plexity of the proposed method; Experiments are conducted
over remote sensing data sets to comprehensively evaluate the
proposed method in Section IV; In Section V, we conclude
this work with a discussion.

II. STUDY AREA AND DATA
The study area was conducted in a 1300 m2 forest plot
in Chenshan Botanical Garden (Longitude range: 31◦073’N
- 31◦074’N; Longitude range: 121◦185’E - 121◦186’E; ),
located in Songjiang District, Shanghai city, in Eastern China
(see Fig 2). The area has a typical subtropical monsoon
climate with a mean temperature of 28.1◦C and 4.2◦C in the
warmest and coldest months, respectively. The vegetation is
characterized as a subtropical evergreen broadleaf forest.

The image dataset (I) contains a total of 20 visible light
images acquired by a small UAV (UVI), the DJI Phantom
4 Pro (DJI, Shenzhen, China, store homepage: [25]) with DJI
Zenmuse X5S camera (4/3-inch CMOS image sensor with
20 million pixels, Lens FOV about 84◦8.8 mm/ 24 mm),
basically maintained the same height (11m-80m). Since the
images of the dataset (I) are stitched, image resolutions range
ranges from 3000×3000 to 4000×4000 pixels. The image of
dataset (I) has been corrected and stitched by the photogram-
metry software PHOTOMOD so that it has high-precision
spatial geographic coordinates. The stitched images are con-
ducted by the bundle adjustment. Thus, the geographic coor-
dinate system of stitched visible light image can be regarded
as our groundtruth.

The image dataset (II) contains a total of 400 hyper-
spectral images acquired by a small UAV (UHI), the DJI
M600 pro (DJI, Shenzhen, China, store homepage: [26])
with Gaia sky-mini pushbroom hyperspectral imaging sys-
tem ( charge-coupled device (CCD) Sony ICX674 sensor
with a spectrum resolution of approximately 3±0.5 nm,
Dualix instruments Ltd., Sichuan, China, store home-
page: [27]), basicallymaintained the same height (20m-80m),

TABLE 1. Technical details of hyperspectral flight mission.

and image resolutions range ranges from 1000×1200 to
1920×1400 pixels. Each of the hyperspectral images have
only one geographic coordinate.

In this paper, we adopt Trimble R4-3 to collect ground con-
trol points used in the bundle adjustment. A single image con-
tains inaccurate exterior orientation. The calibration param-
eters are obtained by the camera manufacturer’s calibration,
and the calibration process is completed by software. Table 1
gives the technical details of hyperspectral flight mission.

III. METHODOLOGY
The main process of the proposed method includes three
major steps: 1) geographic coordinate system determination,
2) image registration, and 3) spatial coordinates correction as
shown in Fig 3. In this section, we first introduce the proposed
method followed by analyzing the computational complexity
and discussing the implementation details.

A. GEOGRAPHIC COORDINATE SYSTEM DETERMINATION
We utilize high resolution UVI and ground control points to
stitch a geographic coordinate system as our groundtruth. All
stitched results are corrected and stitched by the photogram-
metry software PHOTOMOD.Owing to the different imaging
scale/height between the CMOS sensor and the hyperspectral
sensor, the different region of the UHI needs to be determined
on the UVI by the geographic coordinates before registration.
Given that the geographic coordinates of the UVI and the
UHI, the goal is to generated a suitable region that is mapped
from the UHI to UVI.

We select the appropriate regions based on the hyperspec-
tral image in the stitched visible light images (UVI). For each
UVI region (UVR) I rv , we adopt the parameterizations of the
4 variables following

cla =
c

νmaxla − ν
min
la

(νmaxla − xla),

clo =
r

νmaxlo − ν
min
lo

(xlo − νminlo ),

ph =
hv
hh
× ch,

pw =
hv
hh
× rh, (1)
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FIGURE 3. The main process of our method. In the step 1, black dotted bordered rectangles denote the
selected regions of interest from the visible light image, and the blackspot denote the center of an
image, corresponding to a hyperspectral image in the second column. In the step 2, red circles denote
the extracted feature points.

where cla, clo, ph, and pw denote the regions’ central coordi-
nates and its height and width, and the c × r visible stitched
image mainly has two geographic coordinates (νmaxla , νmaxlo )
and (νminla , νminlo ), the UHI’ GPS coordinate is (xla, xlo). hv and
hh represent the shooting height of the UVI and the UHI,
respectively, and ch and rh are the width and height of the
UHI.

