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Abstract. Plant diversity has long been assumed to predict soil microbial diversity. However, contradic-
tory results have been found when examining their relationships, particularly at broad spatial scales. To
address this issue, we conducted a meta-analysis to evaluate the patterns in the correlation between plant
diversity and soil microbial diversity and the underlying factors driving the relationship. We collected cor-
relation data from 84 studies covering more than 3900 natural terrestrial samples globally. Using the hierar-
chical mixed-effects model, we investigated factors including targeted taxonomic group, microbial
examination method, sampling extent, biome type, soil type, and environmental factors to assess the pat-
terns of the plant–microbial correlation and the determinants of their variations. We found that microbial
richness displayed a modest but positive correlation with plant diversity (r = 0.333, CI = 0.220–0.437). In
spite of variability among taxonomic groups and their relationship with plant diversity, positive correla-
tions were more pronounced in the intermediate sampling extent of latitude and elevation coverage, and
tropical forests. Among examined environmental factors, soil pH was negatively associated with the plant
and soil microbial relationships at large spatial scales. The plant–microbial correlation appears more sensi-
tive to edaphic factor variation in the poor nutrients and soil less compact systems. Collectively, our results
point to key differences across taxonomic groups, spatial scales and biomes, and the modulating effects of
climate and soil. The findings shed light on our deep understanding in plant–microbial diversity relation-
ships at broad spatial scales and ecosystem sensitivity to biodiversity loss and environmental change.
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INTRODUCTION

The nature of the relationship between plant
diversity and microbial diversity provides
insights into the ecological drivers of community
structure and function (Wardle et al. 2004, De
Deyn and Van der Putten 2005, Allan et al. 2013,

Duhamel and Peay 2015). Although soil micro-
bial groups vary in their functional relationships
with plants, they can promote plant community
diversity through a variety of mechanisms. For
example, symbiotic mutualists can promote plant
community diversity by increasing nutrient
availability or facilitating niche partitioning (Van
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Der Heijden et al. 2006, Bever et al. 2015, Van
Der Putten 2017), while soil pathogens can infect
and kill plant seedlings directly, or suppress ben-
eficial microbial interactions with plant hosts,
which both contribute to the survival of hetero-
specifics and lead to higher plant diversity (Man-
gan et al. 2010, Liu et al. 2016b). Plants also serve
as the principal suppliers of energy for decom-
posers, symbionts, and pathogens, thereby gov-
erning the niche space for different soil microbes
to persist (Facelli and Pickett 1991, Zak et al.
2003, Berg and Smalla 2009, Bulgarelli et al.
2013, Steinauer et al. 2015). Thus, the diversity of
plant community and soil microbial community
has long been assumed to be closely related
(Lavelle et al. 1995, Whitman et al. 2003, Wardle
et al. 2004, Falkowski et al. 2008). However, the
existing information about the plant–microbial
relationship at the global scale is contradictory or
inconclusive (Tedersoo et al. 2014, Prober et al.
2015, Ochoa-Hueso et al. 2018).

According to general biogeographic theories
(Pianka 1966, Willig et al. 2003), we might expect
soil microbial diversity to follow the pattern of
vascular plant diversity, which declines with
increasing latitude and elevation. However, stud-
ies have revealed inconsistent results. Along lati-
tudinal gradients, both tropical forests at low
latitude (Mueller et al. 2007, Tedersoo et al. 2014)
and temperate forests at midlatitude (Fierer et al.
2012, Shi et al. 2014) contain the highest soil
microbial diversity. In contrast, with a few excep-
tions (Bahram et al. 2018), most studies find no
increase in soil microbial diversity from polar to
equatorial regions (Fenchel and Finlay 2004,
Fuhrman 2009, Fierer et al. 2011, Hendershot
et al. 2017). Likewise, soil microbial diversity
patterns vary widely along elevation gradients,
where monotonic declines (Bryant et al. 2008),
unimodal patterns (Liu et al. 2016a), and no rela-
tionships (Fierer et al. 2011, Shen et al. 2014)
with increasing elevation have all been reported.
As a consequence, studies aiming to examine the
relationship between plant diversity and soil
microbial diversity across biogeographic scales
find weak (Bryant et al. 2008, Prober et al. 2015),
or even no correlations (Lanz�en et al. 2016,
Cameron et al. 2019). These conflicting results
suggest that the relationship between soil micro-
bial diversity and plant diversity might differ
across biomes and spatial scales.

