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Abstract. Population density is the most basic ecological parameter for understanding
population dynamics and biological conservation. Distance-based methods (or plotless meth-
ods) are considered as a more efficient but less robust approach than quadrat-based counting
methods in estimating plant population density. The low robustness of distance-based methods
mainly arises from the oversimplistic assumption of completely spatially random (CSR) distri-
bution of a population in the conventional distance-based methods for estimating density of
non-CSR populations in natural communities. In this study we derived two methods to
improve on density estimation for plant populations of non-CSR distribution. The first
method modified an existing composite estimator to correct for the long-recognized bias asso-
ciated with that estimator. The second method was derived from the negative binomial distri-
bution (NBD) that directly deals with aggregation in the distribution of a species. The
performance of these estimators was tested and compared against various distance-based esti-
mators by both simulation and empirical data of three large-scale stem-mapped forests. Results
showed that the NBD point-to-tree distance estimator has the best and most consistent perfor-
mance across populations with vastly different spatial distributions. This estimator offers a
simple, efficient and robust method for estimating density for empirical populations of plant
species.

Key words: distance-based methods; nearest-neighbor distance; negative binomial distribution; plotless
method; population density estimator; spatial distribution of species.

INTRODUCTION

Population density, defined as the average number of
individuals per unit area, is the most basic ecological
parameter for understanding the dynamics of popula-
tions, biological resource management, monitoring, and
conservation. Although enormous effort has been paid
to develop and test methods for estimating population
size (Eberhardt 1967, Seber 1982, Greig-Smith 1983,
Buckland et al. 1993, Krebs 1998, Mitchell 2007), prac-
tical yet robust methods applicable to real populations
remain in demand. The predicament is not only found
in estimating the size of populations of high mobility,
such as avian species; it is equally challenging to esti-
mate the size of sessile populations such as plant species
(Bouldin 2008). For plants, there are two major estima-
tion methods. One is based on quadrat counts (Gleason
1920, Mitchell 2007) and the other is based on tree-to-
tree (or called event-to-event) or point-to-tree distances

(point means an empty location; see Cogbill et al. 2018
for a recent review). The distance-based methods, also
called plotless methods, are considered to be more effi-
cient and less labor intensive than quadrat-based meth-
ods because they do not require extra effort of
establishing quadrats but directly measure distances
from randomly selected focal trees or points to their
neighboring trees (Cottam and Curtis 1956). Further-
more, the distance-based methods are less affected by
terrain variation and easier to implement in the field
(Mitchell 2007).
A common assumption for the distance-based meth-

ods is that distributions of populations must be com-
pletely spatially random (CSR; Engeman et al. 1994).
However, individuals of a plant species are often aggre-
gated distributed (Greig-Smith 1983, He et al. 1997,
Condit 1998). For such species the estimation of popula-
tion density by many existing methods is biased, some-
times seriously (Diggle 1975, Buckland et al. 1993). For
example, the widely used estimator of Cottam et al.
(1953) based on tree-to-tree distances always overesti-
mates the density of aggregated populations, whereas
those based on point-to-tree distances underestimate the
density. Attempts have been made to address biases for
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distance-based methods (Diggle 1975, Lewis 1975, Cox
and Lewis 1976, Clayton and Cox 1986, Magnussen
et al. 2007, Kronenfeld 2009, Magnussen et al. 2012),
but the unrealistic assumption of CSR distribution per-
sists and is required at neighborhood scales even for
those estimators aiming to deal with non-CSR popula-
tions (Morisita 1957). To avoid this assumption, there
have been attempts to develop nonparametric estimators
using order statistics that ignore the spatial distribution
of populations (Patil et al. 1979, Patil et al. 1982, Enge-
man et al. 1994), but that simultaneously denies the pos-
sibility to improve the robustness of estimators using
spatial information (Picard and Bar-Hen 2007). To our
knowledge no analytical estimators are available to con-
sider the degree of spatial aggregation in estimating den-
sity of non-CSR populations explicitly. This study aims
to fill in this methodological gap.
Over time, there have been at least 20 distance-based

