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A B S T R A C T   

Tropical evergreen forests contribute an important part to the interannual variability (IAV) of the global 
terrestrial gross primary productivity (GPP). Due to its year-round growing-season, high minimum carbon uptake 
(GPPmin) and dry season greening-up, the key processes driving the GPP variability across seasonal to interannual 
scale are still in debate. Here, we analyzed the time-series of FLUXCOM GPP (1980–2013), sun-induced fluo-
rescence (SIF; 2001–2013) and site-level GPP measurements in three tropical evergreen forests regions (i.e., 
Amazon, Africa, and Southeast Asia). We decomposed the annual accumulated GPP into the basic and recurrent 
GPP, which represent the accumulated minimum and seasonal vegetation productivity, respectively. Then we 
quantified the proportion of each component and estimated the contribution to the IAV of GPP. We find that the 
basic GPP overwhelmed the recurrent GPP with the averaging ratio of 4.2:1 across the global tropical regions, 
and dominated the IAV of annual total GPP in 83.7% of the tropical evergreen forest areas. The high contribution 
of the basic GPP resulted from the great sensitivity of GPPmin to rainfall changes among years. The decomposition 
of the basic and recurrent GPP sheds new light on the understanding of tropical GPP variability in responding to 
climate change at seasonal and annual scale. Our study highlights the critical role of the GPPmin in shaping 
temporal dynamics of the annual GPP in tropical forests and emphasizes the importance of managing tropical 
forest of the shifting periods between wet-dry seasons in global tropical regions.   

1. Introduction 

Tropical forest, as one of the largest terrestrial biomes, contributes 
one-third of the total carbon uptake of the terrestrial biosphere (Beer 
et al., 2010), which offset 24% ~ 45% of the human carbon emissions 
during the past decades (Quéré et al., 2018). The year-to-year variations 
of carbon uptake by tropical forests substantially affect the global at-
mospheric CO2 growth rate (Bacastow, 1976; Keeling & Revelle, 1985; 
Rayner and Law, 1999; Ahlström et al., 2015), the inter-annual vari-
ability (IAV) of the global carbon sink (Ahlström et al., 2015), and the 
sustainability of the global carbon boundaries (Stephens et al., 2007; 
Green et al., 2017). Thus, understanding the roles of external climate 
forcings and internal vegetation processes in influencing the IAV of 
tropical vegetation productivity becomes increasingly important. 

Many previous studies have shown that precipitation controls the 

photosynthetic activities of tropical vegetation (Murphy and Lugo, 
1986; Wright and Van Schaik, 1994; Malhi.Y., 2012), suggesting the 
important role of wet-season length in regulating GPP variability. 
However, some satellite-based observations have detected a greening 
trend of dry-season vegetation in tropical forests (Saleska et al., 2003; 
Huete et al., 2006; Brando et al., 2010; Guan et al., 2015; Saleska et al., 
2016). Recently, sunlight has been recognized as a key driver of the 
increased photosynthesis during the dry season in tropical forests 
(Myneni et al., 2007; Huete et al., 2006; Samanta et al., 2012). With the 
ongoing controversy on the roles of precipitation and solar radiation in 
controlling seasonal productivity in tropical evergreen forests (Baker, 
2008; Kim et al., 2012; Restrepo-Coupe et al., 2013; Morton et al., 2014; 
Wu et al., 2016), eddy-covariance measurements and near-surface 
remote sensing observations have further revealed the regulation of 
leaf demography on the seasonal GPP variability in Amazon (Brando 
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et al., 2010; Wu et al., 2016). All these findings have together under-
scored the importance of climatic and biophysiological factors (Wu 
et al., 2017) in mediating the variations of vegetation productivity in the 
tropical evergreen forests. However, which key internal process can 
explain the variations of the GPP crossing seasonal to decadal scales on 
the global tropical forests is far from clear (Guan et al., 2015; Ahlstrom 
et al., 2017; Wu et al., 2017; Huang et al., 2018). 

