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Abstract Vegetation carbon stock (Cveg) in global forests, which is important for C cycle‐climate
feedbacks, commonly increases with forest age. Due to the allometric growth of plants, the nonlinear
increase in Cveg with woody fraction ( fw) is expected across space. However, it remains unclear
whether such a nonlinear relationship between Cveg and fw can be constrained by observations and
further used to benchmark Earth system models (ESMs). Here, based on the in situ measurements at
1,145 forest sites, we found that the nonlinear relationship between Cveg and fw followed an exponential
equation (i.e., Cveg ¼ bea · f w ). Then, we showed that such an exponential dependence of Cveg on fw
also exists in ESMs of CMIP5 and CMIP6 (all P < 0.01), even though age‐dependent processes have not
been incorporated in most models. However, the exponential Cveg‐fw relationship varied greatly
among the models, and the coefficient b was systematically lower in the ESMs (0.08 ± 0.11; mean ± SD)
than the observations (0.28). Based on a compiled forest age data set, we further found that the
observed nonlinear increase of Cveg with forest age across the Northern Hemisphere (>30°N) was not
captured by ESMs. These findings reveal a high disagreement on the spatially nonlinear relationship
between vegetation carbon stock and woody fraction in current ESMs. The exponential relationship
based on observations provides one useful benchmark for ESMs when they implement the
age‐dependent processes in the future.

Plain Language Summary Forest age plays an important role in vegetation carbon stock
(Cveg) predictions. This study detects a nonlinear increase of Cveg with woody fraction ( fw) in aging forests
across 1,145 in situ observations. The nonlinear Cveg‐fw relationship was then used to benchmark the age
impacts on Cveg predictions in Earth system models (ESMs). Combined with a global forest age data set, we
show that current ESMs divergently represent the relationship between Cveg and forest age. Our study
suggests that the Cveg‐fw relationship could be one useful benchmark for evaluating ESMs.

1. Introduction

The dynamics of vegetation carbon storage (Cveg) in northern temperate forests vary threefold among current
Earth systemmodels (ESMs) (Jiang et al., 2015; Xia et al., 2017). One potential reason for such uncertainty is
that most ESMs typically averaged across all age classes and have poorly represented the age‐dependent bio-
geochemical and ecological processes (Anderson‐Teixeira et al., 2013). The important role of forest age in
simulating vegetation carbon (C) storage has been validated by both big‐leaf and tile‐based models which
have incorporated the age‐related processes (Bayer et al., 2017; Shevliakova et al., 2009; Yue et al., 2018;
Zaehle et al., 2006). For example, Zaehle et al. (2006) have incorporated the plant size‐dependent C allocation
in a big‐leaf model (i.e., the Lund‐Potsdam‐Jena model), which then can better reproduce the observed
present‐day forest age structure and Cveg on the regional scale. The subgrid forest age structures have been
implemented into some tile‐based models, such as ORCHIDEE‐MICT (Yue et al., 2018), LM3 (Shevliakova
et al., 2009), JSBACH (Reick et al., 2013), and ISAM (Yang et al., 2010), allowing for the regional and global
simulations of forest dynamics under land use changes. Recently, observations based on eddy flux towers
have also shown that net CO2 uptake of forest ecosystems is more controlled by forest age than climate
(Besnard et al., 2018; Gao et al., 2016). As a result, the important role of forest age in determining vegetation
C accumulation has been increasingly emphasized by both observational (Gough et al., 2016) and modeling
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(Williams et al., 2012) studies. However, it remains unexamined that whether and how the simulation uncer-
tainty or biases of Cveg in current ESMs are contributed from the inconsideration of forest age.