Several factors may explain the dramatic varia-
tion in the correlation between microbial diver-
sity and plant diversity. First, the plant–microbial
relationship can vary among different microbial
taxonomic groups. For example, based on a site-
level analysis, the richness of certain bacterial
taxa, such as nitrogen-fixing bacteria, was more
closely related to plant diversity than were other
taxonomic groups (Liang et al. 2016, Zhou et al.
2016). The sampling of soil microbial and plant
communities is often conducted at different spa-
tial scales, ranging from local sites (G€om€oryov�a
et al. 2009, Navarrocano et al. 2014) to broad
geographic regions (Fierer et al. 2012, Zhou et al.
2016), such that variability in abiotic factors such
as soil pH (Fierer and Jackson 2006, Lauber et al.
2009, Shen et al. 2013, Siles and Margesin 2016),
total organic carbon (Calbrix et al. 2007, Dimitriu
and Grayston 2010, Ding et al. 2015), and mean
annual temperature (Hobbie 1996, Luo et al.
2014, Zhou et al. 2016) among sites may further
complicate the plant–microbial relationship.
Therefore, a comprehensive analysis using data
across taxonomic groups and spatial scales is
needed to quantify the relationship between
plant diversity and microbial diversity.
In this study, we synthesized data from 84

studies that included over 3900 samples to
determine the relationship between plant diver-
sity and soil microbial diversity at a global
scale. We investigated factors including targeted
taxonomic group, microbial response type in
diversity (richness, abundance, diversity index,
and composition), microbial examination
method, sampling extent (latitude and elevation
cover range), biome type, soil type, and envi-
ronmental factors (e.g., soil pH, total organic
carbon, precipitation, and temperature) to
assess the patterns of the plant–microbial corre-
lation and variables explaining their variation.
In this meta-analysis, we addressed the follow-
ing questions: (1) Are plant and microbial
diversity positively correlated at the global
scale? Based on the functional role of soil
microbes as the main decomposer of plant-
derived substrates, we expect a positive rela-
tionship between them. (2) Are predicated
plant-associated taxa, such as mycorrhizal
fungi, more strongly correlated with plant
diversity than other taxa? The symbiotic
microbes, which interact directly with plants,
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may enable a stronger correlation. (3) Which
ecosystems do plant diversity and microbial
diversity show a higher correlation? Tropical
forests should have a higher plant–microbial
correlation, considering the extraordinary high
biodiversity and the strong interaction between
plant community and parasitic microbes (Bag-
chi et al. 2014, Sarmiento et al. 2017). (4) Which
environmental factors determine the plant and
microbial relationships in biodiversity across
taxonomic groups and spatial scales? We expect
soil pH to be one of the most important envi-
ronmental factors at the global scale, and the
roles of other soil attribute effects vary among
taxonomic groups and spatial scales.

METHODS

Database
We conducted an extensive literature search

for studies that analyzed the relationship
between soil microbial diversity and plant diver-
sity in natural terrestrial ecosystems. Relevant
journal articles from 1990 to March 2019 were
searched using both ISI Web of Science and Goo-
gle Scholar with but not limited to the following
search terms “microb*”, “fung*”, “bacteria”, “ar-
chaea” or “mycorrhizae” combined with “plant”
or “vegetation” and diversity parameters includ-
ing “richness”, “abundance”, “diversity”, “com-
position”, etc. We only included articles that met
the following three criteria: (1) studies that
reported summary statistics (i.e., r, R2, F, and t)
of plant and soil microbial diversity correlation;
(2) studies that were conducted in natural terres-
trial ecosystems or recovering ecosystems at least
10 yr after abandonment without obvious distur-
bance; and (3) studies that sampled microbes
from topsoil with sampling depth not exceed
30 cm.

For each selected study, we collected the sum-
mary statistics of microbe–plant diversity corre-
lations. These summary statistics of different
taxonomic groups in the same work were consid-
ered as separate results to avoid subjective deci-
sions and lost information. Further, we gathered
the information on the examined taxonomic
group, soil microbe detection method, sampling
extent (latitude and elevation), biome type, soil
type, and most frequently reported environmen-
tal variables, including mean annual temperature

