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Abstract Global land models are now routinely incorporating the nitrogen (N) cycle into simulations,
but the identification of its benchmarks has lagged behind. An important variable in these models is the
soil inorganic N (SIN) which is the resultant of different input and output N processes. However, whether
and how the SIN pool and its spatiotemporal variation can be used as benchmarks for models remains
unclear. Here we first constructed a database of measured SIN at 756 sites from 1980 to 2010 across China,
one of the regions that has been experiencing the highest external N input. Although there was great
spatial variability of the measured SIN pool, no significant changes were detected across China during
1980–2010 based on a bootstrapping approach. The medians of the measured SIN across China were 63, 70,
and 65 mg/kg during the 1980s, 1990s, and 2000s, respectively. Then, we used the regional SIN database
to evaluate two versions of the Community Land Model (i.e., CLM4.5 and CLM5.0). In comparison with the
observation (median 75 mg/kg) at grid‐cell scale, both CLM4.5 (median 0.70 mg/kg) and CLM5.0
(median 0.79 mg/kg) underestimated the SIN pools across China. Although the drivers of such modeling
biases are difficult to identify at the current stage, improved representations of both input and output
processes of the SIN pool in the models are highly recommended. These findings suggest that a decadal
stabilization of the SIN pool in terrestrial ecosystems and the spatial distribution of the SIN pool may be a
useful benchmark for global biogeochemical models.

1. Introduction

Nitrogen (N) availability is tightly coupled to terrestrial carbon (C) cycle through stoichiometry and is
therefore critical in regulating the feedback between the biosphere and climate change in the Earth system
(Hungate et al., 2003; Luo et al., 2004; Peñuelas et al., 2013; Wang & Houlton, 2009). However, our current
projections on future climate change are mainly from some Earth system models (ESMs), which neglect the
terrestrial N cycle (Wieder et al., 2015). Thus, incorporating terrestrial N processes into ESMs is now highly
encouraged (Hurrell et al., 2013; Luo et al., 2016). The addition of C‐N interactions into global land models
usually lead to reduced terrestrial C uptake and storage (Thornton et al., 2009; Wang & Pak, 2010; Wieder
et al., 2015; Zaehle et al., 2014). However, the existing modeling schemes for the C‐N interaction are so
different (Du et al., 2018) that they could further enlarge the uncertainty of the C cycle projection in current
ESMs (Friedlingstein et al., 2006, 2014). Hence, developing useful benchmarks for model performances on
the N cycling is urgently needed.

Benchmarking the performance of coupled C‐N cycle models is difficult because the N cycle is openly driven
by multiple processes that simultaneously compete for soil inorganic N (SIN; Niu et al., 2016; Zhu et al.,
2017). For example, when the SIN pool increases, soil N losses such as those due to gaseous emissions
and leaching increase exponentially, but biological N fixation is weakened hyperbolically (Aber et al.,
1998). N uptake by plants (Hajari et al., 2014) and mineralization by microbes (Delgadobaquerizo &
Gallardo, 2011) are both stimulated by SIN increases, but then they approach a maximum or even level
off once the SIN pool is saturated (Hajari et al., 2014). However, because the pool size of SIN is much smaller
than that of the organic N pools (Schlesinger & Bernhardt, 2013), its observations are usually reported
without further analyses in the previous studies. Thus, it remains unclear whether the observations of SIN
could be a helpful benchmark for global C‐N‐coupled models.
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The SIN pool may be a useful benchmark for model performance due to at least two reasons. First, abundant
individual measurements on SIN have been conducted in recent decades with comparable quantitative
methods (Keeney, 1982). Hence, the observations of SIN are more available, and its methodological uncer-
tainty is smaller than that of other N‐related variables or processes. Second, the competition for SIN among
multiple N processes is a fundamental mechanism in most existing C‐N‐coupled models (Du et al., 2018;
Hurrell et al., 2013; Thornton et al., 2009; Wang & Pak, 2010; Zaehle & Friend, 2010). Thus, the size of
SIN may be the first critical step to understand the emergent pattern of N limitation effect on global C cycle.