The ignorance of forest age impacts may lead to the biased modeling of Cveg in contrasting directions. On the
one hand, numerous studies have reported that leaf area peaks at the early stage of forest development and
followed by a reduction of photosynthesis in mature and old forests (Goulden et al., 2011; Gower et al., 1996;
Law et al., 2003). Thus, one can expect an overestimation of Cveg in mature or old forests by models because
of the lack of the age‐related reduction in photosynthesis. Models can also underestimate the Cveg in young
forests if the photosynthesis rates of mature or old forests are adopted. On the other hand, the allocation of
net primary production to wood could increase with the forest age (Davidson et al., 2002; Peichl &
Arain, 2006). Due to the longer C residence time in wood than other plant tissues (Bloom et al., 2016),
ESMs could underestimate Cveg in mature and old forests if they incorrectly represent the age‐related
increase in woody C allocation. Current ESMs have simulated the dynamics of C allocation simply based
on different indicators, such as NPP (e.g., NorESM1; Oleson et al., 2010) and tree height (e.g., GFDL;
Shevliakova et al., 2009) or empirically by some allocation schemes, such as allometric scaling relationships
(e.g., HadGEM2‐CC; Clark et al., 2011) and resource availability (e.g., CanESM; Arora & Boer, 2005; IPSL;
Krinner et al., 2005; MIROC; Sato et al., 2007). However, most of these allocation schemes have not explicitly
represented the age impacts on C allocation. Thus, developing effective benchmarks for simulating the age
impact on vegetation carbon stocks is urgently needed.

In recent years, the rapid development of new technology in Earth system science has promoted the
benchmarking analyses on modeled C processes using observations (Collier et al., 2018; Luo et al., 2012;
Reichstein et al., 2019). Some previous benchmarking analyses have shown that the ensemble mean of
multiple ESMs can well capture the dynamics of gross primary production in global data products
(Anav et al., 2013; Xia et al., 2020; Yan et al., 2014). However, benchmarking the performance of Cveg

prediction in aging forests is still difficult because the C allocation scheme varies among models and
different allocation schemes would cause large variability of predicted Cveg (Friedlingstein et al., 1999;
Ise et al., 2010; Malhi et al., 2011). In mature and old forests, if the ESMs correctly simulate ecosystem
productivity without considering the age impacts, one can hypothesize an underestimation of Cveg in these
models. Because ESMs commonly lack the age‐related increase in woody C allocation, we further hypothe-
size that current ESMs have led to a lower woody fraction ( fw) associated with the underestimated Cveg in
mature and old forests. Thus, the relationship between Cveg and fw could be a useful benchmark for evaluat-
ing the simulations of age impact on forest Cveg in the ESMs.

Here we explored the age‐dependent increase of Cveg and fw using in situ observations at 1,145 forest sites in
northern temperature forests. Due to the allometric growth of trees (Niklas, 1995, 2004), the relationship
between Cveg and fw must be nonlinear (Poorter et al., 2015; Sheil et al., 2017; Sillett et al., 2010;
Stephenson et al., 2014). Thus, we first explored whether the relationship between Cveg and fw can be con-
strained by the observations. Then, we examined whether such a nonlinear relationship between Cveg and
fw also exits in current ESMs involved in the phases 5 and 6 of the Coupled Model Intercomparison
Project (CMIP5 and CMIP6). Combined with a new global forest age database (Poorter et al., 2015), we
further evaluated the age‐related changes in Cveg in current ESMs against the observations. This study aims
to (1) verify the relationship between Cveg and fw in aging forests based on observations, (2) examine whether
current two generations of ESMs capture the observed Cveg‐fw relationship, and (3) evaluate the effects of for-
est age on ESMs' performance in vegetation carbon predictions.