B. IMAGE REGISTRATION
After we obtain a geographic coordinate system as our
groundtruth, the UHI and UHR are placed in image reg-
istration. The goal of image registration is to transform a
hyperspectral image Ih (UHI) so that it is aligned to a target
image I rv (UVR). Thus, more accurate geographic coordinates
are aligned on the UHI to locate the tree species.

1) MAIN PROCESS
The main process of the proposed feature-based image regis-
tration method normally has a three-steps process as follows:

• Feature points extraction.
In the feature-based methods, features extraction plays
an essential role in point set registration. The fea-
ture points extracted from multi-sensor small UAV
images with severe appearance changes often suffer
from the problems of insufficient feature points and
high outlier ratio. Therefore, the Edge Oriented His-
togram descriptor based on a (scale-invariant feature
transform) SIFT-like scale space (EOH-SIFT) [28] (see
Section III-B2) is employed for the feature point sets
extraction. A sensed feature point set H = {hi}Ni=1 and
a target feature point set V = {vj}Nj=1 are extracted from
Ih and I rv , respectively.

• Feature point sets registration.
In this work, we employ the expectation maximiza-
tion (EM) [29] algorithm to finish the image registration
process, which alternates between two steps:
(a) Expectation step (E-step): guessing the values

of parameters (‘‘old’’ parameter values estimated
in previous iteration) used to compute posteriori
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probability distributions of mixture components
based Bayes’ rule;

(b) Maximization step (M-step): founding the ‘‘new’’
parameter values viaminimizing the expectation of
the complete negative log-likelihood function.

These two steps of EM algorithm correspond to cor-
respondence estimation and transformation updating as
follows:
Correspondence Estimation: In this work, the
registration of H and V is considered as a Gaussian
mixture model (GMM) probability density estimation
problem. The GMM is constructed by N Gaussian
components, and let hi be the centroid of the ith com-
ponent, vj the jth data. Thus, the probability density
function of the GMM is obtained as p(hi) = κ

N + (1 −
κ)
∑N

j=1
rij

√

2πσ 2
exp(− 1

2σ 2
‖hi − vi‖2) where the priors

rij are non-negative quantities for which
∑N

i=1 rij = 1,
which weighting for each Gaussian component. 1

N is an
additional uniform distribution with 0 ≤ κ ≤ 1, for the
outliers and noise.
In order to obtain a more reliable correspondence esti-
mation via feature complementarity, a new cost matrix
Dc (see Section III-B2) is used to determine the weight-
ing matrix RN×N = {rij}

N ,N
i=1,j=1 of the GMM.

The weighting matrix R based on Dc is solved as a
linear assignment problem: Dc(R) =

∑N
i=1

∑N
j=1 rijDc

ji,
by the Jonker-Volgenant algorithm [30]. The permuta-
tion matrix R is constructed by rij ∈ {0, 1}, and R still
satisfies

∑N
i=1 rij = 1.

Based on the Bayes’ rule, the posteriori probability
matrix P (E-step) of GMM is computed as follow

pij =
rijexp(−

‖hi−vi)‖2

2σ 2
)

κ
1−κ

1
N +

∑N
k=1 rkiexp(−

‖hi−vi‖2

2σ 2
)
, (2)

and PN×N is considered as a probability correspondence
matrix. Then we can obtain the putative target point set
Ṽp for updating H by Ṽp = PV .
Transformation updating: The non-rigid feature point
set transformation function is formed as follow

T (H , 9) = H + 09, (3)

where 0 is an automatically adjusted Gaussian
kernel (see Section III-B3), and the updating is to esti-
mate a suitable coefficient matrix 9 for the transfor-
mation T . Based on the probability density function
of the GMM, a reliable displacement direction will
produce a larger expectation of probabilities. Hence,
the solution of the transformation updating is detected
by maximizing a likelihood function that is formed as∏N

j=1 p(rj), or equivalent to minimizing the negative
log-likelihood function, which is formed as

Q(κ,9, σ 2) = −
N∑
j=1

log[(1− κ)
N∑
i=1

rij
exp(− |hi−vi‖

2

2σ 2
)

2πσ 2

+
κ

N
]+ L, (4)

whereL = α
2 tr(9

T09) represents a regularization term
based on Motion Coherence Theory (MCT) [31], and
tr(·) denotes the trace operate.
Then the optimal parameter 9 is estimated by

9 = argmin
9

Q(κ,9, σ 2). (5)

The solution of the parameter estimation is given in
Appendix A. The locations of Ĥ are then updated by
Equation 3.