methods being proposed in the literature to improve the
performance of density estimation or to reduce sampling
effort (Cottam et al. 1953, Cottam and Curtis 1956, Pol-
lard 1971, Besag and Gleaves 1973, Diggle 1975, Byth
and Ripley 1980, Byth 1982, Buckland et al. 1993).
These conventional methods are developed from various
sampling schemes, notably from tree-to-tree or from
point-to-tree distances or from different orders of near-
est neighbors (e.g., distances to the first, second, and ith
neighbors). Although many simulation studies have been
conducted to compare the performance of these various
methods, little consensus has been reached (Engeman
et al. 1994, Liu 2001, Bakus et al. 2007, Magnussen et al.
2007, White et al. 2008, Khan et al. 2016). Most of these
studies have not fully realized that many of those com-
pared methods are actually related and can be com-
monly derived from a general form first proposed by
Morisita (1957) until the recent work of Cogbill et al.
(2018). Those ad hoc comparisons do not offer much
statistical guideline for helping choose proper estimators
in practice.
In this study, we proposed new density estimators to

deal with the non-CSR nature of population distribu-
tion. The first is a modified estimator to correct for the
bias associated with the original composite estimator
(Diggle 1975). We then relaxed the CSR assumption to
derive the second estimator that considers a wide range
of spatial distributions. This estimator is very general
and includes CSR distribution as a special case from
which many of the existing distance-based methods are
derived. We tested the performance of the estimator and
other existing estimators by simulation and empirical
tree populations from three forests (one tropical rain for-
est and two subtropical forests) in which the real size of
each tree population is known. The results showed that
our non-CSR distribution estimator substantially
improved the density estimation over the existing
methods. Our estimator offers a simple and useful
distance-based method of high accuracy for practical
applications.

THE THEORETICAL BACKGROUND OF EXISTING GENERAL

DENSITY ESTIMATORS

To estimate unknown population density λ, n focal
trees or points are sampled independently with equal
probability. Centered on each focal tree/point, q equal
angle sectors are divided. Then a distance rlij is measured
from the ith i¼ 1,2, ...,nð Þ focal tree/point to its
lth l¼ 1,2, ...ð Þ closest neighbor in the jth j¼ 1,2, ...,qð Þ
sector. This sampling regime results in the total sampled
distances rlij : i¼ 1,2, ...,n;j¼ 1,2, ...,q

� �
and a total sam-

ple size nq. For simplicity, we sometimes write rlij by
rm :m¼ 1,2, :::,nqf g. For a special case of the general sam-
pling scheme, indices i and j are changed from1 to n and from
1 to q, respectively, whereas l is a fixed value. Figure 1 shows
two cases of the general sampling scheme where j = 1 and
l = 2 in the first case and j = 1, 2, 3, 4 and l = 1 in the second
case.
Given a population with CSR distribution, the unbi-

ased simple population density estimator is (Morisita
1957: Eq. 15):

λ̂s ¼ λ̂
nql�1
nql

¼ q nql�1ð Þ
π∑nq

m¼1r
2
m
: (1)

A nice feature of this general estimator is that it has
the same form whether the sample is tree-to-tree dis-
tances (rttot) or point-to-tree distances (rptot) for CSR
populations. Many other distance-based density estima-
tors are special cases of Eq. 1 (see details in
Appendix S1: Table S1).
In an attempt to derive estimators for non-CSR popula-

tions, Morisita (1957) assumed that population distribution
in a small area (e.g., within a sector of q equal angle-divided
sectors for a circle or a rectangle area; see Fig. 1) follows a
CSR distribution even though the population in the overall
area is aggregated. Following this assumption, he proposed
two estimators based on point-to-tree distances, rptot, for
aggregated populations (Morisita 1957: Eqs. 26 and 31):

λ̂m1 ptot ¼ l�1
πn

∑
nq

m¼1

1
r2m ptot

(2)

λ̂m2 ptot ¼ lq�1
πn

∑
n

i¼1

q
∑q

j r
2
ij ptot

: (3)

Cogbill et al. (2018) tested and compared the perfor-
mance of these two estimators against other existing
plotless methods currently available and found Eqs. 2
and 3 behave best for non-CSR populations.