2. Methods
2.1. Data Sets

The allocations of the biomass of main tree compartments (leaves, stems, and roots) and total biomass data
in this study were compiled from different data sources (Luo et al., 2014; Michaletz et al., 2014;
Schepaschenko et al., 2017). We restricted our data selection to only those reported the forest age and bio-
mass in the main tree compartments (leaves, stems, and roots). A complete list of data source references
is provided in the Source Data file. Data were compiled for woody plants with latitude, longitude, and stand
age as well as dry biomass of leaf, wood, root, and vegetation. Note that the stand age used in this study refers
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to the mean age of trees within the stand. The field data of China's forest biomass were collected from the
Luo data set (Luo et al., 2014). That data set provides a wide range of survey data including 1,607 entries
for 348 forest sites. We selected the records which reported the biomass of leaves, stems, roots, and
vegetation. The Shvidenko data set (Schepaschenko et al., 2017) includes 10,351 records of sample plots
for the periods of 1960–2014 in Eurasia. That data set reported the biomass of living trees as the stem,
bark, branches, foliage, and roots, so the woody biomass was calculated by summing the stem, bark, and
branches biomass. In the Shvidenko data set, we selected sites published after 1985 in each country that
excluded China. The Michaletz data set was compiled from multiple data sources covering 1,247 stands
and data records in boreal and temperate forests that are involved in our analyses (excluding China).
Vegetation carbon storage was calculated as the total dry mass of stem, bark, branch, root and foliage com-
ponents in the above three data sets. It should be noted that both natural and planted forests are included in
these data sources. Because some data were measured from continuous forest inventory, there would be
multiple records of different years in one region, and we treated these data as different stands. Finally, we
got a total of 1,145 stands of northern temperate forests across Asia, Europe, and North America (Figure 1).

The forest age data were obtained from the global forest age data set (GFAD) (Poorter et al., 2015) with a
resolution of 0.5° × 0.5° represents the 2000–2010 era. The GFAD data set was derived from the
country‐level forest inventory in most temperate and boreal regions and climate‐specific stand
age‐biomass curves in the tropical areas. The original data were unified to 15 age classes defined in 10‐yr
intervals of forest type fractions: needleleaf evergreen, needleleaf deciduous, broadleaf evergreen, and broad-
leaf deciduous. The information on the fraction of forest within an age class in each grid cell is also provided
by the GFAD data set. In each land grid cell, we first calculated the sum of the four forest type fractions. At
each age class, we take the median of the age range and multiply the forest type fractions of each grid. We
finally obtained the map of global forest age and extracted the ages of grid cells with the forest cover
>50% across the Northern Hemisphere (>30°N).

The simulated biomass and vegetation carbon data from CMIP5 and CMIP6 ESMs were used to compared
with in situ observations (Tables 1 and 2). In each modeling center, we only selected one model because
the outputs from the same model center are very similar. Finally, eight ESMs from CMIP5 and seven
ESMs from CMIP6 were used in this study. In ESMs, the total biomass and the biomass in leaves, stems,
and roots are represented by cVeg, cLeaf, cWood, and cRoot. The monthly model outputs at the end of each
year were extracted from historical runs during 2000–2005, which were then aggregated up to 0.5° × 0.5°
resolution using the nearest neighbor interpolation. The ESMs data were restricted to the grid cells with
the forest cover >50% across the Northern Hemisphere (>30°N).

2.2. Grouping of Forest Age Data

The forest age data were obtained from plot‐level observations and grid‐scale GFAD data set. The
observation‐based forest age data were binned into increments of 10 yr in the range of 0–130 yr in
Figure 2a, then the observation‐based Cvegwere averaged in each forest age bin. The forest age data extracted
fromGFADwere binned into increments of 10 yr in the range of 0–130 yr in Figure 4. The values of forest age

Figure 1. Locations of sample plots with observations of vegetation C and biomass in leaves, wood, and roots.
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larger than 130 yr in observations and GFAD were binned into one group because the number of samples is
relatively small. The bin size ensured that each bin size contains more than five samples. In each age group,
the Cveg of each of the 15models in two CMIPs was also averaged. Linear or nonlinear regression was applied
to detect the dependence of Cveg on binned forest age in observations and ESMs, respectively.

To reduce the uncertainty from scale mismatch between the plot‐level observations and gridded products,
the in situ measurements were weighted based on the fraction of the forest provided by the GFAD dataset
to match grid cells. So the in situ measurements of biomass data were averaged to 15 age classes defined
in 10‐yr intervals, from 1–10 up to a class greater than 150 years old. Then the weighted biomass of each grid
cell was calculated based on the averaged biomass data of each age class and the proportion of forest at each
grid cell. The relationship between the weighted Cveg and the gridded forest age data was plotted in
Figure 2a.