(MAT), and mean annual precipitation (MAP),
soil pH, total organic carbon (TOC), total nitro-
gen (TN), total phosphorus (TP), soil moist (SM),
and bulk density (BD). Since some literature pro-
vided information on soil composition of sand,
silt, and clay, the widely used United States
Department of Agriculture (USDA) soil textural
classification system which determines soil types
based on the physical texture (i.e., the percentage
of sand, silt, and clay) was used. Missing data of
soil properties were obtained through referenced
literature or from SoilGrids at 250 m spatial reso-
lution (Hengl et al. 2017). MAT and MAP were
downloaded from WorldClim at the resolution
of 2.5 arc minutes if original literature did not
report (Fick and Hijmans 2017). Four of the most
frequently used diversity indicators were
selected for our analyses: richness, abundance,
diversity index, and composition (beta diversity).
Richness is a measure of the total number of spe-
cies/operational taxonomic units (OTU) in a
microbial community. Abundance in our dataset
represents the relative abundance of a specific
phylum (e.g., Wu et al. 2012, Zhang et al. 2015)
or taxonomic group (e.g., �Alvarez-S�anchez et al.
2012, Liang et al. 2016). Diversity indices include
the Shannon index, Simpson index, and Hill
number. Hill number or effective numbers of
species is a mathematically unified family of
diversity indices that incorporate relative abun-
dance and species richness (Jost 2006, Chao et al.
2014). The composition was calculated based on
the species/OTUs’ relative abundance. The fre-
quently used composition measures such as
Bray-Curts distance, Jaccard distance, and Uni-
Frac distance were included. For the further
refinement of the dataset, if study sites were ana-
lyzed more than once (e.g., Guo et al. 2018,
Zhang et al. 2018), only one set of data was used
for analysis. If soil microbes were sampled in
different seasons (e.g., Slabbert et al. 2010), only
the value measured in the summer was selected,
to maximize our ability to compare across stud-
ies. In total, more than 5000 papers were
reviewed, and 84 studies fulfilled our criteria
and were included in the subsequent analysis
(Appendix S1).

Data analysis
The summary statistics of plant and microbial

diversity correlation in these 84 studies were
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transformed into effect size (Zr) and conditional
variance (ZVAR) using Fisher’s (1921) transforma-
tion:

Zr ¼ 0:5 � ln
1þ r
1� r

� �
and ZVAR ¼ 1

n� 3
;

where r is the correlation coefficient and n is the
sample size. Since the variance is inversely
related to n, studies with larger sample sizes
were assigned with larger weights. Other sum-
mary statistics (i.e., R2, F) were converted to r
using

r ¼ R2 � pð1� R2Þ
n� p� 1

and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F
F þ dferror

r
;

from Cohan and Perry (2007) and Rosenthal
et al. (1994).

We performed a hierarchical mixed-effects
meta-analysis, which allows specification of the
fixed predictor variables and nested random
effects to account for variation across and within
studies (Rossetti et al. 2017). Multiple effect sizes
obtained within a given study violated the
assumption of independence (Hedges et al.
2010). The nested random effects (study/taxo-
nomic group) took into account hierarchical
dependence and also publication-level variation
that incorporates the dependency of multiple
outcomes within study observations (Stevens
and Taylor 2009). The method has been recently
used in meta-analysis to account for hierarchical
dependence between multiple observations
within studies (Harbord and Whiting 2009, Tuck
et al. 2014, Rossetti et al. 2017). Our preliminary
analysis revealed that most frequently used mea-
sures of microbial diversity showed no difference
in their correlations with plant diversity (with
the exception of Shannon diversity, Appendix S2:
Fig. S1). To consider the different ecological
implications (Stirling and Wilsey 2001), we
applied the diversity measures as the second ran-
dom effect to account for variations among them.
The statistic QM which quantifies the variation
explained by the predictor variable and the resid-
ual (QE) was calculated (Deeks et al. 2008,
Viechtbauer 2010). Significant QM indicated obvi-
ous differences within predictor variables, while
QE represented unaccounted variability by vari-
ables included in models. Specifically, we exam-
ined the P values of QM statistics. A significant

QM describes that the variation in effect sizes can
be attributed to differences among categories of
each predictor variable (e.g., biome type and tax-
onomic group). Models with categorical predic-
tor variables were also run without the intercept
to obtain the parameter estimates (mean effect
sizes) of each level. Within each level, two mean
effect sizes were considered to differ significantly
if confidence intervals did not overlap. Effect size
was considered significant if the confidence inter-
val did not include 0.
We first examined the distribution of the effect