In temperate and boreal ecosystems, growing season length is one of 
effective variables to indicate the variations of annual GPP (Linderholm, 
2006; Wu et al., 2012; Barichivich et al., 2013; Chai et al., 2017; Li et al., 
2018). The idealized seasonal GPP time-series, as bell-shaped curves (Gu 
et al., 2009; Xia et al., 2015), make it possible to decompose the tem-
poral variability of GPP into the carbon uptake period (CUP) and the 
maximum photosynthesis capacity (GPPmax, Xia et al., 2015; Zhou et al., 
2016). However, for the tropical evergreen ecosystems, photosynthetic 
activity is incompletely limited even under the worst natural environ-
ments (Restrepo-Coupe et al., 2013; Bi et al., 2015; Lopes et al., 2016; 
Wu et al., 2016), marking with a period of low-production rather than 
dormancy (Fig. 1). As well, weak correlations between GPPmax and 
annual total GPP in tropical regions were revealed by a global gridded 
analysis (Huang et al., 2018). Thus, the previous decomposition of 
annual GPP into CUP and GPPmax is unreasonable and invalid in 
explaining the GPP IAV in tropical evergreen ecosystems. A novel insight 
integrating eco-physiological and environmental drivers, as well as 
bridging the understanding of GPP variability on sub-annual and 
interannual time-scale in tropical evergreen ecosystems is urgently 
needed. 

On the annual scale, yearly vegetation production is represented 

mathematically by the integral between the seasonal GPP curve and zero 
(Jönsson and Eklundh, 2004; Xia et al., 2015). The seasonal vegetation 
recurrence take place from the minimum productivity (GPPmin) level 
(Fig. 1), which represents the productivity-level could be achieved 
during the year-round with the seasonal changed physiological and 
environmental factors (Körner and Basler, 2010; Körner, 2015). Unlike 
ecosystems with a dormancy period or non-growing season (e.g. 
temperate deciduous forests), GPPmin in tropical forests, usually varies 
above zero (Jönsson and Eklundh, 2004; Gu et al., 2009; Richardson 
et al., 2013), causing a daily repeated GPP component for year-round 
(grey part in Fig. 1 c and d) and distinguishing the higher photosyn-
thesis part as vegetation recurrence (green part in Fig. 1 c and d). Thus, 
the annual accumulated GPP could be decomposed into two compo-
nents: one is the accumulation of the GPPmin during the whole year (here 
after, basic GPP), the other is the integral between the daily GPP and the 
GPPmin level, representing the accumulated seasonal vegetation pro-
ductivity (here after, recurrent GPP). 

As ratios between the basic and recurrent GPP on some extent 
represent the photosynthetic seasonality (Jönsson and Eklundh, 2004; 
Cleland et al., 2007) and the physiological effect of the integrated en-
vironments on vegetation productivity (Huete et al., 2006; Körner and 
Basler, 2010; Körner, 2015; Goll et al., 2018). The new decomposition of 
annual GPP into the basic and recurrent GPP show high potential to link 
the understanding of seasonal GPP variations with the inter-annual GPP 
variability. While, to the best of our knowledge, no analysis has been 
done to explore the role of GPPmin and the associated basic/recurrent 
GPP in determining the vegetation seasonality and affecting ecosystem 
functions such as annual productivity across the tropical regions. 

Fig. 1. Concept model. (a) Seasonal GPP curves for 
temporal deciduous forest (40– 45◦N, black line), 
tropical evergreen forest in the northern hemisphere 
(5– 10◦N, red line) and tropical evergreen forests in 
the southern hemisphere (5– 10◦S, blue line). (b) 
Schematic for the joint control of CUP and GPPmax to 
annual GPP in temperate ecosystems. (c, d) Sche-
matic for the decomposition of the annual GPP to the 
basic GPP and recurrent GPP for tropical evergreen 
forests in northern and southern hemispheres. For 
panels (b ~ d), the light green parts represent the 
recurrent GPP and the grey part show the basic GPP. 
(For interpretation of the references to colour in this 
figure legend, the reader is referred to the web 
version of this article.)   
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Here, mainly based on a 34-year-length (1980–2013) global GPP 
database (FLUXCOM), which merges tower measured eddy-covariance 
and satellite observations by three machine learning algorithms, we 
study the role of the basic GPP and recurrent GPP in regulating the GPP 
IAV in tropical forests. A continued sun-induced fluorescence (SIF) 
product from Orbiting Carbon Observatory-2 (OCO-2) and in-situ GPP 
based on partitioning of net ecosystems exchange (NEE) measurements 
from three eddy-flux towers in tropical forests were associated analyzed 
in this study. We aim to evaluate (1) proportions of the basic GPP and 
recurrent GPP separately; (2) contributions of the two components to the 
IAV in GPP; (3) how the climatic drivers regulate the GPP IAV by the 
changes of basic and recurrent GPP in tropic forests. 