Table 1
Information of CMIP5 ESMs Used in This Study

Model name Modeling group Land model Allocation scheme LUC Original resolution References

CanESM2 Canadian Center for
Climate Modeling and Analysis

CTEM CLASS Resource limitation Yes 2.81° × 2.81° Arora & Boer (2010)

IPSL‐CM5A‐LR Institut Pierre‐Simon Laplace ORCHIDEE Resource limitation Yes 1.88° × 3.75° Dufresne et al. (2013)
MRI‐ESM 1 Meteorological

Research Institute
HAL Allometric relationship No 1.13° × 1.13° Yukimoto (2011)

Nor‐ESM 1‐M Norwegian Climate Center CLM 4.0 Dynamic functions of NPP Yes 1.88° × 2.50° Tjiputra et al. (2013)
CCSM4 National Center for

Atmospheric Research
CLM 4.0 Dynamic functions of NPP Yes 1.25° × 0.94° Gent et al. (2011)

GFDL‐ESM 2G NOAA Geophysical
Fluid Dynamics Laboratory

LM 3.0 Tree height Yes 1.99° × 2.48° Dunne et al. (2013)

HadGEM2‐CC Met Office Hadley Center
(additional HadGEM2‐ES
realizations contributed by
Instituto Nacional de
Pesquisas Espaciais)

JULES TRIFFID Allometric relationship
based on leaf area index

Yes 1.24° × 1.88° Collins et al. (2011)

MIROC‐ESM Japan Agency for Marine‐Earth
Science and Technology,
Atmosphere and Ocean
Research Institute (The Institute
for Environmental Studies
University of Tokyo),
and National

MATSIRO
SEIB‐DGVM

Environmental
conditions at tree level

Yes 2.81° × 2.81° Watanabe et al. (2011)

Note. LUC = land use change.

Table 2
Information of CMIP6 ESMs Used in This Study

Model name Modeling group Land model Allocation scheme LUC Original resolution References

CanESM5 Canadian Center for Climate
Modeling and Analysis

CTEM CLASS Resource limitation Yes 2.81° × 2.81° Swart et al. (2019)

IPSL‐CM6A‐LR Institut Pierre‐Simon Laplace ORCHIDEE Resource limitation Yes 1.88° × 3.75° Boucher et al. (2020)
MRI‐ESM 2‐0 Meteorological Research Institute HAL Allometric relationship Yes 1.13° × 1.13° Yukimoto et al. (2019)
NorESM2‐LM Norwegian Climate Center CLM5.0 Fixed coefficient Yes 1.88° × 2.50° Seland et al. (2020)
CESM2 National Center for

Atmospheric Research
CLM 5.0 Fixed coefficient Yes 0.94° × 1.25° Lawrence et al. (2019)

ACCESS‐ESM 1‐5 Commonwealth Scientific
and Industrial Research
Organization

CABLE2.4 Fixed coefficient No 1.875° × 1.25° Law et al. (2017)

CNRM‐ESM 2 National Center for
Meteorological Research,
Météo‐France and CNRS laboratory

ISBA‐CTRIP Related with
plant N decline model

Yes 1.4° × 1.4° Séférian et al. (2019)

Note. LUC = land use change.
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3. Results
3.1. Age‐Dependent Nonlinear Increase of Cveg and fw in Observations

By plotting the observation‐based vegetation carbon stocks with forest age, we found thatCveg increased non-
linearly with forest age across all 1,145 forest sites (R2 = 0.94, P < 0.01; Figure 2a). The biomass allocated to
wood increased in young forests and then gradually saturated in old forests (Figure 2b). The partitioning of
leaf biomass rapidly reduced in the young forest and then slowly reduced in old forests (Figure 2b). The bio-
mass allocated to roots declined at the early stage and but raised when the forests were older than ~100 years

old (Figure 2b). Across the 1,145 forest sites, trees kept accumulating
carbon in wood as they age, and the Cveg exponentially increased with fw
(R2 = 0.26, P < 0.01; Figure 3).