NEW DENSITY ESTIMATORS FOR NON-CSR POPULATIONS

The unbiased composite population density estimator

Like any of the existing density estimators, the general
estimator (Eq. 1) and Morisita’s estimators (Eqs. 2 and
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3) may have low performance for non-CSR populations
because both were derived from the basic assumption of
CSR distribution. We now propose new density estima-
tors to deal with the non-CSR nature of population dis-
tribution. The first is a modified estimator to correct for
the bias associated with the original composite estimator
of Diggle (1975).
To reduce the bias for non-CSR populations, Diggle

(1975) proposed a composite estimator by combining
tree-to-tree distances (rttot) and point-to-tree distances
(rptot). That composite population density estimator is

defined as a geometric mean of λ̂s ttot and λ̂s ptot:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ̂s ttotλ̂s ptot

q
, where λ̂s ttot and λ̂s ptot are density estima-

tors based on tree-to-tree distances and point-to-tree dis-
tances defined by Eq. 1, respectively. This general
composite estimator is often underestimated for non-
CSR population and in fact it is also biased even for
CSR populations (see Appendix S1 for a proof).
To correct this bias, we proposed an unbiased general

composite population density estimator (see
Appendix S1):

λ̂c ¼ qΓ n1qlð ÞΓ n2qlð Þ
πΓ n1ql�1=2ð ÞΓ n2ql�1=2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n1

m¼1r
2
m ttot∑

n2
m¼1r

2
m ptot

q
(4)

where rm_ptot and rm_ttot are the rm :m¼ 1,2, :::,nqf g dis-
tances from point-to-tree and tree-to-tree, respectively. Γ
is a gamma function. n1 and n2 are the sample size of
tree-to-tree distances and point-to-tree distances, respec-
tively. Note Eq. 4 is the geometric mean of λ̂s ttot and
λ̂s ptot defined by Eq. 1 under the assumption of CSR

distribution; thus λ̂s ttot and λ̂s ptot may overestimate or

underestimate the density of highly aggregated popula-

tions (Engeman et al. 1994). These opposite biases may
cancel out in Eq. 4 and lead to a more robust density
estimator. We also generalized Diggle’s (1975) arithmetic
mean composite estimator in Appendix S1. But it is not

interesting enough to be included here, because its per-
formance is theoretically not as good as the above geo-
metric mean composite estimator λ̂c (see Appendix S1).

The general density estimators based on negative binomial
distribution

The second estimators we derive in this study directly
incorporate non-CSR in the estimators. Here, we relax
the assumption of CSR distribution by assuming counts
of individuals in each sector of q equal angle sectors fol-
low a negative binomial distribution (NBD). NBD is
one of the most widely used models to describe spatial
distributions of empirical populations ranging from
CSR to aggregated distributions (Bliss and Fisher 1953,
Boswell and Patil 1970, Krebs 1998, He and Gaston
2003). Following the NBD, Gao (2013) derives the pdfs
of rlij ttot and rlij ptot (the distances of a tree and a point
to the lth nearest neighbor in the jth equal angle sector,
respectively). If we assume the sampled distances from
focal trees/points are completely independent, the non-
CSR population density estimator for tree-to-tree dis-
tances (λ̂n ttot) and point-to-tree distances (λ̂n ptot) can be
found by the moment estimation method as
(Appendix S1):

λ̂n ttot ¼ nq2l
π∑nq

m¼1r
2
m ttot

(5)

λ̂n ptot ¼
q 2l�1ð Þ∑nq

m¼1r
�1
m ptot

π∑nq
m¼1rm ptot

� nq2l
π∑nq

m¼1r
2
m ptot

: (6)