2. Materials and methods 

2.1. Datasets 

2.1.1. FLUXCOM GPP 
FLUXCOM GPP is a model trained global GPP product which is up- 

scaled from FLUXNET-based in situ eddy-covariance data from 224 
flux towers (Valentini et al., 2014; Tramontana et al., 2016). First, the 
filtered and gap-filled daily NEE measurements were used to derive GPP 
through partitioning methods of Reichstein et al. (2005) and Lasslop 
et al. (2010). Then, these two sets of site-level GPP were independently 
used to train three machine learning models: Artificial Neural Networks 
(ANNs), Random Forest (RF), Model Trees Ensemble (MTE). For each 
model, 11 exploratory variables (New et al., 2000; Jung & Zscheischler 
2013; Tramontana et al., 2016) with 0.5◦ spatial resolution and daily 
time step were selected as the driver data to predict the global GPP from 
1980 to 2013. Combining these three machine learning algorithms with 
two flux partitioning methods, ensemble six sets of GPP estimates were 
provided (Jung et al., 2017). To exclude the uncertainties and biases 
across predictor models and partitioning methods, we used the daily 
GPP by the mean of all FLUXCOM ensemble members in this study. 

2.1.2. FLUXNET GPP 
Three flux sites from the FLUXNET2015 Dataset were selected to be 

used in this study, with below criteria: (1) located at the studied area 
(18◦S to 12◦N); (2) the continued recorded length is five years or longer; 
(3) the IGBP plant function type for that site is evergreen forest (both 
evergreen broadleaf forest and the evergreen needle-leaf forests are 
included). These three sites are Guyaflux (GF-Guy), Santarem-Km83- 
Logged Forest (BR-Sa3) and Pasoh Forest Reserve (MY-PSO), detailed 
information about these sites could be found in Table S1. In this study, 
night-time partitioning (Reichstein et al., 2005) GPP with daily step 
were used. The original time-series were first smoothed by spline 
method, then used to derive the maximum productivity (GPPmax) and 
the minimum productivity (GPPmin) for each site-year. 

2.1.3. SIF product 
Remotely sensed SIF data is a promising new global proxy for eval-

uating the canopy photosynthetic activity (Maxwell and Johnson, 2000; 
Baker, 2008). The continuous all-sky SIF dataset is gap-filled through a 
neural network (NN) model with the input variables of SIF retrievals at 
757 nm from the Orbiting Carbon Observatory-2 (OCO-2) and daily 
Nadir Bidirectional reflectance distribution Adjust Reflectance from 
MODIS (MCD43C4 V006). The trained NN was validated to a coefficient 
of determination (R2) around 0.8 (Zhang et al., 2018) at the spatial- 
temporal resolution of 0.05-degree and 4-days. Comparisons with the 
reconstructed all-sky SIF from GOME-2 and the eddy covariance-based 
GPP also support the reliability of this dataset (Zhang et al., 2018). In 
this study, to match with the FLUXCOM GPP, the all-sky SIF dataset with 
a 0.5-degree spatial resolution from the year 2001 to 2013 was used. To 
get the maximum and minimum values of the yearly SIF timeseries, the 
original data with 4-days-step was resampled to daily step and smoothed 
by spline method. Similar with that of the FLUXCOM and FLUXNET GPP, 

the maximum SIF (SIFmax) and minimum SIF (SIFmin) used in following 
analysis were derived from the smoothed timeseries. 

2.1.4. Climate data 
The Multi-satellite Precipitation Analysis from Tropical Measuring 

Mission Version 7 (TRMM 3B43 v7) was used in the hydrometeorolog-
ical analyses. TRMM 3B43 v7 is a monthly dataset with a spatial reso-
lution of 0.25◦ × 0.25◦. It was calibrated by multiple satellite sensor 
measurements and gauge analyzed data, where feasible (Huffman et al., 
2007). To match the resolution of GPP dataset, this rainfall data was 
resampled to 0.5◦ × 0.5◦. 

The CRU TS4.00 temperature (Harris and Jones, 2017) and gridded 
radiation dataset from the Terrestrial Hydrology Research Group at 
Princeton University (Sheffield et al., 2006) are used in the paper to 
conduct the analyses of GPP response. Both datasets are collected with a 
spatial resolution of 0.5◦ × 0.5◦ at monthly steps. 

2.1.5. Plant function type distinctions 
Plant functional types were distinguished using the annual MODIS 

land cover product (Friedl et al., 2010). This product, Land Cover Type 
Yearly L3 Global 500 m SIN Grid, with a short name of MCD12Q1, 
combines five global land cover classification systems. For this study, the 
evergreen tropical forest ecosystems are as a combination of evergreen 
broadleaf forest (EBF) and evergreen needle-leaf forest (ENF) between 
18◦S to 12◦N. 