It is still unknown whether the SIN pool and its spatiotemporal variations can be useful benchmarking for
the C‐N‐coupled models. Once the SIN pool is replenished by lighting, biological fixation (Dommergues &
Ganry, 1986), or bedrock weathering (Houlton et al., 2018), it is quickly absorbed by plants (Xia & Wan,
2008), or it leaves the soil via denitrification (Jorgensen, 1993), volatilization, or leaching (Dise & Wright,
1995). As a result, the SIN pool is highly fluctuating on the short time scale (Cain et al., 1999). However,
it is unclear how the regional‐scale SIN pool changes on a long‐term time scale (Gruber & Galloway,
2008), especially under enhanced global environmental changes in recent decades (Galloway et al., 2008;
Greaver et al., 2016). The database of SIN covered a large area, and a long time scale is still inaccessible to
quantitatively evaluate the spatiotemporal variations of SIN.

In this study, we first established a comprehensive data set of SIN in China over three decades (from 1980s to
2000s) by collecting all the available SIN data from the National Research Network of China (CNERN) and
the published literature. Then, we used the regional data set to evaluate the performance of two state‐of‐the‐
art global land surface models (i.e., CLM4.5 and CLM5.0). The specific aims of this study are to (1) explore
whether and how the SIN pool changes over time on a regional scale and (2) evaluate the performance of
current global land surface models in simulating soil N availability.

2. Materials and Methods
2.1. Database of In Situ Measurements

We collected SIN data (1990–2008) from the CNERN. In addition, ancillary information, such as latitude,
longitude, soil sampling depth, and sampling seasons, were also extracted. The main information of these
sites is shown in supporting information Table S1. Furthermore, peer‐reviewed literature related to SIN pub-
lished during 1980–2010 was searched using the China National Knowledge Infrastructure (www.cnki.net).
The selected studies must directly report the SIN or provided both ammonium and nitrate N contents.
Original SIN data were collected from reported tables, extracted from graphs by the GetData Graph
Digitizer software, or calculated as the sum of NH4

+
‐N plus NO3

−
‐N. All the collected SIN data should repre-

sent the basic soil fertility at the sampling sites. Therefore, we only adopted the measurements in natural
conditions (the controlled group) to avoid the impacts from other manipulations. The SIN data sampled
from different soil depths was averaged and considered as the basic SIN status at each sampling site.
Based on the site descriptions or the dominant vegetation type, studies were classified into forest, grassland,
shrubland, desert, cropland, wetland, and bare ground. The influence from land use history was not
considered in our study. We obtained geographical coordinates from Google Earth based on the name or
description in the case that it was not reported. Overall, the compiled database contained 1,853 records from
the CNERN and 3,204 records from 728 published studies (Figure 1).

2.2. Statistical Analysis

A complete spatial randomness (CSR) analysis was applied to test the spatial distributions of data points in
different decades (Figure S1). Under the null hypothesis of CSR (Baddeley, 2007; Morales et al., 2014), the
theoretical value (GCSR) was calculated as

GCSR rð Þ ¼ 1– exp −λπr2
� �

; (1)

where r is the distance of each data point to its nearest neighbor, and λ is the number of data points per unit
area. We estimated the observational Gob(r) based on the cumulative frequency distribution of r. To analyze
whether Gob(r) deviated from GCSR(r), we used a Monte Carlo simulation to calculate the confidence bands
around GCSR(r). If Gob(r) was within the confidence bands, the spatial points pattern obeyed CSR. If Gob(r)
was above (below) the confidence bands, the spatial distribution of points was an aggregation (a regulation).
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The observational Gob(r) was above the confidence band in the 1980s, 1990s, and 2000s, which indicated the
similar spatial distributions of data points in these three decades (Figure S2). Thus, we assumed that the
sampling bias resulting from the spatial distribution of data points was within the acceptable limit.

We then used a simple 5‐year moving average to smooth out short‐term variation and analyzed the long‐
term trends of SIN during the period of 1980–2010. The contents of each 5‐year database change were in
the following ordered datum stream:

SIN sub n−1979ð Þ ¼ SINyr nð Þ þ SINyr nþ1ð Þ þ SINyr nþ2ð Þ þ SINyr nþ3ð Þ þ SINyr nþ4ð Þ; (2)

where n ∈ [1980,2006]. For each 5‐year database, 1,000 times bootstrapping was applied to generate the sub-
database. We then calculated the median values and the 25th and 75th percentiles for each subdatabase. To
test the decadal trends of the SIN pool across China, all the data of the observations were separated into three
decades. Instead of mean values, we applied medians because of its typical representation of data set with
extremely large and small values. The range of 25th percentile to 75th percentile was used to indicate the
variations.