• Image transformation.
The thin plate spline is usually used in computer vision
and image analysis [32], [42], [44], [45], particularly
in non-rigid transformation model. In order to solve
image geometric distortion and non-rigid distortions,
we have utilized TPS to simulate a wider transformation.
We apply the initialH and its final location Ĥ as a corre-
sponding set< to build the thin plate spline (TPS) based
image transformation using the backward approach. The
image Ih is transformed by:

Y TPS =
(

G 8

8T O

)−1 (
H 0 0 0

)T
, (6)

where Y TPS is of size (N +3)×3,O is a 3×3 matrix of
zeros,8 is the N × 3 matrix with the ith denoting (1, ti),
and the N × N TPS kernel Gij = ‖ti − tj‖2log‖ti − tj‖,
where ti and tj indicate the coordinates of Ĥ . Then a
regular grid 2t

Z×2 = {θ
t
z }
Z
z=1

T is obtained by a pixel-
by-pixel indexing process on the sensed image Iv, where
Z = x(Ih) × y(Ih) with x(·) × y(·) denotes the size of
the image. Let grid 2t be the feature points from the
reference image, the transformed grid is obtained by
first computing 2̂t

Z×3 =
(
G 8

)
Y TPS , then restoring the

dimension of the grid to 2 by 2̂t
←

(
2̂t

(·,1) 2̂
t
(·,2)

)
,

where the Z ×N kernel Gij = ‖θ ti − tj‖2 log ‖θ
t
i − tj‖,8

is the Z × 3 matrix with the zth row denotes (1, θ tz ) and
2̂t

(·,i) denotes the i
th column of 2̂t . Let 2 be the grid

obtained on Ih, we have

2̂ = 2̂t
∩2. (7)

Finally, the transformed image I t is obtained by getting
intensities from the hyperspectral image Ih based on 2̂,
and setting the rest of pixels to black. Note that the
bicubic interpolation is used to improve the smoothness
of I t , to be more precisely, the intensities of each pixel in
I t is determined by summing the weighted neighboring
pixel intensities within a 4× 4 window.

2) DOUBLE-FEATURE DESCRIPTOR COMBINATION
The double-feature descriptor combination makes the respec-
tive advantages of EOH-SIFT and shape context descriptor
complementary to each other.

The EOH-SIFT algorithm [28] is a feature point descrip-
tor for matching feature sets on visible spectrum images of
the same scene. Firstly, feature sets are detected through

VOLUME 8, 2020 18487



R. Yu et al.: Spatial Coordinates Correction Based on Multi-Sensor Low-Altitude Remote Sensing Image Registration

FIGURE 4. The illustration of the EOH-SIFT descriptor [28]. Firstly, the N×

N pixels region centered on a given feature point is obtained. Then,
the region is divided into 4 × 4 =16 subregions. Finally, each of these
subregions is represented by a contour histogram calculated after the
edge histogram descriptor (EHD) [33]of the MPEG-7 standard [34]. The
histogram represents the spatial distribution of four directional edges (0,
45,90,135 degrees) and one non-directional edge (n.o.).

a SIFT-like based scale space representation, and then an
Edge Oriented Histogram (EOH) descriptor is used to rep-
resent these feature sets, obtaining the 80-dimensional vec-
tor as the EOH-SIFT descriptor, as shown in Fig 4.These
EOHs incorporate spatial information from the contours near
each feature point and describe the shape and contour of
the image, maintaining the invariance of the scale space.
Finally, feature sets from multispectral images are matched
by finding nearest couples using the information from the
descriptor.