sizes along latitude and elevation gradients to
identify whether the plant–microbial correlations
showed obvious patterns (Appendix S2: Fig. S2).
Subsequently, we subdivided our data into dif-
ferent spatial scales according to their sampling
extent and biome. The sampling extent of lati-
tude and elevation coverage varied greatly
among studies, ranging from <0.05° (one local
site) to >100° in latitude and <100 m to over
3200 m in elevation. To evaluate how plant–mi-
crobial relationship varied across different spatial
scales, data were sorted to six-grid size classes
according to the latitude cover range (<0.05°,
0.05°–1°, 1°–5°, 5°–15°, 15°–20°, and ≥20°, respec-
tively), and elevation cover range (<100 m, 100–
600 m, 600–1000 m, 1000–1500 m, 1500–2000 m,
and ≥2000 m, respectively). For biomes, we
sorted all study sites into ten categories: tropical
forests, subtropical forests, temperate forests,
temperate grasslands, boreal forests, shrublands,
savannas, deserts, tundra (Ramankutty and
Foley 1999), and across biomes that included sev-
eral biome types. The mean effect size among
sampling extents, biomes, and soil types was
assessed separately by the hierarchical mixed-ef-
fects models. The same model determined the
overall mean effect size without a fixed effect.
To determine microbial taxonomic group and

the microbial examination method’s impact on
the plant–microbial diversity relationship, we
assessed hierarchical mixed-effects models with
those variables as the fixed predictors. We classi-
fied the data into microbial taxonomic groups
following the original studies. Microbes indicate
studies that analyzed the whole microbial com-
munity, the groups of bacteria and fungi con-
sisted of data from studies that were directly
targeting overall bacteria or fungi (e.g., high-
throughput sequencing of bacterial 16S rRNA
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gene or the fungal nuclear ribosomal internal
transcribed spacer ITS region). For the microbial
examination methods, next-generation sequenc-
ing such as Hiseq and Miseq, other DNA-based
approaches such as PLFA, T-RFLP, and DGGE,
and morphological identification were used to
examine microbial diversity in studies. From cul-
ture-dependent, biochemical-based, molecular-
based to high-throughput sequencing tech-
niques, the specificity and accuracy of methods
are varied (see the discussions in Kirk et al. 2004,
Thies 2008), and thus, employed methods may
contribute to the lack of correspondence across
studies. We assessed taxonomic groups and dif-
ferent methods’ impacts by the hierarchical
mixed-effects models separately. But categories
with less than five data points were not included
in the individual analysis. Diversity measures,
including richness, abundance, and diversity
index, may provide insights on how microbes
are responding to plant diversity. Therefore, we
tried to isolate each measure’s relationship with
plant diversity. However, due to limited avail-
able data, only the correlations of microbial rich-
ness and Shannon diversity with plant diversity
were assessed. Subset data in the correlation
between plant and bacteria, and plant and fungi
were examined separately as well. Due to limited
data and a nonsignificant difference in the plant
diversity matrices on the plant–microbial correla-
tion (richness, abundance, diversity index, and
composition; P = 0.222), plant diversity parame-
ters did not separately analyze. In addition, we
examined the impact of environmental factors
using differences in soil pH (DpH), soil TOC
(DTOC), MAP (DMAP), and MAT (DMAT) for
individual correlations. Each continuous (log-
transformed) predictor was separately run in the
hierarchical mixed-effects model.

To detect publication bias of the meta-analysis,
we examined the relationship between effect size
and sample size, funnel plots, Rosenthal’s fail-
safe number, and Egger’s regression. A negative
relationship between sample size and effect sizes
implies a publication bias (Palmer 2000, Cassey
et al. 2004). Rosenthal’s fail-safe number was cal-
culated to detect whether nonsignificant, unpub-
lished, or missing studies would change the
results. A fail-safe number larger than 5k + 10
(where k is the number of studies) indicate no
publication bias (Rosenthal 1979). Egger’s

regression (Egger et al. 1997), where an intercept
different from zero is an indication of asymmetry
and publication bias, was also conducted. All
analyses were performed in R language using
the package metafor (Viechtbauer 2010, R Devel-
opment Core Team 2016). R codes were attached
in Appendix S2.

RESULTS

Data structure
In total, we evaluated 176 correlations between

plant diversity and soil microbial diversity from
84 studies covering 3992 samples (Fig. 1;
Appendix S1). The distribution of sampling sites
showed that most studies were conducted in
subtropical and temperate biomes with subtropi-
cal forests and temperate grasslands accounted
for about 23% and 25% of the dataset, respec-
tively. For fungi (Fig. 1c), a number of sampling
sites distributed in tropical regions were from a
single study by Tedersoo et al. (2014). For the
sampling coverage, over 60% of the studies
focused on a specific local site or smaller regions
with a latitudinal coverage of fewer than 1° in
spite of increasing attention on plant–microbial
relationships at large spatial scales (Tedersoo
et al. 2014, Prober et al. 2015, Delgado-Baquerizo
et al. 2016, Ochoa-Hueso et al. 2018).
For the sensitivity analysis of publication bias,

the relationship between the standardized effect
size and the sample size was nonsignificant
(overall dataset Poverall = 0.804, plant diversity
and microbial richness Prichness = 0.968).
Although Egger’s tests produced an intercept of
1.733 and 4.053, indicating the existence of an
asymmetry which may lead to potential publica-
tion bias, the funnel plot showed no visual asym-
metry (Appendix S2: Fig. S3). Meanwhile,
Rosenthal’s fail-safe number was large enough
(overall nfs = 28,471 and microbial richness
nfs = 7563) to be confident about the reliability of
the overall and microbial richness dataset estima-
tion.