Given different site climate conditions may have potential effects on SIN, we further downloaded global cli-
mate data (temperature and precipitation) across 1980 to 2005 from online sources (https://crudata.uea.ac.
uk/cru/data/hrg/cru_ts_3.23/). The annual mean values of temperature and precipitation were then calcu-
lated. To match the climate data with the sampling sites, the extraction tool in ESRI ArcGIS 10.1 (extraction
to points) was applied based on the corresponding latitude and longitude. The effects of temperature and
precipitation on spatial SIN variation were detected by general linear models.

To evaluate the responses of SIN pool under climate change, we renewed the data set of Lu et al. (2011), Bai
et al. (2013), and Liang et al. (2016) and applied the meta‐analysis to calculate the general responses of the
SIN pool to CO2 rising, N addition, and warming:

R ¼ Ln
XE

XC
¼ Ln XEð Þ−Ln XCð Þ; (3)

where XE is the measured SIN under the treatments (CO2 enrichment, N addition, and warming), and XC is

Figure 1. The spatial distribution of all the data points in different biomes. The size of the circle indicates the annual mean
content of SIN at the site. SIN = soil inorganic nitrogen.
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that from the controlled plots. The response ratio (R) is an index of the effect size of treatments (Hedges et al.,
1999). The variance (Var) of R is calculated as

Var ¼ S2E
nEX2

E

þ S2C
nCX2

C

; (4)

where SE and SC are the standard deviation of XE and XC. nE and nC are the sample size of treatments and
control plots. The weighted response ratio (R++) and its variance (Var++) were calculated as

w ¼ 1
Var

; (5)

Rþþ ¼ ∑k
j¼1wjRj

∑k
j¼1wj

; (6)

Varþþ ¼ 1

∑k
j¼1wj

; (7)

where w represents the weighting factor of each study; k is the number of studies. The 95% confidence inter-
val (95% CI) of RR++ was estimated by

95%CI ¼ Rþþ±1:96Varþþ: (8)

The effects of treatment on SIN pool were considered as significant when 95% CI did not overlap with zero
(Xia & Wan, 2008).

2.3. Simulation of SIN by the CLM and Data‐Model Comparison

The Community Land Model (CLM) is the land part of the Community Earth SystemModel (CESM), which
has explicitly implemented the terrestrial N cycle (Oleson et al., 2013). Vertical nutrient mixing processes in
the soil profile were included in the versions 4.5 and 5.0 of CLM (CLM4.5 and CLM5.0; Koven et al., 2013).
We ran the two versions of CLMs at 1° × 1° resolution. Same historical climate forcing data set Global Soil
Wetness Project Phase 3 (GSWP3) from 1980 to 2005 (http://hydro.iis.u‐tokyo.ac.jp/GSWP3/) was used to
drive the models. Relevant variables were outputted for further model‐data comparison.

CLM volume‐based SIN (g/m3) in different depths of soil layers was transformed to weight‐based SIN
(mg/kg) by the following equation:

SIN mg=kgð Þ ¼ SIN g=m3ð Þ×1; 000
BD kg=m3ð Þ ; (9)

where BD is the corresponding soil bulk density in the soil depth from CLM. According to the frequency
distribution of the sampling soil depths in the observational data set (Figure S6), the SIN data sampled from
top 0–40 cm soil accounted for 87.2%. Besides, the changes of SIN along soil depths showed that abundant
SIN was accumulated in the top 0–40 cm soil (Figure S6). We then averaged the top 0–40 cm weight‐based
SIN (mg/kg) from CLM. Given models operated at grid‐cell scale, the simulated SIN represented the average
status across the whole grid cell. However, the observed SIN data were from point‐scale measurements. To
reconcile the scale mismatch, we averaged the observed data within each CLM grid cell before the model‐
data comparison at different time and space scales.