To our knowledge, Eqs. 5 and 6 are the first popu-
lation density estimators that explicitly consider non-
CSR distribution of populations. It is important to
note that Eqs. 5 and 6 do not actually require knowl-
edge about the NBD aggregation parameter although
the estimators are derived from the NBD assumption.
To recognize this connection, we call these estimators
as NBD estimators.
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FIG. 1. Illustrating the general distance sampling scheme. On the left panel, distance is sampled from a randomly selected tree
(i.e., a tree represented by a black dot) to its second nearest neighbor. On the right panel, distances are sampled from a random
point (i.e., an empty location represented by a red dot) to its first nearest-neighbor tree in each of the four equal angle sectors. In
the first case, q = 1 and l = 2; in the second case, q = 4 and l = 1. [Color figure can be viewed at wileyonlinelibrary.com]
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TESTING PERFORMANCE OF THE ESTIMATORS

The performance of the five general estimators (Eqs.
2–6) for non-CSR populations was evaluated by both
simulated and empirical populations. For simulation, all
of the hypothetical populations were generated by a
homogeneous Thomas point process (Thomas 1949) in
which the density of cluster centers is 0.01 and the mean
number of points per cluster is 10. Therefore, the
expected number of points is 0.1 per unit area. The
degree of aggregation for each simulated population is
determined by the aggregation parameter σ in the Tho-
mas process, which is the standard deviation of random
displacement of a point from its cluster center. It ranges
from 1 to 5.5 in our simulation. For example, when
σ = 1, the spatial distribution of simulated population is
highly aggregated (Appendix S2: Fig. S1). As the value
of σ increases, the distribution of the simulated popula-
tions becomes close to CSR (Appendix S2: Fig. S1).
The empirical data are tree communities in three large-

scale fully stem-mapped forest plots. They are a 50-ha
(1,000 × 500 m) tropical rain forest plot on Barro Color-
ado Island, Panama (Hubbell and Foster 1986), a 50-ha
(1,000 × 500 m) and a 20-ha (500 × 400 m) subtropical
forest plots in Heishiding Nature Reserve (Yin and He
2014) and Tiantongshan Nature Reserve (Yang et al.
2011) in China, respectively. In each plot, the true popu-
lation density and the exact spatial location of every indi-
vidual stem with diameter at breast height (DBH) ≥1 cm
are known. This detailed spatial information allows us to
examine the performance of the density estimators for
real populations rigorously. In this study, species with at
least 5 individuals in each plot were used. The spatial
aggregation of each species at neighborhood scale was
quantified by the Hopkins and Skellam dispersion index
(Hopkins and Skellam 1954). Appendix S2: Fig. S1
showed that there is a large difference in the extent of
aggregation among the real tree species distributions.
To assess the performance of the estimators, both

accuracy and precision were calculated. Accuracy is

expressed as the relative bias λ� �̂λ
� �

=λ, where λ is

the true density and �̂λ is the averaged estimate of
population density. Precision is quantified by the

coefficient of variation, sλ̂=
�̂λ, where sλ̂ is the standard

error of the estimate. To combine the information of
the accuracy and precision, the relative root-mean-
squared error (RRMSE) was used. It is defined as

RRMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1ðλ� λ̂Þ2
� �

=Nλ2
r

, where N is the num-

ber of replications of the density estimation. A good esti-
mator has a low RRMSE value.
The analytical expressions of accuracy, precision and

RRMSE for Eqs. 2–6 are not available for non-CSR pop-
ulations. Thus, for each simulated or real tree population,
a mean accuracy, precision, and RRMSE of
q¼ 1,2,3,4;l¼ 2,3,4;n¼ 480=qf g for an estimator was

calculated. Here both point-to-tree distances and tree-to-
tree distances in each case rlj : q¼ 1,2,3,4;l¼ 2,3,4

� �
were sampled. The sample size of neighborhood dis-
tances equals 480 in each case for abundant species, but
equals the total population size for species with abun-
dance less than 480. Relationships between the distance
sampling parameters (e.g., l and q) and the ln(RRMSE)
of the estimators were quantified by simple linear regres-
sion. Sensitivity of each estimator to sample size (np) was
evaluated by the coefficient of variation of �̂λ across sam-
ple size.
We also compared our best-performing estimator