2.2. Concept model 

2.2.1. Seasonal curves 
The daily GPP used for plotting the seasonal curves are first aggre-

gated from the means of all eligible grid cells then averaged across the 
ensemble years. For example, the daily GPP used in plotting the seasonal 
curve for the temporal deciduous forests are averaged from all the grid 
cells marked as the deciduous needle-leaf forest (DNF) and the decidu-
ous broadleaf forest (DBF) between 40◦N ~ 45◦N from 1980 to 2013 on 
each day. The same method used on the seasonal curves for tropical 
evergreen forests on both hemispheres. Seasonal curves in Fig. 2 for each 
tropical region plotted at each day are first averaged from all the grid 
cells marked as ENF and EBF in that region, then show the means and 
standard derivations (SD) across 1980–2013. 

2.2.2. Definition for the basic GPP and recurrent GPP 
As shown by Fig. 1, the basic GPP (grey part in Fig. 1 c, d) is defined 

as the integrals between the GPPmin level and zero-level for the whole 
year: 

basic GPP =
∑DOYmax

1
GPPmin (1) 

And the recurrent GPP (green part in Fig. 1 c, d) is defined as the 
integrals between the daily GPP (GPPdaily) and the GPPmin level over the 
whole year, which could be mathematically represented as: 

recurrent GPP =
∑DOYmax

1

(
GPPdaily − GPPmin

)
(2) 

The DOYmax is the maximum Julian date of the year, which means 
365 for normal years and 366 for leap years. 

The combination of the basic GPP and the recurrent GPP is the 
annual accumulated GPP, which could also be understood as the integral 
between the daily GPP and the zero level. 

2.2.3. Determination of GPPmax and GPPmin 
The smoothing-spline approach (Hutchinson et al., 1985; Musial 

et al., 2011) was used to filter the outliers and obtain the daily smoothed 
GPP/SIF time series. This approach is applicable to a wide range of 
datasets and has been used in processing time series of various 
geophysical time series, such as the fraction of absorbed photosynthetic 
active radiation (FAPAR, Forkel et al., 2015) and vegetation indexes 
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(VIs, Keenan et al., 2014). The smoothed GPP time-series were latterly 
used to derive the GPPmax, GPPmin and to calculate the volume of the 
basic GPP and the recurrent GPP as the as Eq. (1) and (2) for each grid/ 
site-year. 

2.3. Analyses 

2.3.1. Proportions of the basic and recurrent GPP 
Proportions of the basic or recurrent GPP were first calculated on the 

grid-year scale as the ratio of the basic or recurrent GPP on the annual 
accumulated GPP. Then averages of the proportions from all grids dur-
ing the study periods in that region were applied as the proportions of 
the basic/recurrent GPP of that region. Similar methods were used in the 
analysis for SIF. For the FLUXNET GPP, multi-year meaning proportions 
of the basic/recurrent GPP are the final proportions (in Table S1) for that 
site. 

2.3.2. Contributions of the basic and recurrent GPP to GPP IAV 
The approach of quantifying the relative contributions in Ahlström 

et al. (2015) was used here to scores the relative contributions of the 
basic and recurrent GPP to annual GPP IAV (Here after, f contribution): 

fi =

∑

t

xit |Xt |
Xt

∑

t

⃒
⃒
⃒
⃒Xt

⃒
⃒
⃒
⃒

(3) 

Where xit is the anomalies (departure from a long-term trend) for 
component i at time t (in years), and Xt is the annual GPP anomalies, 
calculated as Xt =

∑

i
xit . With this method, the f contribution is the 

averaging relative anomalies of part i (xit/Xt), weighted with the abso-
lute annual GPP anomaly ∣Xt∣. 

To avoid the impact of biased volumes between the basic and 
recurrent GPP on the evaluation, the GPP time-series was first 

Fig. 2. Multi-year meaning proportions of the basic GPP and the recurrent GPP. (a) Plant function types in tropics. (b-d) Seasonal GPP curves of the evergreen forests 
in Amazon, Africa, and Southeast Asia. Blackline shows the multi-year average of each time-series, and shaded areas represent the stand deviation of daily GPP 
among these 34 years. The insert columns in each panel show the multi-year averaging fractions of the basic GPP (grey) and the recurrent GPP (light green) for each 
region. (e-c) The probability distribution functions (PDFs) of the proportions of the basic (black lines) and recurrent GPP (green lines) across all the grid-cells of 
evergreen forest in Amazon, Africa, and Southeast Asia. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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normalized by subtracting the climatic GPPmin, which is calculated as 
the minimum GPPmin during the standard climatological years 
(1981–2010). In this way, the standardized basic GPP (dark grey part in 
Fig. S1) is much less than the original basic GPP and the recurrent GPP. 
Then the f contributions were calculated for both basic and recurrent 
GPP on each grid cell. For each calculation, the higher and positive score 
is inferred to a larger contribution to the GPP IAV. Note that, for the 
evaluations on SIF and FLUXNET GPP, the standard climatological years 
being uncovered by the data duration. Therefore, the minimum SIFmin/ 
GPPmin during the data duration was set as the climatic SIFmin/GPPmin 
and used to standardize the basic SIF/GPP. 