Impacts of biome and sampling extent on the
correlations of plant diversity and microbial
diversity
Among the evaluated 176 correlations, about

75% (132) were positive, 12% showed no clear
relationship (22), and 12% reported negative (22)
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Fig. 1. Maps of sampling sites included 84 studies on the relationship between plant diversity and microbial
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correlations (Fig. 2). The current meta-analysis
showed an overall insignificant correlation
between plant diversity and soil microbial diver-
sity (Fig. 3a, r = 0.173, CI = �0.006–0.341).
Among the metrics of microbial diversity, micro-
bial richness and Shannon diversity showed
modest but positive correlation with plant diver-
sity (Fig. 4, rrichness = 0.273, CI = 0.193–0.350;
rShannon = 0.197, CI = 0.052–0.333).

Our results showed that plant–microbial cor-
relations were impacted by biomes and sam-
pling extents (Figs. 3 and 4; Appendix S2:
Table S1) rather than latitude or elevation gra-
dients (Appendix S2: Fig. S2) and soil types
(Figs. 3–5). Among biomes, we observed

significant variation in the correlation between
the plant diversity and microbial diversity
(Q = 18.763, df = 6, P = 0.005), microbial rich-
ness (Q = 27.202, df = 4, P = < 0.001), and
Shannon diversity (Q = 13.224, df = 2,
P = 0.001). The strongest plant–microbial diver-
sity correlations were generally observed in
tropical forests. For instance, the relation
between plant diversity and microbial richness
was 0.656 in tropical forests (Fig. 4a), which
was more than twice as strong as other biomes
such as subtropical forests and shrublands
(r = 0.183 and r = 0.304, respectively). When
examining the Shannon diversity index, tem-
perate grasslands showed a relatively higher

Fig. 2. Percentage distribution of positive, negative, and unrelated correlations between plant diversity and
soil microbial diversity across biome types. The number of correlations is shown at the top.

diversity. Figures show site locations for (a) the overall dataset and studies on (b) bacteria and (c) fungi. Blue cir-
cles show the locations of sampling sites for studies that examined the plant–microbial relationships across
biomes. For fungi, a number of sampling sites distributed in tropical regions were obtained from Tedersoo et al.
(2014).

(Fig. 1. Continued)
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Fig. 3. The impact of variables on the correlation of the plant diversity–soil microbial diversity, including (a)
the overall relationship, sampling extent and biome type, (b) soil type, taxonomic groups, and microbial exami-
nation method. For different sampling extents, data were sorted into six-grid size classes according to the latitu-
dinal cover range (<0.05°, 0.05°–1°, 1°–5°, 5°–15°, 15°–20°, and ≥20° respectively), and elevational cover range
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correlation with plant diversity compared with
subtropical forests (Fig. 4b, r = 0.669).

Microbial richness showed varied relation-
ships with plant diversity among sampling
ranges (Fig. 4a). The intermediate latitude range
of about 500–1500 km (5°–15°, r = 0.515,
P = 0.040) and elevation range of 1–1.5 km
(r = 0.605, df = 4, P = 0.034) showed relatively
higher correlation with plant diversity. Likewise,
bacterial relationship with plant diversity was
associated with elevation range (Fig. 5a). The ele-
vation extent of 1–1.5 km displayed the strongest
correlations in the plant–bacterial diversity with
back-transformed effect sizes reaching 0.679.

Correlations between plant diversity and microbial
diversity varied among taxonomic groups

We detected significant differences across
microbial taxonomic groups in the correlations
between plant diversity and microbial diversity
(Fig. 3b, Q = 44.212, df = 5, P < 0.001), and
microbial richness (Fig. 4a, Q = 37.429, df = 4,
P < 0.001). The results showed that both fungi
and bacteria held the strongest correlations with
plant diversity, particularly in the linkage
between microbial richness and plant diversity
(rbacteria = 0.319 and rfungi = 0.364), while ecto-
mycorrhizal fungi (ECMF) and arbuscular myc-
orrhizal fungi (AMF) possessed the relative
weaker relationships with plant diversity
(r = �0.036 and r = 0.119). The significant
impact of the examination method was only
detected in the relationship between plant diver-
sity and bacterial diversity (Fig. 5a;
Appendix S2: Table S1). Biochemical methods
such as Biolog (r = 0.641) produced relatively
higher correlations than the next-generation
sequencing such as Miseq (r = 257).