The simulated SIN data from 1980 to 2005 was averaged and then compared with the observed SIN at grid‐
cell scale. To estimate whether models can capture different SIN statuses among ecosystems or not, we
further considered the observed SIN variations among ecosystems as benchmarks for models. The classifica-
tion of ecosystem type was based on the information from the observational data set. Given SIN shows great
variations throughout seasons, we also benchmarked the seasonal variations of simulated SIN. According to
the definition of meteorological seasons in northern hemisphere, we classified the observed SIN data into
different sampling seasons: spring (from March to May), summer (June to August), autumn (September to
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November), and winter (from December to February). The simulated SIN
data were classified and averaged for each season throughout the simula-
tion years accordingly before the model‐data comparison.

To estimate the simulated SIN trends from 1980 to 2005 explicitly over a
large spatial scale, we used least squares methods to diagnose the changes
in the SIN in each grid cell:

SIN yearð Þ ¼ k×yearþ b; (10)

where the SIN (year) is the annual mean SIN in the corresponding year
(from 1980 to 2005). k and b are the fitting parameters. The value of each
grid in the trends map is the corresponding gradient k.

Influxes and effluxes of the SIN pool were averaged over 26 years for
further detection. To understand the changes in SIN with the variation
of net fluxes, the simulated SIN was then correlated with influxes minus
effluxes. Before the application of regression, data were 5,000‐time boot-
strapped under a 3‐year moving window and averaged to
stabilize variation.

3. Results
3.1. Spatial and Temporal Patterns of SIN Across China

The measured SIN over 1980 to 2010 showed a strong spatial variation
across China, with a broad range from 0.12 to 894 mg/kg (Figure 1). We
then used the difference between the upper (75th) and lower (25th) quar-
tiles as an indicator of the spatial variability of SIN across China in each
year. Based on the moving‐window analysis with a bootstrapping
approach, a linear and significant increase (+11.7%; R2 = 0.33, p < 0.05,
Figure S3b) in the spatial variation of SIN was detected from 1980–1984
to 2006–2010. The mean SIN concentration reached its highest value
(149.9 mg/kg) in regions with MAT around 1 °C and was lowest at
approximately 10 °C MAT (64.2 mg/kg; Figure 2a). The spatial SIN varia-
tion had a significant correlation with MAP (p < 0.001, Figure 2b).

Figure 2. The changes in SIN concentrations with the increase in temperature (a) and precipitation (b). SIN shows a sig-
nificant correlation with precipitation (y = 0.018x + 71.29, p < 0.001). The histograms along the axes show the relative
distribution of corresponding data. MAT = mean annual temperature; MAP = mean annual precipitation; SIN = soil
inorganic nitrogen.

Figure 3. The temporal trends of the SIN in China's soil. (a) The annual
trend of SIN in China's soil over a 5‐year moving window. For each 5‐year
database, 1,000 times bootstrapping was applied to generate the subdata-
base. The red lines represent the medians. The lower and upper edges of the
boxes indicate the 25th and 75th percentiles, respectively. Bars outside the
boxes represent the 10th and 90th percentiles of the subdatabase. (b) The
frequency of the SIN data after transformed into log10 values in three
decades. The inserted boxplots represent SIN status in three decades.
SIN = soil inorganic nitrogen.
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However, no trend of the SIN concentration across China was detected on the temporal scale from 1980 to
2010 (Figure 3a). In 89% of the 5‐year moving windows, themedian values of the annual SIN changed within
70 ± 3 mg/kg (Figure S3a). On the decadal scale, the median values of SIN across China were 63.02 mg/kg
(n = 1,185), 70.41 mg/kg (n = 825), and 65.43 mg/kg (n = 3,123) over the 1980s, 1990s, and 2000s,
respectively (Figure 3b).

3.2. Experimental Responses of SIN to Environmental Changes

The results from meta‐analysis showed an insignificant effect of elevated CO2 on the SIN pool from annual
to decadal time scales (Figures 4a and 4b). N addition significantly increased the SIN pool by 101.2% when
integrated all experiments (Figure 4c), but the positive effect decreased with the experimental duration
increasing (Figure 4d). Some of the long‐term (e.g., >10 years) N loading experiments displayed a neutral
effect on the SIN pool (Figure 4d). Experimental warming significantly stimulated the SIN pool by 15.5%
across the 118 records (Figure 4e). However, such a positive effect was only found in short‐term (i.e.,
1–3 years) experiments (Figure 4f).