2.3.3. Absolute variation and relative variation 
The absolute variation was represented by the standard derivations 

(SD) and the relative variations are shown by the coefficient of varia-
tions (CV) here. The SD calculated as: 

SD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

1
(x − μ)2

√
√
√
√ (4) 

Meanwhile, the CV was defined as the ratio between SD and mean: 

cv =
σ
μ (5)  

2.3.4. Response of GPP to climatic factors 
Slope of the temporal linear relationship between monthly GPP and 

monthly mean precipitation (radiation/temperature) is usually regarded 
as a proxy of the rainfall (radiation/temperature) sensitivity (Huxman 
et al., 2004; Hu et al., 2018). Here we used the downscaled scatter plot to 
show the response of the monthly GPP to climate gradients. Considering 
the lag-effect of climatic factors on vegetation, in these analyses, we first 
calculated the time lag for each variable on each grid cell following the 
method in Wu et al. (2015). Then the monthly rainfall (radiation/tem-
perature) was calculated as averages of the rainfall (radiation/temper-
ature) during the lag-effect month to the current month. For example, if 
the lag-time for the effect of rainfall on the GPP was 2 months, the 
monthly rainfall for that grid-cell used in the analysis would be the 
average value of the rainfall in that month, the last month and the last 
two months. Fig. S2 shows the lag-time. 

3. Results 

3.1. Proportions of the basic and recurrent GPP 

The basic GPP overwhelmed the recurrent GPP in all the three re-
gions, which was both detected by the FLUXCOM GPP and OCO-2 SIF 
(Figs. 2, 3 & S2). The basic GPP accounted for 82% of the total annual 
GPP in the Amazon, 71% in Africa and 87% in South East Asia. It was 
highly homogeneous in each region with the variations of 12.6% for the 
Amazon (across the total 2141 grids), 15.1% for Africa (across the total 
753 grids) and 6.5% for South East Asia (across the totally 753 grids). 
Probability density functions showed that 90% quantiles for the pro-
portion of the basic GPP concentrated around 79% ± 12%, 71% ± 14%, 
and 87% ± 6% separately for these three regions (Fig. 2). Greater pro-
portions of the recurrent GPP than the basic GPP was found only in 1.6% 
of the studied grids in Amazon, 4.3% in Africa and 0.1% in South East 
Asia. 

Similar results were shown by the SIF data, while the basic SIF 
overwhelming recurrent SIF is not as significant as that detected by the 
FLUXCOM GPP. Regionally averaged proportions for the basic SIF were 
separately detected as 76%, 56% and 74%, respectively being lower 
than the evaluations from FLUXCOM GPP, so as the 90% quantiles for 
the proportion of the basic SIF (Fig. S3). The higher proportions of the 
basic GPP could also be captured at the site-level. As shown by Table S1, 
the basic GPP in BR-Sa3 were detected as the highest proportions 
approximately 75%, 2.8 times of that for the recurrent GPP. Following 
with the sites GF-Guy and MY-PSO, the proportions of the basic GPP 
were found as 64% and 53.3%. 

3.2. Contributions of the basic and recurrent GPP to GPP IAV 

The contribution of basic GPP is higher than that of the recurrent 
GPP to the GPP IAV. At the regional scale, higher f contribution of basic 
GPP to the GPP IAV was found for all the three tropical regions (f 
contribution =1.51) and each individual region (1.46 for Amazon, 1.47 
for Africa, 1.71 for Southeast Asia, Fig. 4). Higher contribution of basic 
GPP was found for 84.2% of all the studied grids (82.7% of the studied 
grids in Amazon, 83.4% in Africa and 89.2% in South East Asia, Fig. 4). 
On site-level, the basic GPP were detected as higher contributor than the 
recurrent GPP in all the three sites (Table S1). The site in Brazil show the 
highest contribution from recurrent GPP (0.22, Table S1). 