Impacts of climatic and edaphic factors
Among examined environmental factors, soil

pH was the major factor associated with the
plant–microbial diversity correlation over large

sampling extents, including the latitude range
>20°, elevation range >2000 m, and across
biomes (Fig. 6e, i, m; Appendix S2: Table S2),
and in bacterial relationship with plant diversity
(Fig. 6a; Appendix S2: Table S2).
The plant–microbial correlations declined with

increased environmental differences in most
cases, but the positive associations were
observed in the TOC’s effect in tropical forests
(Fig. 6n, P = 0.032), TN’s effect in elevation range
of 100–600 m and 1000–1500 m (Appendix S2:
Table S2), MAT’s effect in temperate grasslands
(Fig. 6o, P = 0.039), and MAP’s effects at a lati-
tude sampling range of >20° (Fig. 6h, P < 0.001).
Edaphic factor-impacted scales seem to hold rela-
tively lower soil nutrients in TOC and TN, except
for total organic carbon’s impacts in the temper-
ate forest where a large standard error was
detected (Appendix S2: Fig. S4a–c). The higher
mean phosphorus content was detected in the
phosphorus significantly impacted plant–micro-
bial relationship sites (Appendix S2: Fig. S4d). In
addition, a lower BD was found to associate with
plant–bacterial correlation (Appendix S2:
Fig. S4e-f).

DISCUSSION

Based on a meta-analysis of more than 3900
samples globally, we found that microbial rich-
ness showed a moderate but positive correlation
with plant diversity (r = 0.273, CI = 0.193–
0.350). The results imply that microbes, even at
the global scale, are responding to resource com-
position driven by variations in plant composi-
tion and identity (De Deyn et al. 2010). Diverse
chemical and physical attributes of plant detri-
tus, which enter the belowground ecosystem,
could lead to discrete niches for specific decom-
posers (Hooper et al. 2000, Gessner et al. 2010).
Or plant community with higher diversity may
be more productive (Tilman et al. 2014, Lange
et al. 2015) and provides more resource input

(<100 m, 100–600 m, 600–1000 m, 1000–1500 m, 1500–2000 m, and ≥2000 m respectively). Plant–microbial corre-
lations estimated from several biomes are grouped as across biomes. Categories with fewer than five correlations
were not included. Within subsets, categories with the same lowercase letters do not differ significantly from
each other. The number of observations used to calculate the mean effect sizes is shown.

(Fig. 3. Continued)
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Fig. 4. The impact of variables on the correlation of (a) the plant diversity–microbial richness and (b) plant
diversity–microbial Shannon diversity. Categories are identical to Fig. 3. Subset groups with fewer than five data
points were not assessed. Categories with the same lowercase letters do not differ significantly from each other.
The number of observations used to calculate the mean effect sizes is shown.
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Fig. 5. The impact of variables on the correlation of plant and (a) bacterial and (b) fungal diversity. Categories
are identical to Fig. 3. Within subsets, categories with the same lowercase letters do not differ significantly from
each other. The number of observations used to calculate the mean effect sizes is shown.
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that promotes microbial diversity (H€atten-
schwiler et al. 2005, Bardgett and Van Der Putten
2014). Although there is a possibility that soil
condition enables a greater diversity of both
plant and soil microbes, the associations between
plant–microbial correlation and soil properties

we found do not support it (Appendix S2: Tables
S2–S3 and below discussion). However, the
plant–microbial relationship is impacted by taxo-
nomic groups and spatial scales.
We observed the stronger plant–microbial rela-