3.2. The Nonlinear Relationship Between Cveg and fw in Earth
System Models

Spatially, areas with high fw fractions corresponded to largeCveg (Figure 4).
The evolution of models from CMIP5 to CMIP6 has resulted in larger car-
bon stock and higher fw in northern Canada, Eastern United States,
Northeast Europe, and Western Siberia (Figures 4a, 4c, 4e, and 4g).
However, the increase of Cveg and fw did not add uncertainty in these
regions except in the Eastern United States (Figures 4b, 4d, 4f, and 4h).

Although all eight ESMs in CMIP5 and seven ESMs in CMIP6 captured
the exponential dependence of Cveg on fw (all P < 0.01; Figures 5a
and 5b and Table 3), the parameters in the exponential relationship

(i.e., Cveg ¼ bea · f w ) between woody biomass fraction and vegetation
carbon varied greatly among models. The coefficient a in the exponen-
tial function estimated for observations was smaller than that in all
ESMs except IPSL‐CM5A‐LR, ACCESS‐ESM 1‐5, and CNRM‐ESM 2
(Table 3). The coefficients b estimated for all ESMs ranged from
0.42 × 10−6 to 0.32, which were smaller than that from the observa-
tions except ACCESS‐ESM 1‐5 (Table 3). The five models that partici-
pated in both CMIPs also show divergent Cveg‐fw relationship in
CMIP5 and CMIP6.

Figure 2. Age‐dependent (a) vegetation carbon stocks and (b) biomass fractions of leaves, wood, and roots in in situ
measurements. The dark gray curve in (a) represents the fitting of observation‐derived data to a logarithmic regression
model as Cveg = 6.67 ln(Age) − 7.67 (R2 = 0.94, P < 0.01). The blue curve represents in (a) the fitting of weighted
observational data to a logarithmic regression model as Cveg = 7.31 ln(Age) − 12.37 (R2 = 0.95, P < 0.01). The size of each
point represents the number of sites in each bin size. The vertical gray bars indicate the standard errors. Boxes in
(b) indicate the 25% and 75% quartiles, whiskers indicate the extent of the data, and lines indicate the median.

Figure 3. The dependence of vegetation carbon stocks on woody biomass
fractions in in situ measurements. The curve represents the fitting of data
to an exponential model as Cveg ¼ bea · f w (a = 0.05, b = 0.28; R2 = 0.26,
P < 0.01).
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3.3. Relationships of Modeled Cveg to Age

Although the forest age has not been explicitly considered in ESMs, we examined whether they captured the
observed age‐dependent nonlinear increase of Cveg by plotting the modeledCveg against the GFAD forest age.
We found that the CMIP5 and CMIP6 models captured few the nonlinear increase of Cveg with forest age in
grid cells across the forest region of the Northern Hemisphere (Figure 6). In many cases, the modeled Cveg in
CMIP5 and CMIP6 tended to be saturated with forest age (Figures 6a and 6b). Some models showed an
increase of Cveg at the early stage and then significantly decreased with forest age (Figures 6a and 6b). On
the contrary, MIROC‐ESM exhibited a linear increase of Cveg with forest age (Figure 6a).

3.4. Comparison of Biomass Allocation Among ESMs

We presented the allocation fractions of biomass in leaves, wood, and roots for each model over 2000–2005
(Figure 7). The results showed large model‐to‐model differences in wood biomass allocation (from 0.62 in
IPSL‐CM6A‐LR to 0.88 in CNRM‐ESM 2), leaf biomass allocation (from 0.008 in CNRM‐ESM 2 to 0.13 in
NorESM1‐M), and root biomass allocation (from 0.06 in IPSL‐CM5A‐LR to 0.37 in MRI‐ESM 1). The four
(IPSL‐CM5A‐LR, MRI‐ESM 1, NorESM1‐M, and CCSM4) out of five models that participated in both
CMIPs show a large disagreement on the woody biomass allocation between the two CMIPs. The
CanESM2 in CMIP5 and CanESM5 in CMIP6 showed very similar biomass allocation in leaves, wood,
and roots.