Compared with SIFT, EOH-SIFT descriptor improves its
robustness via (i) discarding feature point which their sub-
regions without information( i.e., only a few contours are
contained in subregions), and (ii) using the scale restriction.
The scale restriction process uses the scale difference (SD) of
the given pair of feature sets H and V used as follow:

SD(H ,V ) = %h − %v, (a < SD < b) (8)

where % is the scale of that pyramidal representation that
the feature point appears. The sough value of a and b are
obtained by (i) computing a histogram of SDs of all matches,
and (ii) extracting the peak SD in the SDs histogram. They
are defined as a = SD − 0.9, b = SD + 0.9.
The shape context descriptor [35] is a classic algorithm,

which lets feature points lie within a polar coordinate system
with BR bins in the radial direction and BT bins in the
tangential direction, by centering the coordinate at si and rj.
The count of feature points in all bins is denoted by B. The
shape context chi-square matrix is defined as follow:

SC(hi, vj) =
1
2

B∑
b=1

[xhi (b)− x
v
j (b)]

2

xhi (b)+ x
v
j (b)

, (9)

where phi (b) and p
v
j (b) denote the number of points in the bth

bin of the coordinate centered at hi and vj, respectively.

FIGURE 5. The illustration of the proposed automatically adjusted
Gaussian kernel processing. (i) A pair of multi-sensor UAV images, where
the upper and lower are the sensed and target images. (ii) The block from
bottom to top successively shows the iterative process of feature point
sets from rigid to non-rigid transformation. The orange and blue
dots (crosses) denote inliers (outliers) in two feature point sets,
respectively. The orange grids (orange dotted lines) and the blue grids
(blue solid lines) denote the original image field and the warped image
field, respectively. (iii) For visual comparison, the image registration result
(i.e., the transformed image) is shown with its target image by a
10×10 montages in the first row, and the second row shows the
overlapping area.

Thus, we combine the aforementioned two features to
compute computing a double-feature descriptor combina-
tion cost matrix through an element-wise Hadamard product
(expressed by

⊙
)

Dc
= SD(H ,V )

⊙
SC, (10)

In summary, the used double-feature descriptor com-
bines the spectrum information and geometrical structure to
improve the description of the feature point set and provides
an accurate guiding for feature sets registration.

3) AUTOMATICALLY ADJUSTED GAUSSIAN KERNEL
The automatically adjusted Gaussian kernel is proposed to
gradually change the transformation function updating from
rigid to non-rigid via controlling the displacement distances
of the feature point sets. The idea of this kernel is to play a
coarse-to-fine search strategy.

The non-rigid transformation function is reproduced in the
a specific functional spaceH, namely a vector-valued Repro-
ducing Kernel Hilbert Space (RKHS) [36], which applies the
form as T (H , 9) = H + Dis(H ) with a displacement func-
tion Dis. Myronenko and Song [37] have used the Gaussian
radius basis function (GRBF) to define the RKHS by a repro-
ducing Gaussian kernel 0N×N with a coefficient constant
W c
N×D. The displacement function is formed as Dis(H ) =∑N
i=1 0(h(·,·), hi)w

c
(i,·), where the Gaussian kernel is defined

by 0(hj, hi) = exp(− ‖hi−hj‖
2

2γ ), where the constant γ controls
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Algorithm 1 The proposed method
input : The UVI Iv and the UHI Ih

1 Determination of regions of interest:
2 Compute the target image region I rv using

Equation (1);
3 end
4 Image registration:
5 Initialise parameter w, α, BR, BT , γ , η, G, κ , σ 2,

9 and itermax ;
6 Extract feature set H and V from Ih and I rv using

EOH-SIFT, respectively;
7 Construct the Gaussian kernel 0;
8 do
9 E-Step:
10 Compute P using Equation (2);
11 Compute corresponding target point set

Ṽp by PV ;
12 end
13 M-Step:
14 Update 9 using Equation (17);
15 Compute T (H , 9) using Equation (3)

for updating H ;
16 Update κ and σ 2, respectively;
17 end
18 while Equation 16 is not convergent;
19 Annealing γ ← t × γ ;
20 Compute the transformed image I t using

Equation (7).
21 end
22 Spatial coordinates correction:
23 Compute the corrected spatial coordinates of the

UHI using Equation (12);
24 end
output : T , I t , (v′la, v

′
lo)

the strength of displacement. The weight term W c holds the
displacement direction of V .

Based on the GRBF based non-rigid transformation func-
tion, the automatically adjusted Gaussian kernel is designed
by adjusting the γ via an annealing scheme. The temperature
of the annealing is formed as follow:

t = η · exp(σ 2), (11)

where the constant η denotes the final temperature, σ 2 is the
decreasing notice radius used in the correspondence estima-
tion step. Thus, the displacement γ is renewed by γ ← t × γ .
Fig 5 illustrates the proposed automatically adjusted
Gaussian kernel processing with the recovered warping
grids.