(that is, Eq. 6) with several other distance-based estima-
tors that were designed to deal with non-CSR popula-
tions but could not fit into the general distance sampling
framework on which this study is based. These other
estimators include the order statistics-based estimator
proposed by Persson (1964), the KV estimator of Kleinn
and Vilčko (2006), the best adaptive composite estimator
proposed by Magnussen et al. (2012), and the Picard
estimator (Picard and Bar-Hen 2007). Their perfor-
mance was compared following the same methods
described above, but only carried out at q = 1 level
because these estimators were only derived under q = 1.
All the analyses in this study were implemented by R

codes (codes are publicly available; see Data Availabil-
ity), and the calculations were in R software.5 The new
estimators can be easily calculated by the R package sce
(also publicly available; see Data Availability).

RESULTS

Performance of the estimators for simulated non-CSR
populations

The performances of the five general estimators for
simulated populations are shown in the first two rows of
Table 1. The RRMSEs of the estimators were negatively
correlated with the order of neighbors (l). Thus, increas-
ing the order of neighbors generally increased the perfor-
mance of the estimators (the first row in Table 1). In
contrast, increasing the number of equiangular sectors
(q) had a negative effect on the performance of the esti-
mators except the λn_ttot estimators based on tree-to-tree
distances (the second row in Table 1).
For the simulated populations, the NBD estimator

based on point-to-tree distances (Eq. 6), λ̂n ptot, had the
highest accuracy and precision among the five general
estimators (Fig. 2a,&thinsp;b) and also the lowest sensi-
tivity (Fig. 2c) to the sample size, although the perfor-
mance of all the estimators decreased with increasing
population aggregation. The advantage of the λ̂n ptot is
especially apparent for highly aggregated populations
(e.g., small σ values in Fig. 2). In contrast, the NBD
tree-to-tree estimator, λ̂n ttot, behaved worst (which is
expected because the sampled distances from focal trees

5http://www.r-project.org/.

Article e03143; page 4 GUOCHUN SHEN ETAL. Ecology, Vol. 101, No. 10

http://www.r-project.org/.


are not completely independent of each other and thus
violates the independent assumption needed for deriving
λ̂n ttot).

Estimating density for real tree populations

Consistent with results of simulated populations, per-
formance of the estimators generally increased with the

order of neighbors (l) and decreased with the number of
sectors (q) in real tree species, except that the perfor-
mance of λ̂m2 ptot increased with q (Table 1).
The NBD point-to-tree estimator, λ

n ptot
performed best

among all the estimators for the real tree populations of
the three plots. It accurately estimated the abundances
of most species in each plot (top panels, Fig. 3). The
achieved accuracy can be partly explained by its low sen-
sitivity to spatial aggregation as evidenced by the lowest
mean RRMSE for the different aggregated groups of
species (bottom panels, Fig. 3). The λ

n ptot
also performed

better than other existing estimators aiming to deal with
non-CSR populations (top panels, Fig. 4), and its supe-
rior performance is insensitive to the increased popula-
tion aggregation (bottom panels, Fig. 4).

DISCUSSION

There has been a long history of interest in searching
for effective methods for estimating density of tree popu-
lations (Judd 1913). Much of this interest has been paid
in developing robust distance-based estimators for real
populations of non-SCR distribution (Morisita 1957,
Persson 1964, Patil et al. 1979, 1982, Engeman et al.
1994, Kleinn and Vilčko 2006, Picard and Bar-Hen
2007, Magnussen et al. 2012, Cogbill et al. 2018). This
effort has proven to be challenging, as real species can
be distributed in so many different ways. In this study we
proposed two new general estimators by a widely proven
observation that distributions of the majority of empiri-
cal species can be approximately described by the

TABLE 1. Coefficients of linear regression between distance
sampling parameters (l orders of neighbors and q numbers of
equiangular sectors) and the performance of the five general
estimators (Eqs. 2–6), as measured by the negative log-
transformed relative root-mean-squared error (RRMSE).
The test data are the simulated tree populations and real tree
populations from three forest plots.