4. Discussions
4.1. The Emergent Cveg‐fw Relationship in Observations and ESMs

This study detects an age‐dependent increase in both of fw and Cveg (Figure 2) and then constrains an expo-
nential relationship between fw and Cveg based on the in situ observations (Figure 3). This relationship is dif-
ferent from a previous study which has shown an S‐type nonlinear correlation between fw and Cveg based on
observations of tree seedlings (Poorter et al., 2015). The exponential relationship found in this study could be
partially explained by the changes in biomass allocation at different growth stages (Figure 2b). At the early
stage of tree growth, trees increase in size and height to maintain structural support and other physical

Figure 4. Spatial distributions of vegetation C, woody biomass fraction, and corresponding standard deviation. The multimodel average of vegetation C and
woody biomass fraction during 2000–2005 for (a, e) CMIP5 and (c, g) CMIP6 ESMs. The standard deviation across models of vegetation C and woody biomass
fraction for (b, f) CMIP5 and (d, h) CMIP6 ESMs.
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requirements (Niklas, 2004; West et al., 1999). After establishment, wood biomass allocation would continue
to increase to support the diameter growth and the more complex crown structures (Phillips et al., 2008;
Sillett et al., 2010; Van Pelt & Sillett, 2008). Thus, the exponential increase of Cveg with fw validated in this
study is an emergent property driven bymultiple mechanisms of C accumulation during forest development.

Even without age‐related processes, the ESMs can produce the exponential relationship between fw and Cveg.
However, such an exponential relationship is divergent among the 15 ESMs (Figure 5). It means that the
coefficients of the exponential equation based on observations can be useful in diagnosing the model perfor-
mance on forest Cveg. For example, the coefficient b is lower in all ESMs except ACCESS‐ESM‐1‐5 than the

observations (Figure 5 inset), indicating that the models systematically
underestimated the Cveg in low fw. On the contrary, the coefficient a in
most ESMs is larger than the observations (Table 3). A higher coefficient
ameans the rapid increase of Cvegwith fw, which indicates a more conver-
ging fw at a specific range of Cveg. These findings suggest that the exponen-
tial relationship between fw and Cveg across space provides an important
benchmark for evaluating ESMs in forest carbon cycle.

4.2. The Evaluation on the Simulations of Age Impacts on Cveg

in ESMs

Based on a compiled forest age data set, either linear or nonlinear relation-
ship between Cveg and forest age is detected in the ESMs (Figure 6). The
linear increase of Cveg with age is simulated by MIROC, which adopts an
individual‐based approach to simulate trees establish, competition, and
mortality, and enables the large trees to persist for a long time under favor-
able sunlight conditions (Sato et al., 2007). The nonlinear relationship
between Cveg and forest age varies among different models (Figures 6a
and 6b). The majority of ESMs simulate a saturation of Cveg with forest
age, while some ESMs simulate a rapid decline of Cveg after the early stage
of forest development. The observed nonlinear increasing trend of Cveg

with forest age in this study (Figure 2a) is in line with the new idea in

Figure 5. Nonlinear dependence of vegetation C on the woody fraction in (a) CMIP5 and (b) CMIP6 ESMs. The inset panels show the ranges of coefficients b in
each model. The ESM name in bold indicates the model participating in two phases of CMIP but in different versions.