The f contribution of basic SIF also shows significant advantages than 
that of the recurrent SIF in all three regions (Fig. 5b, S2). The f contri-
butions of basic SIF center around 0.9 (the mode) across all the studied 
grids with a mean value of 1.23. The recurrent SIF negatively 

Fig. 3. Spatial pattern of the proportions for the basic GPP/SIF derived from the FLUXCOM GPP (a) and SIF (b).  
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contributed to the annual mean SIF IAV for 56.6% of the studied areas. 
The basic SIF controls the SIF IAV for 80.1% of the studied area in 
Amazon, 62.5% in Africa and 84.1% in Southeast Asia (77.3% of the 
whole studied areas, Fig. S4). Comparing with the results from GPP, the 
greatest discrepancies are shown in central Amazon (Fig. 4, S3), where 
the monthly mean precipitation is higher than 100 mm (Restrepo-Coupe 
et al., 2017). Considering the strong cloud activities in this area (Graham 
et al., 2003; Marthews et al., 2012; Zhu et al., 2018), the satellite derived 
SIF products are less recommended than the eddy-covariance upscaled 
GPP for the central Amazon. 

3.3. Reasons for the dominance of basic GPP in GPP IAV 

Considering the homogeneity of the mean annual temperature and 
solar radiation in the tropical zone (Restrepo-Coupe et al., 2013), we 
tested the rainfall impact on the magnitude and the variations of the 
basic and recurrent GPP spatially. The aggregated proportions and f 
contributions of these two components with rainfall gradients (Fig. 5) 
showed that the proportions for basic GPP increased with the higher 
mean annual precipitation (MAP) gradients both for GPP and SIF. 
Meanwhile, the widespread higher contribution of basic GPP to recur-
rent GPP is more obvious when it is aggregated by the precipitation bins 
(Fig. 5b, d). While no trends for the f contributions of basic GPP to GPP 
IAV were detected with the precipitation gradients. Negative contribu-
tion from recurrent component was found in areas with higher MAP, 
which show a MAP threshold of approximately 1500 mm yr− 1 for GPP 
(Fig. 5b) and a MAP threshold of around 2000 mm yr− 1 for SIF (Fig. 5d). 

The yearly basic GPP is determined by the GPPmin but the recurrent 
GPP is jointly determined by the daily GPP and the GPPmin, the 
increasing proportion of basic GPP with the MAP suggested asymmetric 
changing rates of the maximum daily production (represented by 

GPPmax here) than the GPPmin to the precipitation. As shown by Fig. 6, 
higher increments of the GPPmin (SIFmin) than the GPPmax (SIFmax) with 
the spatial precipitation gradients were found (Fig. 7a, c). Adopting this 
concept from space to time, higher SD and CV for GPPmin (SIFmin) were 
generally revealed (Fig. S5, S6). As well, the variations of GPPmin (SIF-
min) were detected commonly lower than that of the GPPmax (SIFmax) for 
all the MAP gradients (Fig. 6b, d), which caused the changes of the 
recurrent GPP (SIF) be opposite with that of the annual GPP and nega-
tively contributed to the GPP (SIF) IAV in large areas. 

The distinguishes between variations of the GPPmax (SIFmax) and 
GPPmin (SIFmin) could not be explained by the annual precipitation 
gradients (Fig. 6b, d; Fig. S7, S8). To check whether the precipitation in 
sub-annual level impact on the variations of GPPmax (SIFmax) and GPPmin 
(SIFmin), we further examined the response of GPP (SIF) to changes in 
environmental factors on the monthly scale. The downscaled scatter plot 
from all the month-girds (Fig. 7) illustrated the gradually declined 
response ratio of the monthly GPP (SIF) to the monthly precipitation. 
Consistent patterns for the response ratio of GPPmin (SIFmin) to monthly 
precipitation were illustrated. Neutral response of GPP (SIF), GPPmax 
(SIFmax) and GPPmin (SIFmin) to monthly temperature was detected 
(Fig. S9). The changes of monthly GPP (SIF) and GPPmin (SIFmin) 
increased gently at first but decreased sharply later with the increasing 
radiation (Fig. S9). The contrary response patterns of monthly GPP to 
radiation and precipitation changes were associated with the opposite 
seasonal patterns of the rainfall and radiation (Fig. S10). 

Fig. 4. Contributions of the basic GPP and recurrent GPP to GPP IAV. (a-b) Spatial maps for the contributions of the basic and recurrent GPP to GPP IAV. (c-d) The 
distribution frequency of the f contributions for each region. 
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4. Discussion 

4.1. The conceptual model of decomposing GPP into basic and recurrent 
GPP 

Time-integrated areas of vegetation indexes (e.g., NDVI and EVI) 
have been used in previous studies (Rasmussen, 1992; Yang et al., 1998; 
Shi et al., 2017; Jin and Wang, 2016; Lai et al., 2018) to represent the 
yearly accumulated GPP. However, these applications are mostly 
employed in ecosystems with a distinct dormant season (Shi et al., 2017; 
Jin and Wang, 2016), in which all the photosynthetic product are totally 
recurrent. This implies severe an underestimated role of basic GPP in 
regulating the annual accumulated GPP, increasing the difficulties in 
capturing the seasonality of tropical evergreen vegetations (Xu et al., 
2015; Restrepo-Coupe et al., 2017; Tian et al., 2018). The approach first 
puts the basic GPP in the front and reveals the large volumes and high 
variations of the basic GPP. It provides a new insight to research on the 
seasonal oscillations and the associated interannual variability of 
vegetation growth/productivity in tropical evergreen ecosystems. 