3.3. Benchmarking Model Simulations Against SIN Observations

At grid‐cell scale, CLM4.5 and CLM5.0 both significantly underestimated the SIN pool across China from
1980 to 2005 (Figure 5, Kruskal‐Wallis test, both p < 0.01). The SIN concentrations across China were simu-
lated as 0.70 (0.40, 1.19) mg/kg (median (25th percentile, 75th percentile)) and 0.79 (0.29, 2.40) mg/kg by

Figure 4. The frequency distribution of overall CO2 (a), nitrogen loading (c), and warming (e) effects on SIN pool. The
solid curves show the Gaussian distribution fits. The dashed line marks effects equal 0 (R = 0). The weighted response
ratio (R++) of SIN to CO2 (b), nitrogen (d), and warming (f) changes with the increase of experimental duration. The
circles are the response ratio (R) of individual studies. Statistically significant effects on SIN pool are marked with two
asterisks. The shaded area shows the response at decadal scale. SIN = soil inorganic nitrogen.
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CLM4.5 and CLM5.0, respectively, both of which were dramaticallylower
than the observations 75.00 (49.16, 105.30) mg/kg (Figure 5a). Both
NH4

+
‐N and NO3

−
‐N concentrations were underestimated by two models

(Figure S5). The simulated overall SIN concentrations from CLM4.5 and
CLM5.0 showed no significant difference (p = 0.28, Figure 5). However,
CLM4.5 simulated a larger NH4

+
‐N concentration, while CLM5.0

simulated a larger NO3
−
‐N concentration.

The underestimation of SIN concentration by the twomodels existed in all
types of ecosystems in China (Figure 6). The observed SIN concentration
varied greatly among different ecosystems, with the medians ranged from
21.47 (14.45, 29.93) mg/kg (median (25th percentile, 75th percentile)) in
desert to 475.19 (215.12, 539.93) mg/kg in wetland. The SIN concentration
in cropland reached 90.54 (62.54, 125.59) mg/kg. SIN status in grassland
(71.95 (18.34, 105.82) mg/kg) was secondary to cropland. The median
SIN concentration was 40.92 (23.73, 74.97) mg/kg in forest and
34.01 (10.82, 154.83) mg/kg in shrubland. With limited observations, the
SIN concentration in bare ground was 41.37 (30.05, 58.05) mg/kg.
Models failed to simulate the variations of SIN among different ecosys-
tems. We then further compared the simulated results between the two
models. As shown by the Kolmogorov‐Smirnov test, SIN statuses
simulated from CLM4.5 and CLM5.0 showed no significant difference in
shrubland, wetland, and bare ground (Figure 6). The CLM4.5 model
simulated a larger median SIN concentration in forest and grassland than
the CLM5.0 model (p < 0.05).

The observed SIN concentration in summer was the lowest throughout
seasons with a relatively small variation, 61.42 (31.52, 94.10) mg/kg
(median (25th percentile, 75th percentile)). The SIN concentration in
spring was 73.08 (40.71, 123.21) mg/kg across China and had its largest
value in autumn 81.33 (43.30, 121.28) mg/kg. Based on very limited
observations, the SIN concentration showed a slight decrease
(76.62 (59.20, 98.27) mg/kg) in winter compared with autumn. However,
both CLM4.5 and CLM5.0 underestimated SIN concentrations through-
out seasons (Figure 7). The seasonal changes of SIN concentration were
roughly captured by CLM4.5 but not by CLM5.0 (Figure 7).

Both models showed no trends in the SIN across China from 1980 to 2010
(Figure 8). Even at global scale, most of the regions had minor changes in
SIN from 1980 to 2005. However, CLM4.5 and CLM5.0 simulated different
trends in SIN in some regions. For example, the SIN showed no trend in
the tropical rainforests of Africa in the CLM4.5 model but showed
decreasing trends in the CLM5.0 model (Figure 8).