Morisita’s
estimator Simple composite

estimator
NBD estimator

λm1_ptot λm2_ptot λc λn_ptot λn_ttot
Simulated populations
l 0.024 0.004 0.018 0.034 0.015
q −0.007 −0.037 −0.098 −0.003 0.084

Barro Colorado Island plot
l 0.183 0.142 0.020 0.06 0.317
q −0.117 0.165 −0.289 −0.028 −1.027

Heishiding plot
l 0.329 0.185 0.218 0.054 0.518
q −0.218 0.185 −3.18 −0.028 −0.995

Tiantongshan plot
l 0.586 0.117 0.051 0.067 0.226
q −0.059 0.143 −0.348 −0.037 −0.18
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FIG. 2. Performance of the five population density estimators, λm1_ptot, λm2_ptot, λc, λn_ptot and λn_ttot (see Table 1 for the nota-
tion), for simulated populations varying from high (small σ) to low (large σ) aggregation. Performance of each estimator was pre-
sented by plotting (a) the averaged accuracy, (b) precision against aggregation parameter σ, and (c) sensitivity across sample size
over 99 repeated simulated populations. Vertical bar at each solid point is one standard deviation. Note Eqs. 2 and 3 are indefinite
at l = 1 and lq = 1, respectively; the performance shown here was based on distances at least to the second nearest tree (l ≥ 2). Per-
formance of all estimators, except λm1_ptot, for distances (lq ≥ 2) is given in Appendix S4. [Color figure can be viewed at wileyonline
library.com]
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negative binomial distribution (Bliss and Fisher 1953,
Boswell and Patil 1970, Krebs 1998, He and Gaston
2003, Zillio and He 2010). Our simulation and empirical
tests showed that the NBD point-to-tree distance esti-
mator (Eq. 6) has the lowest bias and highest precision.
It works best among all the existing estimators.
Our NBD estimators (Eqs. 5 and 6) are the first

closed-form estimators that explicitly deal with non-
CSR distribution, but they have contrast performance
(Fig. 2). All the distance-based estimators require a sim-
ple random sample of distances (e.g., rlij in our study).
This requirement is met for a CSR population but not
so for non-CSR populations. For species that follow
NBD, the focal trees that are sampled are of course not
independently distributed. As such, the NBD tree-to-tree
estimator (Eq. 5) fails to produce useful results. This
result is very general and applies to non-CSR popula-
tions across a large range of population density
(Appendix S3: Fig. S1). Opposite to the tree-to-tree sam-
pling, in the point-to-tree estimator (Eq. 6) the points

are randomly and independently determined. It is worth
mention that the performance of our NBD estimators
does depend on how well real populations follow the
NBD distribution. Tree species often aggregate at several
spatial scales (Wiegand et al. 2007) and no simple proba-
bility distribution, including the NBD, can fully capture
such complexity of aggregation. Nonetheless, the NBD,
λ̂n ptot, seems to behave more robustly than any other
estimator, although there remains a noticeable consistent
underestimation (Figs. 3 and 4) for highly aggregated
populations.
The performance tests provide us with some practical

guidelines for the use of the non-CSR estimators as
described below. First, inconsistent with previous find-
ings (e.g., Engeman et al. 1994; but see Cogbill et al.
2018), increasing the number of sectors q will not always
increase the performance of distance-based density esti-
mators for non-CSR populations (Table 1), although
sampling efficiency may increase if several (e.g., four)
distances are sampled from a common focal tree/point.
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FIG. 3. Performance of the five estimators (λm1_ptot, λm2_ptot, λc, λn_ptot and λn_ttot; see Table 1 for notation) for real tree popula-
tions in the Barro Colorado Island (BCI), Heishiding (HSD), and Tiantongshan (TTS) plots. The top-row panels show the real
population densities against the estimated population density. The bottom-row panels show the group mean RRMSEs of the esti-
mators with one standard error bars against the groups of the Hopkins and Skellam (1954) aggregation index for the species exam-
ined. The aggregation of species distribution increases with the group values from left to right. [Color figure can be viewed at wile
yonlinelibrary.com]
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This inconsistency could partially be understood from
the variance of λm1_ptot and λm2_ptot derived under CSR
distribution. If the total distance sample size (nq) is
fixed, increasing the number of sectors q will reduce the
number of focal points (n). That will decrease the vari-
ance of λm2_ptot (= λ2=nql�2n; see Appendix S1), lead-
ing to a positive effect of increasing q on the
performance of λm2_ptot. But that will not change the
variance (λ2=nq l�2ð Þ; Appendix S1) and thus not the
performance of λm1_ptot, if the total distance sample size
(nq) is fixed. A more subtle issue is that increasing q will
decrease the number of focal points for a fixed sample
size (nq). In this case, distances (to a tree in each of the q
sectors) measured from the same focal point may con-
tain less information than the same number of distances
measured from multiple focal points. These explain why
the performance of our best estimator λn_ptot as well as
λm1_ptot decreases with increasing q for aggregated popu-
lations. For the similar reason as explained by the