One of the most disadvantages of this conceptual model is that biased 
weights are given to GPPmax and GPPmin in evaluating the contributions 
of the basic and recurrent GPP to GPP IAV. However, higher variations 
of GPPmin are the main causes of the higher variations of the basic GPP, 
because the absolute variations of GPPmin are much higher than those of 
GPPmax (Fig. S5). Differences between the relative variations of GPPmin 
and GPPmax are more obvious (Fig. S6), especially for the results 
aggregated by MAP bins (Fig. 6, S7). 

4.2. Dominant role of GPPmin in controlling the GPP IAV 

This study revealed that the GPP IAV in tropical evergreen forest is 
dominantly controlled by the basic GPP and the associated highly varied 
GPPmin. This result is inconsistent with some recent findings in extra-
tropical ecosystems that the peak growth of vegetation contributes 
prominently both of the trends and IAV of the CO2 uptake (Reichstein 
et al., 2014; Zhou et al., 2016; Zscheischler et al., 2016; Fu et al., 2017; 
Gonsamo et al., 2018). While, the tight relations for annual GPP and 
GPPmin other than that of the GPPmax in tropical evergreen ecosystems 
(Fig. S11) are definitely revealed. 

Discrepancy between the variations of GPPmin and GPPmax is one-side 
caused by the non-uniform sensitivity of GPPmin and GPPmax to climatic 
factors (i.e., precipitation and solar radiations; Fig. 7, S8). In the other 
side, the high variations of precipitation during the low-GPP period also 
explain parts of the reasons (Fig. S12). As the variability of ecosystem 
productivity representing the inversed stability to disturbances (Tilman 
et al., 2006; Huang and Xia, 2019), the high variability of GPPmin and 
the high sensitivity of GPPmin to precipitation suggesting high risks of 
the status shift (Hu et al., 2018) when meet with intense or time-lasting 
drought events. Previous studies suggested to focus on the changing of 
dry season length (Fu et al., 2013; Guan et al., 2018; Sena et al., 2018) 
and the frequency of drought events during dry-seasons (Koren et al., 
2018) to improve the sustainability and stabilities of the tropical eco-
systems. However, the connecting period between wet and dry seasons, 
during which the GPPmin shows (Huete et al., 2006; Bi et al., 2015; Wu 
et al., 2016), are suggested more valuable to be focused by this study. 

The low-varied GPPmax (Fig. 7) is hard to be attributed to the satu-
rated photosynthesis capacity but to the limitation of the integrated 
environments for the tropical evergreen forests. Because the GPPmax in 

Fig. 5. Changes in the proportions (a, c) and contributions (b, d) of basic and the recurrent GPP (SIF) with MAP gradients. The upper panels show the proportions for 
the basic (grey columns) and the recurrent GPP/SIF (green columns) across all the studied grid-cells (a for FLUXCOM GPP; c for the SIF). The lower panels show the 
contributions of the basic (blue columns) and the recurrent GPP/SIF (red columns) across all the studied grid-cells (b for the FLUXCOM GPP; d for the SIF). Each 
column bin represents the annual rainfall of 100 mm year− 1 here. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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tropical forests is even lower than that of the temporal forests, which has 
been detected by other GPP products (e.g. VPM GPP, Zhang et al., 2018) 
and some in-situ measurements (Hirata et al., 2008). Desynchrony be-
tween peak radiation and water supply along with the deficit of nutrient 
supply (Corlett, 2016; Fleischer et al., 2019; Du et al., 2020) could limit 
further enhancement of the peak photosynthesis. Nutrient supplies from 
fertilization and nitrogen deposition enhanced the peak photosynthesis 
(Gray et al., 2014; Guanter et al., 2014; Huang et al., 2018) in the 
tropical human-managed ecosystems also providing the evidence for 
this (Sacks et al., 2009; Zeng et al., 2014; Zhang et al., 2015). 