We further analyzed the determinant processes of the SIN pool in the
CLM4.5. The SIN pool showed a significant positive correlation with the
net N balance between influxes and effluxes (p < 0.001, Figure 9b).
N mineralization was the major replenishment to the SIN pool in
CLM4.5, with a wide range from 0 to 65.38 gN·m−2·year−1 (Figure 9a).
The simulated annual fixation ranged from 0 to 1.6 gN·m−2·year−1.
Atmospheric N deposition ranged from 0 to 2.11 gN·m−2·year−1. The
depletion of SIN mainly occurred by immobilization (from 0 to
42.45 gN·m−2·year−1) and plant uptake (from 0 to 26.15 gN·m−2·year
−1). The contribution of SIN leaching (from 0 to 7.40 gN·m−2·year−1)
and denitrification (from 0 to 1.14 gN·m−2·year−1) to SIN losses accounted
for less than 0.05%.

Figure 5. (a) The frequency of the SIN conditions in observations and the
models' simulations. (b) The simulated SIN from CLM4.5 and CLM5.0
against observational SIN. The dark open circles represent CLM4.5 simula-
tions, and the red represent CLM5.0. The dashed line is the 1:1 line.
SIN = soil inorganic nitrogen; CLM = Community Land Model.

Figure 6. The simulated SIN conditions in different ecosystems from
CLM4.5 and CLM5.0 against observations. Under the same ecosystem
type, the unique letters above error bars indicate significant differences
(P < 0.05) between groups. The asterisks show the medians among ecosys-
tems, and the lower and upper error bars indicate the 25th and 75th per-
centiles. SIN = soil inorganic nitrogen; CLM = Community Land Model.
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4. Discussion
4.1. DiagnosingModel PerformanceWith the Spatial Distributions
of SIN

This study shows a large spatial variation of the SIN on the regional scale
(Figure 1). To our best knowledge, this is the first study to characterize the
frequency distributions of the SIN in China (Figure 3b). The statistical
properties of such skewed distributions, such as the median and quartiles,
can be useful in diagnosing the model performance with SIN estimates.
For example, there is approximately a fourfold difference between the
upper and lower quartiles of SIN observations, and such a difference is
comparable with that in CLM4.5 (approximately sixfolds) and CLM5.0
(approximately fivefolds; Figure 5a). However, the median of the observa-
tions is ~70‐folds larger than that in the models. This result indicates that
the models dramatically underestimated the size of the SIN pool, at least
across China.

Interestingly, the SIN concentration is lowest in the regions with aMAT of
approximately 10 °C (Figure 2a). In China, these regions are mainly cov-
ered by deserts (Hong et al., 2005; http://www.chinamaps.org/), which
have a lower SIN than other biomes (Figure 1). This study found a positive
correlation between the SIN concentration and MAP (Figure 2b), suggest-
ing that water availability plays an important role in regulating the spatial
variation of SIN. It is clear that the models not only underestimated the
SIN concentration in all ecosystems but also could not capture well the
differences among ecosystems (Figure 6).

4.2. Minor Long‐Term Changes in SIN on a Regional Scale

The regional SIN across China shows no temporal trend during the past
three decades (Figure 3). This result is surprising because China is one
of the regions that has been experiencing the fastest environmental
changes, especially the increasing atmospheric N deposition (Galloway
et al., 2008; Liu et al., 2013; Lu et al., 2011). The results frommeta‐analysis
show that SIN has insignificant or decreasing responses under chronic

treatments (Figure 4). Atmospheric N deposition could generally enhance SIN pool, but the increase in
SIN is hard to maintain over the long run (Lu et al., 2011; Osullivan et al., 2011). Once the enrichment of
SIN exceeds the retention ability, large losses of SIN through dissolved inorganic nitrogen leaching and gas-
eous emissions will be expected (Niu et al., 2016). Therefore, the responses of SIN under long‐term N addi-
tion are diminishing (Figure 4d). This may explain the reason why SIN concentration shows minor changes
over China in the past three decades although this region experienced long‐term N deposition.

Similarly, long‐term warming and elevated CO2 concentration have insignificant effects on SIN (Figure 4).
However, such a long‐term neutral effect could be driven by different mechanisms. For example, elevated
CO2 concentration reduces soil N leaching and increases biological N fixation, but N2O emission is signifi-
cantly increased (Liang et al., 2016). Warming directly enhances SIN through accelerating mineralization
rate, but shifting in moisture condition under the chronic warming could trigger SIN losses (Bai et al.,
2013; Shaver et al., 2000), leading to no responses of SIN in the long run (Bai et al., 2013). Experimental
evidence from a 6‐year soil warming at alpine tree line (Dawes et al., 2016) and a two‐decade warming
experiment in an Arctic system (Sistla et al., 2013) consistently suggest that warming induced increase in
SIN can only be detected in the early stage.