explicit forms of variance above, increasing the order of
neighbors (l) can improve the robustness of most estima-
tors, including our best estimator λ̂n ptot (Table 1). How-
ever, the neighborhood distance increases with the order
of neighbors l; for example, the expected neighborhood
distance for a CSR population is Γ lþ1=2ð Þffiffiffi
q

p Γ lð Þ ffiffiffiffiffiffiffiffiffiðπλÞp� ��1
(see Appendix S1). As such, although

the performance of λ̂n ptot may be enhanced by using
higher orders of l, it does increase the labor in the field
in searching for and measuring distances of higher-order
neighbors.
The second practical concern is the minimum sample

size of distances required to ensure a robust estimation
of density for a population. As is shown in Appendix S1,
for CSR populations, the sample size nq should be larger
than 428:2=l and 1623=l, if one wants to respectively
achieve 90% and 95% confidence intervals for density
estimate λ̂. For example, if distances are measured from
focal trees to their second nearest neighbors (l = 2) in
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FIG. 4. Performance of our best-performing negative binomial distribution (NBD) estimator (λn_ptot) and other existing estima-
tors for non-CSR population: the λpe estimator (Persson 1964), the λkv estimator (Kleinn and Vilčko 2006), the best λadap estimator
(Magnussen et al. 2012), and the λpica estimator (Picard and Bar-Hen 2007) for real tree populations in the three forest plots (Barro
Colorado Island [BCI], Heishiding [HSD], and Tiantongshan [TTS]. The top-row panels show the real population densities against
the estimated population density for the five estimators. The bottom-row panels show the group mean RRMSEs of the estimators
with one standard error bar against the groups of the Hopkins and Skellam (1954) aggregation index of the species distribution.
[Color figure can be viewed at wileyonlinelibrary.com]
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each of four equal angle sectors (q = 4), then 54 and 203
focal trees are needed to ensure 90% and 95% accuracy.
For aggregated populations, it is very difficult to make a
general suggestion on sample size. Because the RRMSE
for the non-CSR estimators does not only depend on the
sampling scheme (e.g., different combinations of l and
n), but also relates to the specific spatial distribution of
the population, thus the minimum distance sample size
varies with different sampling schemes and the different
distributions of populations. Simulation results
(Appendix S1: Fig. S1) show that the minimum sample
size of our best estimator, λ̂n ptot, should be larger for
highly aggregated (small σ) than less aggregated (large σ)
species. If one wants to reach 90% accuracy for highly
aggregated species (σ ≤ 3), around 300 distances should
be sampled from random points to their forth nearest
neighbor (l = 4).
To summarize, in this study we developed two dis-

tance-based methods for estimating population density
for non-CSR species. The first is a modified composite
estimator to correct for the bias associated with that esti-
mator, although independent sampling of tree-to-tree
distances for non-CSR trees in the field could be chal-
lenging. The second method was derived from the nega-
tive binomial distribution to directly deal with non-CSR
distribution of species. We showed, by both simulation
and empirical data, that the NBD point-to-tree distance
estimator has the best performance (most robust and
least bias) over all existing non-CSR distance methods.
This study offers a practically useful method for estimat-
ing density of empirical plant populations.
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