4.3. The limitations and implications 

The analyses are mainly based on a machine learning translated 
gridded GPP dataset and associated by a satellite derived SIF product. 
Although machine-learning trained flux estimates give high reliability to 
the FLUXCOM products (Jung et al., 2017; Zhang et al., 2018), spatial 
noises of the GPP dataset are still high due to the strong heterogenization 
in tropical areas (Zhang et al., 2018; Stocker et al., 2019). Lacking 
available long-term in-situ measurements in Africa and South East Asia 
(Jung et al., 2017) and the irremovable cloudiness effect (Marthews 
et al., 2012) over the tropics add uncertainties on the accuracies of these 
datasets in tropics, as well as on findings in our study. Thus, more 
fundamental and long-term monitoring on ecological process are called 
for being established in Africa and South East Asia like that in Amazon 
forests (Wu et al., 2016). 

A significant number of studies have illustrated the water and radi-
ation co-limitation on vegetation growth in tropical forests (Malhi.Y., 
2012; Saleska et al., 2016). Our findings, especially the asymmetric 

climatic responses between GPPmax and GPPmin at low MAP areas 
(Fig. 6), suggest the co-regulation of water and radiation on seasonal 
low-GPP (Fig. 7, S9). However, most state-of-the-art terrestrial 
biosphere models poorly represent the light regulations (e.g., light- 
harvesting adaptations and light driven leaf demography) on GPP 
(Malhado et al., 2009; Wu et al., 2016; Restrepo-Coupe et al., 2017). 
Such a limitation can cause mismatched seasonal cycles of GPP between 
the model outputs and observations at both site (Restrepo-Coupe et al., 
2017) and regional levels (Fig. S13). To reliably predict the ecosystem 
response to future climate change, it is necessary to include the 
nonlinear eco-physiological effect of asynchronized climatic changes (i. 
e., temperature, precipitation and radiation). 

Our study pays attention solely to the tropical evergreen forests, and 
the conceptual model of decomposing GPP into basic GPP and recurrent 
GPP is novel. In non-tropical regions, it has been widely reported that 
GPPmax jointly with CUP determines the annual GPP (Xia et al., 2015; 
Zhou et al., 2016; Fu et al., 2017). The revealed dominance of GPPmin for 
tropical GPP IAV poses a new question that how the dominant variable 
of GPP IAV shift from GPPmax to GPPmin globally with the decreasing 
latitudes or the reductive seasonality. 

In summary, this study demonstrated a novel method to visualize the 
recurrence of vegetation productivity and explain the GPP IAV in trop-
ical evergreen ecosystems. Through decomposing the GPP into the basic 
and recurrent components, we revealed the great contributions of 
GPPmin to both of the IAV of GPP in the global tropical evergreen forests. 
The asymmetric responses of GPPmin and GPPmax to precipitation are the 
main causes for the low variations in recurrent GPP and its contribution 
to the IAV of GPP. The highly varied GPPmin suggests a promising signal 
for monitoring and diagnosing the temporal dynamics of annual 

Fig. 6. Changes of the GPPmax/SIFmax and GPPmin/SIFmin with the MAP gradients. (a, c) Changes of the GPPmax/SIFmax (red) and GPPmin/SIFmin (blue) with the MAP 
gradients (a). The solid lines represent the mean values for each bin and shaded areas from light to dark separately show the percentage of 5% ~ 95%, 10% ~ 90% 
and 25% ~ 75% in each bin. (b, d) Relations between CV of the GPPmax/SIFmax (red) and GPPmin/SIFmin (blue) with the MAP gradients. CV is calculated as the 
variations of the GPP variables among 1980–2013 and of SIF variables among 2001–2013. The solid lines represent the mean values for each bin and shaded areas 
show the one SD variation for each bin. The width for all MAP bins here is 100 mm year− 1. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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productivity in tropical evergreen ecosystems. 

Data availability 

All data used for this study are publicly available online. The 
FLUXCOM GPP provided by Max Planck Institute for Biogeochemistry 
could be download from https://www.bgc-jena.mpg.de/geodb/projects 
/Home.php. Site-measured flux GPP is available from https://fluxnet.fl 
uxdata.org/. The continuous gridded SIF data with a 0.5-degree spatial 
resolution could be obtained from https://figshare.com/articles/CSI 
F/6387494. The TRMM could get access from the NASA website ftp 
://disc2.nascom.nasa.gov/ftp/data/s4pa/TRMM_L3/TRMM_3B43. The 
original MODIS landcover data (MCD12Q1) are accessible from https 
://modis.gsfc.nasa.gov/data/dataprod/mod12.php. The model outputs 
of CMIP6 are obtained from https://esgf-node.llnl.gov/search/cmip6/. 
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