Benchmarking the performance of C‐N‐coupled models is much more difficult than that of C‐only models,
mainly because SIN plays a decisive role in regulating many processes. In current C‐N‐coupled models, mul-
tiple SIN‐based functions are applied to model different N processes in the simulation of the N cycle (Zaehle
& Dalmonech, 2011; Niu et al., 2016). For instance, the equations governing N losses in some models have a
proportional relationship with SIN concentration. Besides, SIN supply is critical in nutritional feedback

Figure 7. The seasonal variation of SIN from (a) observations, (b) CLM4.5,
and (c) CLM5.0. Lower and upper edges of the boxes indicate the 25th and
75th percentiles, respectively. Bars outside the boxes represent the 10th and
90th percentiles. The dots in the box indicate the observed and simulated
SIN status in corresponding grid cells. SIN = soil inorganic nitrogen;
CLM = Community Land Model.
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constraining plant C uptake; thus, current C‐Nmodels commonly predict
limited terrestrial C storage via N availability (Thornton et al., 2007;
Zaehle et al., 2014). However, the simulations of SIN from short‐term to
long‐term scale are poorly constrained by suitable observations. In our
research, the minor long‐term changes of SIN concentration on the regio-
nal scale (Figure 3) can be used as benchmarks for C‐N‐coupled models.
The constructed data set is by no means conclusive, but it calls for a full
evaluation of N cycles at multiple time and spatial scales. We recommend
future experimental studies to simultaneously measure multiple N pro-
cesses and to explore the mechanisms driving the dynamics of SIN over
short term to long term, especially under different global‐change factors.

4.3. Improving the Estimate of SIN in Global
Biogeochemical Models

The known underestimations of SIN in both CLM4.5 and CLM5.0 are
helpful to improve their simulations on ecosystem N cycling across
China. The pool size of SIN is collectively determined by the influxes, such
as mineralization, fixation, and atmospheric deposition, and the effluxes,
such as immobilization, plant uptake, denitrification, and leaching
(Figure 7). Thus, the modelers can determine the major reasons for the
underestimations by comparing these N processes against observations.
In this study, we further estimated the annual mean soil N mineralization
rate across China as ~121.73 to 300.27 gN·m−2·year−1 based on the
synthesized mineralization data (Liu et al., 2016) and the national mean
bulk density (Chai & He, 2016). This estimate is approximately fivefold
larger than the simulated soil N mineralization rate by CLM4.5
(Figure 7). In addition, the rate of biological N fixation ranges from 0 to
~11 gN·m−2·year−1 in Eastern Asia (Cleveland et al., 1999, 2013), which
is also obviously underestimated by CLM4.5 (Figure 7). Only the rates of
atmospheric N deposition are comparable with nationwide observations
(~2.1 gN·m−2·year−1; Liu et al., 2013).

The underestimation of SIN in these models may also result from their
overestimates of the depletion processes of SIN. As shown in Figure 7,

the majority of SIN in the CLM4.5 is incorporated into organisms through immobilization and plant uptake,
rather than what is lost through denitrification and leaching (Figure 7a). This result indicates the potential
for SIN retention in the CLM4.5. However, we are limited in evaluating SIN effluxes due to the sparse obser-
vational database. A promising way is to apply 15N tracer field data for quantitatively evaluating the fate of
SIN in C‐N coupled modes (Cheng et al., 2018; Thomas et al., 2013; Zhu et al., 2017). For example, Cheng
et al. (2018) has applied the long‐term 15N tracer field experimental data as benchmarks to evaluate the
simulated N cycling dynamics in CLM5.0. Their results have revealed that CLM5.0 overestimates the recov-
ery of N in plants and underestimates the recovery in the soil, indicating the existing flaws in partitioning
SIN among plant, soils, and N‐loss processes. Earlier studies have consistently shown the biases in
CLM‐CN in simulating the fates of SIN (Thomas et al., 2013), especially the unrealistically high SIN losses.
The significant underestimation of SIN in CLM from our study may partially explain the persistent N limita-
tion in CLM which is detected by Thomas et al. (2013). These evidence together with our study collectively
indicate that the SIN dynamics simulated from CLM need improvements.