tionships in the overall fungal community, as

Fig. 6. The potential effects of environmental factors on the correlations of plant diversity and microbial rich-
ness among taxonomic groups (a–d), latitude (e–h) and elevation (i–l) cover range, and biome types (m–p) from
hierarchical mixed-effects models. A significant association of environmental factors on examined moderators
indicated in red (P < 0.05). Variation in TN, TP, soil moist, and soil bulk density's impacts on the correlation
included in support information (Appendix S2: Tables S1–S2).
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well as the overall bacterial community (Fig. 3a;
Fig. 4a). Saprophytic microbes have a wide range
of functional abilities, and most soils contain
most functional guilds of saprophytes (H€atten-
schwiler et al. 2005, Grau et al. 2017, Semchenko
et al. 2018). The positive relationship, thus, sup-
ports the idea of a functional relationship
between plants and microbes at the global scale
(Fierer and Jackson 2006, Chen et al. 2019). Con-
trary to our expectation, a weak plant–mycor-
rhizal fungal (AMF and ECMF) correlation was
observed. Such results indicate diverse plant
community will not directly contribute to the
mycorrhizal fungal diversity at the global scales,
may be due to the mismatched host density and
plant community diversity (Gilbert et al. 2002,
Cameron et al. 2019). For example, some ECM-
dominated ecosystems (e.g., boreal and tropical
monodominant forests) tend to have low plant
diversity despite the high richness in these fungal
communities (McGuire 2007, Corrales et al. 2016,
Garcia et al. 2018). Moreover, it was reported
that host plant genus-level diversity might be a
better predictor of the ECMF diversity (Gao et al.
2013), whereas most studies examined the over-
all plant community correlations with ECMF
(Peay et al. 2010, Shi et al. 2014). There are likely
to be some strong correlations at finer taxonomic
resolution or for some specific microbial func-
tional groups. For instance, nitrogen fixation bac-
teria seem to hold a stronger correlation with
plant diversity (Liang et al. 2016, Zhou et al.
2016). With increasing available data, further
studies on certain microbial functional groups
and with identified hosts from the plant commu-
nity could largely improve the global scale esti-
mation of the plant–microbial relationship.

Our results suggest that sampling extent is an
important factor in explaining patterns in the
relationship between soil microbial diversity and
plant diversity. The plant–microbial correlation
was strongest at the intermediate sampling
extent rather than the local or global scales, espe-
cially at the intermediate elevation coverage
(Fig. 4a and 5a). The intermediate scale we found
is consistent with previous studies that found a
significant distance effect on microbial assem-
blages at spatial scales of about 10–3000 km
(Green et al. 2004, Ranjard et al. 2013, Ma et al.
2016), indicating a potential role of dispersal lim-
itation on microbes and its correlation with plant

community. Alternatively, such spatial depen-
dency of the plant–microbial diversity relation-
ship may be explained by historical or
contemporary environmental factors that drive
the spatial distribution of both plants and
microbes (Martiny et al. 2006), and thus their
relationship with each other. Or the spatial
dependency may arise if the mechanism by
which plant and microbial communities facilitate
each other (i.e., by promoting environmental
heterogeneity, or structural complexity, as
described above) is strongest at intermediate spa-
tial scale (Angers and Caron 1998). Future work
is needed to disentangle the mechanisms under-
lying the intermediate spatial scale effects and to
understand whether and why plant–microbial
facilitation effects are weaker at more local and
broader spatial scales.
Consistent with our expectation, tropical forest

did harbor a relatively higher correlation in
plant–microbial diversity. Previous studies have
shown that microbial biogeographic distribution
was associated with ecosystem types (Cornwell
et al. 2008, Bradford et al. 2017). The less
stressed environments in the tropics may enable
a high diversity of soil microbes, thus a higher
concurrence of both plant and microbial commu-
nities. Or diverse litter quality fosters more diver-
gent microbial communities in tropical forests
(Cornwell et al. 2008, Bradford et al. 2017).
Moreover, the pronounced association empha-
sizes the importance of considering the func-
tional nature of plant–microbial interactions
across biomes. For example, the strong correla-
tion may relate to the interactions of plant com-
munity with parasitic microbes in tropical forests
(Bagchi et al. 2014, Sarmiento et al. 2017),
whereas symbiotic fungi may contribute to the
stronger plant–microbial correlation in temperate
forests (Br�eda et al. 2006, Brzostek et al. 2015).
The long-term coevolution of soil microbes with
plants in the tropics, at the same time, may favor
a stronger above- and belowground linkage (Mit-
telbach et al. 2007).
Our results showed that the examined climatic

and edaphic factors, including soil pH, total
organic carbon, total nitrogen, total phosphorus,
and soil moisture, were negatively related to the
plant–microbial relationship in most cases
(Fig. 6; Appendix S2: Table S3). For example, we
found that soil pH is the major factor negatively
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associated with the plant–microbial correlations
at the large spatial scales, including latitude
extent, elevation extent, and across biomes, and
suggested that bacteria were most sensitive to
the soil pH variations (Fig. 6), which was consis-
tent with other studies (Lauber et al. 2009, Shen
et al. 2013, Prober et al. 2015). Large spatial
scales could capture large pH gradients. There is
greater potential for extreme pH conditions to
impose limits on microbial survival and fitness
(Tripathi et al. 2018), and thus plant–microbial
interactions.