Thereinto, η has a greater value, the changes of tem-
perature is more drastic and the maximum of temperature
is higher. In other words, the strength of displacement is
stronger and its duration is longer in the earlier stagewhen η is
greater.

FIGURE 6. The run time of the proposed method with different number of
feature points.

FIGURE 7. RMSEs of each method for the image registration.

TABLE 2. Quantitative comparison on image registration measured using
the mean RMSE, MAE and MAD are carried out. Bold fonts indicate the
best results. All units are in pixel.

C. SPATIAL COORDINATES UPDATE
After image transformation, the spatial coordinates of the
UVR can be accurately superimposed on the UHI. Then,
for each pixel of the UHI, we can obtain its geographic
coordinates (v′la, v

′
lo)

v′la = ν
max
la − cla

νmaxla − ν
min
la

c
,

v′lo = rlo
νmaxlo − ν

min
lo

r
+ νminlo (12)

where cla, clo denote the position of pixel in the UHI, and
the c × r visible stitched image mainly has two geographic
coordinates (νmaxla , νmaxlo ) and (νminla , νminlo ).

D. IMPLEMENTATION DETAILS
1) PARAMETER SETTINGS
For evaluating the proposed method, eight groups of param-
eters are used in our method.

• w is the window size for every feature point in the
EOH-SIFT descriptor, set to 86;
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FIGURE 8. Registration examples of the aforementioned methods. Four representative registration examples ((a)-(e)) and comparisons of our method
against CPD [37], GLMDTPS [38], PRGLS [39] and GLCATE [40], on datasets (I) and (II). The first column shows the sensed images and the target images.
(i) gives the 10 × 10 checkboard for each example, where the registration errors are highlighted using the red rectangle. (ii) gives the overlapping area.

• BR and BT , the numbers of bins for the shape context
descriptor, are set to BR = 12, BT = 5;

• κ is outlier weighting parameter, set to 0.5. It is updated
by κ = 1− NP/N .

• σ 2 is the covariance of the double-feature descriptor
combination. Initialising and updating the variance σ 2

by

σ 2
←

1
2Np
|tr(Ṽ T d(P1)Ṽ )− 2tr(T (H̃ , 9)TPH̃ )

+ tr(T (H̃ , 9)T d(PT 1)T (H̃ , 9))|. (13)

• 9 is the parameter of point set transformation. We ini-
tialize the coefficient constant 9 as a matrix with all
zeros;

• α is the weighting parameter of regularization, which is
set to 8;

• γ and η are the strengthen constants for the automati-
cally adjusted Gaussian kernel, set as γ=5 and η=0.8.

• itermax , the max number of iteration, is set to 80.
The pseudo-code of the proposed method is summarized

in the Algorithm 1.

2) COMPUTATIONAL COMPLEXITY
The derivative Equation (17) is of O(N 3) time complexity
owing to the existence of the dynamic Gaussian kernel 0
size of N × N . Overall, the time complexity of our method
is O(N 3). For storing kernel 0, the space complexity of our
method is O(N 2). The run time of the proposed method with
different number of feature points is exampled in Fig 6.

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENTS DESIGN
We design two types of experiments: (i) Quantitative compar-
ison and qualitative demonstration on image registration are
carried out on all methods using the root mean square error
(RMSE), maximum error (MAE) and median absolute devi-
ation (MAD). CPD (coherent point drift) [37], GLMDTPS
(global and local mixture distance with thin plate spline trans-
formation) [38], PRGLS (preserving global and local struc-
tures) [39] and GLCATE (global-local correspondence and
transformation estimation) [40], four state-of-the-methods,
are compared with the proposed method in the following
experiments on the dataset (I) and (II). (ii) Since the species
coordinate correction is performed by image registration,
the quantitative comparison of individual tree species location
adopts the actual location. All experiments are implemented
in Matlab2017a on a laptop with a 2.6-GHz Intel Core CPU
and 8-GB RAM.