The SIN pool size is the resultant of multiple N transformation processes. An accurate representation of mul-
tiple N‐transformation processes is the cornerstone for realistically simulating SIN. In both CLM4.5 and
CLM5.0, the most influential feature on SIN dynamics is the demand‐based competition for the limiting
resources (Oleson et al., 2013; Thornton et al., 2007). The potential SIN demand from plant uptake, immo-
bilization, nitrification, and denitrification are assumed to be satisfied simultaneously. When SIN is insuffi-
cient to meet the total demand, the potential SIN available to a particular N process is downregulated based
on the proportion of the individual demand to the total demand. A constant fraction of the remaining SIN is

Figure 8. The spatial pattern of SIN trends simulated from CLM4.5 (a) and
CLM5.0 (b) at a global scale. The inserted panels show the frequency dis-
tribution of SIN trends. SIN = soil inorganic nitrogen; CLM = Community
Land Model.
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dissolved in soil water and will be lost through leaching (Oleson et al.,
2013; CLM5.0 technical description). The demand‐based approach simpli-
fies the complex nutrients competition among multiple N processes,
resulting in the unrealistic simulation on the SIN fates (Cheng et al.,
2018; Zhu et al., 2017). A more sophisticated representation of the nutri-
ent competition among plant, soil, and microbe would be likely to
improve the models' performance on simulating multiple N transforma-
tions (Zhu et al., 2016, 2017). A recent developed framework, the
Equilibrium Chemistry Approximation theory, shows its superiority in
capturing multiple N transformations when considering the affinity of dif-
ferent enzymes to SIN.

Although the representations of N fixation, plant N‐acquisition strategy
(FUN), and plant stoichiometry (FlexCN) have been improved in
CLM5.0 (CLM5.0 technical description), it failed to match the observed
SIN pool across China (Figure 5). Besides, these modifications of model's
processes cause additional uncertainties in simulating the seasonal varia-
tions (Figure 7) and the spatial trends (Figure 8) of SIN. The simulated
SIN from the CLMs is all the available nitrogen for multiple N and C pro-
cesses therefore is pivotal in regulating the feedbacks of terrestrial ecosys-
tem to climate changes. The unrealistic estimation on SIN might lead to
biases in modeling the terrestrial C‐N interactions. The discrepancy
between models' simulation and field observations reflects the uncertain-

ties in models' structure, parameters, and initial conditions (Luo et al., 2012). These uncertainties are not
unique to the CLMs but to many other C‐N‐coupled models (Zaehle & Dalmonech, 2011). To narrow the
uncertainties in simulating the nitrogen availability, incorporating new theoretical framework into the mod-
els together with integrating field observations to constrain models is highly recommended (Sulman et al.,
2017). Especially, if the N isotope discrimination is included in the C‐N‐coupledmodels, the new synthesized
foliar N concentrations and isotope ratio (δ15N) data set by Craine et al. (2018) could be valuable for evalu-
ating the plant‐related N processes.

5. Conclusions

In summary, this study reveals the long‐term nonsignificant changes of the SIN on a regional scale. Such a
property of the SIN is then used to evaluate two versions of CLM (i.e., CLM4.5 and CLM5.0). The results
from our data‐model comparison show that both CLM4.5 and CLM5.0 significantly underestimate SIN con-
centration in China. In addition, huge biases are existed in simulating the seasonal variation and spatial pat-
tern of SIN. The underestimations of the SIN concentration by the two state‐of‐the‐art global landmodels are
largely due to the low rates of N mineralization and biological fixation. However, to explain these uncertain-
ties in a mechanical way, further studies need to decompose the modeled SIN into its related processes.

The dynamic of SIN is the balance of multiple N‐transformation processes. An accurate estimation on the
SIN pool needs more realistic representations of multiple N‐transformation processes. Studies on single N
processes are too isolated to inform models because all N transformation processes are integrated with each
other (Jansson & Petsson, 1982). Thus, this study recommends more future experimental and modeling
studies to explore the role of SIN in regulating multiple N processes in terrestrial ecosystems.
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