Microbes and microbial diversity are likely to
have bigger impacts on plant communities in
poor nutrient ecosystems. Using the mean value
as an indicator, most sites that showed a signifi-
cant response to edaphic factor variation were
associated with a lower soil nutrient
(Appendix S2: Fig. S4). For example, we found
that tropical forest holds a lower mean total
organic carbon (Appendix S2: Fig. S5b). Tropical
forests are organic maters limited ecosystems
(Insam and Domsch 1988, Wardle et al. 2004),
and the ways that organic matter can both retain
and release the other nutrients, such as nitrogen
and phosphorus, depend on microbial function
and activity (Vitousek 1984, Cleveland and Lipt-
zin 2007). It is likely that plant growing in those
low-nutrient environments forged stronger rela-
tionships with microbes through direct symbio-
sis or nutrient recycle-related feedback (Aerts
and Chapin 2000). The higher mean phosphorus
content in the phosphorus significantly impacted
plant–microbial correlated sites may reflect the
fact that mineral resource of phosphorus nutrient
is limited in soil; thus, poor and high phosphorus
could directly inhibit microorganisms that can
naturally improve phosphorus availability in
soils (Gyaneshwar et al. 2002, Garcia et al. 2015).
The finding suggests that nutrient variation
caused by global change might induce more pro-
nounced impacts on the poor nutrient ecosys-
tems, possibly through the plant–microbial
interaction.

A lower BD was found in scales that showed a
sensitive plant–microbial correlation to soil con-
dition (Appendix S2: Fig. S4e, f), indicating soil
BD might impact the plant–microbial correlation.
Negative impacts of BD on plant–microbial inter-
action are well-documented, particularly in agri-
cultural soil (Young and Ritz 2000, Beylich et al.

2010). More compact soil is likely impairing
activity of both microbes and plants (Young and
Ritz 2000, Beylich et al. 2010). At the same time,
BD could contribute to soil types’ effects on
plant–microbial interaction (Li et al. 2002, Gos-
sen et al. 2016). Depending on the dominant
plant community (e.g., grasses vs. trees, and
annuals vs. perennials), variations in root system
might modify soil structure, which in turn con-
tributes to its own turnover (Cook and Hester-
berg 2013). Future studies need to take those
factors into consideration using fine-scale data.
The plant–microbial correlation among envi-

ronmental gradients provides an opportunity to
detect critical environmental factors and the sen-
sitivity of the correlation to variability within
each factor. Climatic changes’ impacts on biodi-
versity are widely discussed, but less is known
about the potential effects on the plant–microbial
relationship (Classen et al. 2015, Terrer et al.
2018). The significant associations between cli-
matic factors with plant–microbial correlation
indicate intense impacts of further climatic
changes on ecosystems in certain spatial scales
and biomes. For example, the positive associa-
tion between the plant–microbial correlations
and the temperature’s changes in temperate
grasslands implies a potential exacerbation of
elevated temperature’s impacts in this area under
the global warming (Jones and Donnelly 2004,
Piao et al. 2006, Kreyling 2010).
We are aware of the distinct ecological implica-

tions of the various microbial attributes (e.g.,
richness, abundance, and diversity index)
assessed in our study. For the overall plant–mi-
crobial diversity relationship and factors affect-
ing it, we could take into account the differences
among diversity measures by including them as
the second random effect (Appendix S2: Fig. S1).
Due to limited data, we were unable to isolate
factors that affect each diversity parameter’s rela-
tionship with plant diversity, except for microbial
richness and Shannon diversity. The relationship
between plant diversity and microbial richness
might reflect the heterogeneity of soil that could
further affect plant richness via niche partition-
ing of resources (Angers and Caron 1998,
Dejonghe et al. 2001). Diversity indices such as
the Shannon diversity index take into account
both richness and abundance, potentially mask-
ing the individual importance of one over the
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other. Therefore, further studies are needed to
disentangle factors that potentially affect each
parameter’s relationship with plant diversity,
which could help to differentiate microbial
responses to changes in plant diversity.

Our study confirms a modest but positive cor-
relation between plant diversity and microbial
richness, but perhaps more importantly, our
analysis provides critical insight into the nature
of plant–microbial relationships. The positive
microbial richness and plant diversity relation-
ship imply functional significance between
plants and microbes, and while the precise mech-
anism that maintains this is unclear, our findings
suggest that future efforts consider differences
across taxonomic groups, spatial scales in modu-
lating these differences. Most broadly, our find-
ings raise the question of how plant–microbial
diversity relationships and their environmental
drivers might reflect sensitivity to biodiversity
loss or environmental change on the structure
and functioning of terrestrial ecosystems.
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