Table 3
Parameters in the Relationship Between Woody Biomass Fraction and
Vegetation Carbon for 14 ESMs and In Situ Observations

a b p R2

OBS 0.05119 0.27635 <0.01 0.26
CMIP5

CanESM2 0.0717 0.0208 <0.01 0.23
IPSL‐CM5A‐LR 0.04353 0.11024 <0.01 0.68
MRI‐ESM 1 0.15446 0.39 × 10−5 <0.01 0.89
NorESM1‐M 0.13488 0.00119 <0.01 0.75
CCSM4 0.11733 0.28 × 10−3 <0.01 0.76
GFDL‐ESM 2G 0.1068 0.0047 <0.01 0.36
HadGEM‐CC 0.07663 0.00536 <0.01 0.83
MIROC‐ESM 0.22523 0.42 × 10−6 <0.01 0.85

CMIP6
CanESM5 0.15469 0.26 × 10−4 <0.01 0.72
IPSL‐CM6A‐LR 0.15996 0.24 × 10−5 <0.01 0.89
MRI‐ESM 2‐0 0.11876 0.78 × 10−4 <0.01 0.72
NorESM2‐LM 0.13272 0.76 × 10−3 <0.01 0.65
CESM2 0.10432 0.68 × 10−3 <0.01 0.66
ACCESS‐ESM 1‐5 0.0447 0.3243 <0.01 0.4
CNRM‐ESM 2 0.0476 0.1133 <0.01 0.1
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ecology that aging forests keep accumulating carbon (Curtis & Gough, 2018; Stephenson et al., 2014). In
addition, the nonlinear relationship between Cveg and forest age in some models substantially changes
from CMIP5 to CMIP6 (Figures 6a and 6b). For example, the Cveg increases at the early stage then rapidly
decreases with forest age in MRI‐ESM 1 but keeps a relatively low value and saturated with forest age in
MRI‐ESM 2‐0, which could be due to the incorporation of land use changes in MRI‐ESM 2‐0.

The saturated or decreasing trend in Cveg with forest age in ESMs could result from two apparent reasons.
First, the vegetation C residence time in most CMIP5 models is shorter than 15 yr at the global scale
(Jiang et al., 2015) and is rarely longer than 50 yr in forest regions (Wu et al., 2018). The short vegetation
C residence time mainly results from the biased parameterizations of C age in different plant tissues
(Cui et al., 2019). Second, the biomass allocation to wood is low in some models (Figure 7), which limits
the C storage capacity of vegetation in the models.

4.3. The Important Role of Biomass Allocation in the Cveg‐fw
Relationship

Many allocation schemes have been developed to model the dynamics of
C allocation in plants in the past two decades (Franklin et al., 2012). The
various allocation schemes have produced widespread biomass allocation
fractions among leaves, wood, and roots in current ESMs (Figure 7). In
those C allocation schemes, the models use an allometric approach
(MRI‐ESM 1 and MRI‐ESM 2‐0; Sitch et al., 2003) and dynamic function
of annual NPP (CCSM4 and NorESM1‐M; Oleson et al., 2010) that usually
simulate less biomass allocation to wood (Figure 7). The modeled low fw
would correspond to a significant declining trend of Cveg in the aging for-
est in CCSM4, MRI‐ESM 1, and NorESM1‐M (Figure 6a). In contrast, the
models based on resource limitations approach (CanESM2 and CanESM5;
Arora & Boer, 2005; IPSL‐CM5A‐LR and IPSL‐CM6A‐LR, Krinner
et al., 2005), plant N decline model (CNRM‐ESM 2; Gibelin et al., 2006),
and leaf area index (HadGEM2‐CC; Clark et al., 2011) can allocate more
biomass to the woods (Figure 7). However, a saturation rather than an
increase of Cveg in aging forest was captured by these models (Figure 6).
Such a saturation pattern is consistent with the modeling results in a
recent study, which found that the allocations ratios among leaves, woods,
and roots only change in young forests (Xia et al., 2019). It also should be
noted that some vegetation processes and environmental factors can
influence the C allocation patterns. For example, the wood C fraction
modeled by IPSL‐CM5A‐LR in CMIP5 was 0.88 but decreased to 0.62 by
IPSL‐CM6A‐LR in CMIP6, the latter of which has taken consideration

Figure 6. The dependence of vegetation carbon stocks on forest age in (a) CMIP5 and (b) CMIP6 ESMs (all P < 0.01).
The ESM name in bold indicates the model participating in two phases of CMIP but in different versions.