B. IMAGE REGISTRATION EVALUATION CRITERIA
The RMSE, MAE and MAD are usually used to measure
the image registration error [41]–[46], which are defined as
follows:

RMSE =

√√√√ 1
NL

NL∑
n=1

d(aLn , bLn )2,

MAE =

√√√√ 1
NL

NL∑
n=1

(|aL(n,1) − b
L
(n,1)| + |a

L
(n,2) − b

L
(n,2)|)

2,
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FIGURE 9. Five typical examples of the results for the coordinate optimization. For (a) to (e), the left column gives the transformed image with the
manually marked landmarks, and the right column shows the target image with the manually marked landmarks, where the landmarks of the two image
correspond to each other. Each of landmarks has the corrected coordinate in the transformed image. The corresponding tree species for each landmark
are as follows: Osmanthus fragrans: (a)-1∼(a)-3, (b)-1, (b)-2, (b)-5, (d)-1∼(d)-4, (e)-1, (e)-2 and (e)-5. Diospyros kaki: (a)-4. Magnolia : (a)-5, (c)-3, (e)-4.
Viburnum propinquum: (b)-3. Persimmon: (b)-4. Cerasus campanulata: (c)-1, (c)-2. Gleditsia vestita: (c)-4, (c)-5. Callicarpa candicans: (d)-5.
Choerospondias axillaris: (e)-1, (e)-2.

TABLE 3. The results of comparison between the single and the actual
location.

MAD = M (|d(aLn , b
L
n )−M (d(aLn , b

L
n ))|), (14)

where aLn and bLn are the nth pair of corresponding landmarks
and (n, x) denotes the coordinate at x th dimension, NL is

TABLE 4. The results of comparison between the corrected location and
the actual location.

the total number of selected landmarks, and M (·) returns
the median of a vector, and the operator d(·, ·) denotes the
distance. At least 20 pairs of corresponding points for each
image pair (Iv and I rh ) are manually marked as landmarks, and
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TABLE 5. The results of comparison between the location in UHI and the actual location of individual tree. DE means the deviation errors.

all the landmarks are selected and well distributed at easily
identified places.

C. RESULTS OF IMAGE REGISTRATION
For each method, all extracted features points were adopted
for image registration. The RMSEs of each method for
25 image pairs are shown in Fig. 7.

The RMSE, MAE and MAD for each method on 25 image
pairs are shown in Table 2. Five typical registration examples
are shown in Fig 8.

The failed registrations are determined by two ways: (i) the
transformed image is so distorted that it can not be recognized
artificially, and (ii) the RMSE is larger than 160 pixels. Our
method provides the best performances in all image regis-
tration experiments, especially when these images with dif-
ferent imaging sensors have large intensity variations. In the
case of CPD, this problem is alleviated by rejecting outliers
using an uniform distribution. In addition, GLMDTPS per-
forms poorly as it forces one-to-one correspondence, which
is vulnerable to the presence of outliers. PRGLS suffers from
dubious correspondences generated by similar geometrical
neighborhood structures. GLCATE performs relative well

compared with the other three methods, yet it is insensitive
to the multi-temporal and changes image pairs.

The major reasons for outperforming the other four meth-
ods are that: (i) the proposed method more accurately identi-
fied both feature points by using the double-feature descriptor
combination; (ii) the identified feature points are used to
shape the warping grids approximately within both overlap
and non-overlap areas by the coarse to fine transformation.

D. RESULTS OF THE SPATIAL COORDINATES CORRECTION
1) THE SPATIAL COORDINATES CORRECTION OF A SINGLE
UHI
We calculate distances between points described in terms
of latitude and longitude. When latitude is the same, every
1.0× 10−5 degree of longitude produces a distance dif-
ference of 1 meter. When longitude is the same, every
1.0× 10−5 degree of latitude produces a distance difference
of 1.1 meters. Table 3 shows the error between the geographic
coordinates of single and the geographic coordinates of actual
location. In this case, large distortion occurs when a large
number of hyperspectral images are stitched, and the overall
error is larger than the average error.
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TABLE 6. The results of comparison between the corrected location and the actual location of individual tree. DE means the deviation errors. CR means
the correction ratio.

As shown in Table 3, the average ground distance
between the UHI and the corrected location have been up to
2.92 meters, but the error of single UHI is reduced to about
1 meter after the proposed method, shown as Table 4. Due
to each of the UHI with only one geographic coordinate,
these errors are cumulated when we stitch a large number
of hyperspectral images, affecting the accuracy of individual
tree analysis greatly.