Figure 7. The biomass allocation to leaves, wood, and roots in CMIP5 and
CMIP6 ESMs. The ESM name in bold indicates the model participating in
two phases of CMIP but in different versions.
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of the annual evolution of the plant functional type maps (Boucher et al., 2020). The reduced fw partially
explains the different relationships between Cveg and forest age in IPSL‐CM5A‐LR and IPSL‐CM6A‐LR
(Figures 6a and 6b). The environmental factors such as high temperature and drought stress would force
a reduction of wood allocation (Zhu et al., 2020).

Although themajority of ESMs have not explicitly represented the age‐dependent biomass allocation in their
vegetation model, rapid developments have been achieved recently in the offline land‐surface models. In
vegetation demographic models, the subgrid forest age structure is inherently provided at individual or
cohort levels. For example, the CLM (ED) (Fisher et al., 2015), the LPJ‐GUESS (Smith, 2001), and the
SEIB‐DGVM (Sato et al., 2007) have represented the spatial variability of the individual age or individual
trees with the same age. In big‐leaf or tile‐based models, there are two approaches to introduce the subgrid
forest age. The first approach is to incorporate a vegetation demographic model, such as the CABLE‐POP
model (Haverd et al., 2018) by coupling a vegetation demographic model (i.e., POP) to a big‐leaf model
(i.e., CABLE). The other approach is to increase the number of tiles to represent age structures of different
subgrids. For example, the LM3V model uses multiple tiles within each land grid cell to capture the age
distribution of vegetation (Shevliakova et al., 2009). A recent version of the ORCHIDEE model
(i.e., ORCHIDEE‐MICT; Yue et al., 2018) has represented vegetation age structure based onmultiple subgrid
patches.

4.4. Uncertainty and Limitations

Several limitations of this study should be noticed. First, the observations are based on the plot inventories
from different studies, so they have inevitable uncertainty from sampling selections, measurement errors,
and allometric growth fitting (Cunia, 1965). Second, the distribution of the data used in this study concen-
trated on China (Figure 1), which may impact the Cveg‐fw relationship. The forest age for Chinese forests
is relatively young (Zhang et al., 2017); thus, only a small proportion of the observations are from old forests
(e.g., >140 yr; McDowell et al., 2020) (Figure 2a). Adding more observations from old forests could alter the

parameters in the exponential relationship between Cveg and fw as found in this study (i.e., Cveg ¼ bea · f w ).
Third, the historical land use change has been incorporated in most ESMs (Table 1) but natural disturbances
are rarely considered. It should be expected to result in smaller forest biomass in ESMs outputs because of
the underestimation of C uptake in regrowth forests without considering natural disturbances (Pugh
et al., 2019). Ignoring the increased frequency and severity of nature disturbances (e.g., large wildfires and
bark beetles) can also lead to an overestimation of vegetation carbon (Seidl et al., 2014). Lastly, it should
be noted that the spatial scale mismatch adds uncertainty to the data‐model comparison in this study. To
reduce such uncertainty, we further weighted the observations to match grid cells. The pattern between
the weighted Cveg and the gridded forest age data was the same as that of the observation‐based (Figure 2a).

5. Conclusions

In summary, this study detects an age‐dependent nonlinear increase in Cveg and fw, and reveals an exponen-
tial Cveg‐fw relationship in observations. The Cveg‐fw relationship exists but varies greatly in ESMs which par-
ticipated in CMIP5 and CMIP6. Further analyses provide some important recommendations to ESMs. First,
current ESMs need to better capture the observed nonlinear increase of Cveg with forest age. Second, the
efforts of improving vegetation C allocation in ESMs (De Kauwe et al., 2014; Negrón‐Juárez et al., 2015;
Song et al., 2017) should take forest age into consideration. Third, global data products of forest age and vege-
tation C allocation are helpful to constrain the Cveg‐fw relationship on the global scale. Overall, this study
highlights the important role of forest age in estimating vegetation carbon storage and provides an
observation‐derived Cveg‐fw relationship to benchmark forest carbon stocks in Earth system models.
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