2) THE SPATIAL COORDINATES CORRECTION OF
INDIVIDUAL TREE
Hyperspectral images were downloaded from the inner sys-
tem on Gaia Skymini2. Lenses correction, reflection cor-
rection and atmospheric correction were applied using the
software provided by the manufacture company. Images
are stitched in PHOTOMOD (Racurs, Russia) in following
instructions: (1) import camera settings and exterior elements
of images; (2) execute aerial triangulation by bundle adjust-
ment with control points if exist; (3) calculate and generate
digital elevation model (DEM) of the region; (4) orthorectify
images with the DEM generated in (3) and output the whole

region orthographic image. We got both UHI and UVI of the
whole region through this procedure.

According to the proposed method, the UHI coordinates
are updated to obtain more accurate coordinates of individual
tree, and the geographic coordinates of UHI are corrected.
Five representative spatial coordinates correction examples
of individual tree are shown in Fig 9.
Each hyperspectral image pixel vector is acquired by hun-

dreds of spectral bands and provides very valuable spec-
tral information in species classification and identification.
Common machine learning-based classic classifiers, such as
k-nearest neighbors [47], logistic regression, support vec-
tor machines (SVM) [48] and extreme learning machine
(ELM) [49], are employed in hyperspectral classification to
achieve satisfactory performance. In this paper, we mainly
use manual classification to avoid accumulative errors in the
process of coordinate superposition (see Fig 9).

There are two types of errors: (1) the errors between loca-
tion in the UHI and the actual location of individual tree are
shown in Table 5 and (2) the errors between the corrected
location and the actual location of individual tree are shown
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in Table 6. The locations in UHI are obtained by the stitched
hyperspectral image via the software PHOTOMOD, which
have cumulative error. As shown in Table 5, the average
ground distance between the locations in UHI and the actual
location have been up to 2.35 meters, and we can effec-
tively increase the correction ratio to 62.97% by the pro-
posed method. It is found that our method maintains accurate
alignments in all experiments, whichmeans that our proposed
method can successfully handle the small UAV-based multi-
sensor images spatial coordinates correction problem in most
time. This offers great possibilities for monitoring species
diversity.

V. CONCLUSION
In this paper, we have presented a novel spatial coordinates
correction approach by registering low-altitude UAV visi-
ble light and hyperspectral images to reduce the positional
errors of hyperspectral images captured from a small UAV
and provided a precise forest dynamics monitoring. The
proposed method first employs visible images and ground
control points to stitch a geographic coordinate system as our
groundtruth. Hyperspectral images are then registered onto
the stitched visible light image via a novel iterative image reg-
istration method. Finally, spatial coordinates of the registered
hyperspectral images are updated by using the aforemen-
tioned groundtruth. Extensive experiments regarding image
registration and spatial coordinates correction demonstrate
the favorable performance of our method. Our method shows
best registration performances against four state-of-the-art
registration methods, and effectively increases the correction
ratio of individual tree to 62.97%. The fully realization of the
dynamic forests monitoring will require automatic monitor-
ing algorithms between the registered images to identify far
more new species.

APPENDIX A
THE SOLUTION OF THE OPTIMAL PARAMETER
ESTIMATION
Then Equation 4 can be rewritten by ignoring the
derivative-redundant terms as

Q(κ,9, σ 2) =
1

2σ 2

N∑
j=1

N∑
i=1

pij‖V(j,·) − T (H , 9)(i,·)‖2

−Nplog(
σ 2κ

1− κ
)− N logκ +

α

2
tr(9T09),

(15)

where Np =
∑N

i=1
∑N

j=1 pij.
The optimal solution of the transformation is the extrema

of the Equation 15. We solve the transformation parameter
estimation (M-step) in the matrix form of Q

Q =
1

2σ 2 {tr(Ṽ
T d(P1)Ṽ )− 2tr(HTPH̃ )

− 2tr(9T0PṼ )+ tr(HT d(PT 1)H )

+ 2tr(9T0d(PT 1)H )+ tr(9T0d(PT 1)09)}

+Nplog(
σ 2κ

1− κ
)− N logκ +

α

2
tr(9T09), (16)

where d(·) denotes the diagonal matrix formed from a vector.
1 is a column vector of filled with ones.

In final, taking the partial derivative of Q with respect to
the parameter 9, we obtain

9 = [0 + ασ 2d(P1)−1]−1[d(P1)−1PV− H ] (17)
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