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Abstract
Aim: Livestock grazing can alter carbon (C), nitrogen (N) and phosphorus (P) cycles, 
thereby affecting the C : N : P stoichiometry in grasslands. In this study, we aimed to 
examine mechanisms underlying the impacts of grazing on grassland C : N : P stoi-
chiometry, focusing on belowground processes and their linkages with aboveground 
vegetation properties.
Location: Global.
Time period: 1900–2018.
Major taxa studied: Grassland ecosystems.
Methods: We conducted a meta-analysis based on 129 published studies to synthe-
size the effects of grazing on the C : N : P stoichiometry of leaves, stems, litter, roots, 
microbial biomass, and soil in grassland ecosystems.
Results: Grazing significantly affected the C, N and P pools, and then the C : N : P sto-
ichiometry in grassland ecosystems. Grazing effects on C : N : P stoichiometry varied 
strongly with grazing intensity. Specifically, heavy grazing decreased all C : N : P stoi-
chiometry except litter N : P and root C : N ratios, while light and moderate grazing 
caused less negative or positive effects. Grazing effects on litter C  : N ratio were 
negatively correlated with grazing effects on soil C : N ratios under light and moder-
ate grazing, but this relationship was positive under heavy grazing. In contrast, graz-
ing effects on root C  : P and soil C  : P were positively correlated under light and 
moderate grazing but negatively correlated under heavy grazing. Importantly, grazing 
significantly decreased the soil N pool by 10.0% but increased the soil P pool by 3.6%, 
indicating differential mechanisms for grazing impact on N and P cycles in grasslands.
Main conclusions: Our results strongly suggest that grazing intensity regulates the 
biogeochemical cycles of C, N and P in grassland ecosystems by affecting plant nutri-
ent use efficiency and soil physicochemical processes. Therefore, incorporating graz-
ing intensity into Earth system models may improve predictions of climate–grassland 
feedbacks in the Anthropocene.
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1  | INTRODUC TION

Grasslands cover approximately 40.5% of the Earth’s land surface 
excluding Antarctica and Greenland (Hufkens et al., 2016), and pro-
vide numerous essential ecosystem services, including carbon (C) 
sequestration and climate regulation as well as economic benefits 
(Lal, 2004; Lecain, Morgan, Schuman, Reeder, & Hart, 2002; Wang & 
Fang, 2009). However, overgrazing threatens the biodiversity, func-
tioning and stability of grassland ecosystems worldwide (Mcsherry 
& Ritchie, 2013). These negative impacts are largely mediated by the 
grazing effects on C, nitrogen (N) and phosphorus (P) cycling (Deng, 
Sweeney, & Shangguan, 2014; Derner, Briske, & Boutton, 1997; Liu, 
Kan, & Yang, 2015). Grazing-induced changes in C  :  N ratio have 
attracted much attention due to their impact on the availability of 
essential nutrients in grasslands (Zhou et al., 2017). As a critical ele-
ment for plants and microorganisms, P is usually coupled with C and 
N, and linked to biological processes such as N fixation, organic mat-
ter decomposition, and plant photosynthesis (Delgado-Baquerizo, 
Maestre, & Gallardo, 2013; Walker & Syers, 1976). Therefore, under-
standing the responses of C : N : P stoichiometry to grazing is crucial 
for assessing human-induced impacts on ecosystem functions and 
developing sustainable strategies for grassland management.

Over the past half-century, numerous studies have suggested that 
long-term overgrazing might modify plant C sequestration, root exu-
dation, and microbial activity, thereby affecting C–N–P cycling within 
root–microbe–soil systems (Delgado-Baquerizo et al., 2013; Zhou, Luo, 
Chen, He, et al., 2019). While grazing generally decreases C, N and P 
pools in leaves and litter (Bai et al., 2012), it has divergent effects on 
soil C, N and P pools (Knops, Bradley, & Wedin, 2002). However, most 
recent studies focused either on the aboveground or the belowground 
processes in response to grazing (Bai et al., 2012; Yang et al., 2018). 
Thus, stoichiometric links between above- and belowground pro-
cesses in response to grazing remain uncertain, which may hamper our 
ability to predict global C–N–P dynamics in a changing environment.

The magnitude of grazing effects on C : N : P stoichiometry de-
pends on grazing intensity, vegetation types and environmental fac-
tors (Derner et al., 1997; Mcsherry & Ritchie, 2013). Among these 
factors, grazing intensity may play the most essential role due to its 
influence on the plant community structure, soil microenvironment, 
and microbial diversity (Bello, Lepš, & Sebastià, 2010; Zhou et al., 
2017). However, the effects of grazing intensity on C  : N  : P stoi-
chiometry vary substantially among ecosystems. For example, Yang 
et al. (2018) found that light grazing decreased the soil C  : N ratio 
in an alpine meadow, whereas heavy grazing increased it. Shrestha 
and Stahl (2008) found no change in soil C : N ratio in response to 
light grazing in a semi-arid sagebrush steppe. Moreover, heavy graz-
ing decreased both soil C  :  P and N  :  P ratios in an upland grass-
land (Medina-Roldán, Pazferreiro, & Bardgett, 2012), but increased 
these ratios in meadow steppe, typical steppe and desert steppe (Bai 
et al., 2012). In spite of these efforts, the mechanisms underlying 
the effects of grazing intensity on C  : N  : P stoichiometry and the 
linkage between above- and belowground processes remain un-
clear. Therefore, it is necessary to integrate the available data on 

the response of C : N : P stoichiometry to various levels of grazing 
intensity.

In this study, we compiled a dataset of 3,610 paired comparisons 
from 129 published studies and conducted a meta-analysis to in-
vestigate the general response pattern of above- and belowground 
C : N : P stoichiometry to different grazing intensities. Specifically, 
our objectives were: (a) to examine global patterns of above- and 
belowground C : N : P stoichiometry in response to livestock grazing, 
(b) to explore links between grazing effects on above- and below-
ground C : N : P stoichiometry, and (c) to evaluate whether grazing 
effects on soil C : N : P stoichiometry depend on grazing intensity, 
climate, soil depth, and vegetation type.

2  | MATERIAL S AND METHODS

2.1 | Data sources

We searched for peer-reviewed papers published before June 2018 in 
Web of Science and China Knowledge Resource Integrated Database 
(CNKI), using the following search terms: (grazing OR herbivory OR 
defoliation) and (C:N OR C:P OR N:P OR C:N:P) and (grassland OR 
pasture OR meadow). To be included in our dataset, studies had to 
meet the following six criteria: (a) the experiment was conducted in 
the field and included non-grazed plots and at least one grazing treat-
ment, (b) experimental duration was longer than one growing season, 
(c) the initial climatic conditions, soil properties, and species composi-
tions in the non-grazed and grazing treatments were the same, (d) all 
plots were free of grazing for at least 10 years prior to the start of 
the experiment, (e) the dominant species were clearly described and 
the grazing intensity was quantitatively and/or qualitatively reported, 
and (f) the mean, standard error (SE) or standard deviation (SD), and 
sample size (n) of the relevant variables could be extracted from the 
tables, digitized graphs or the text. We found 129 papers (Appendix: 
Data sources) meeting these criteria. Of these papers, 119 reported 
grazing effects on C  : N ratios, 50 reported C  : P ratios and 46 re-
ported N : P ratios (Figure 1, Supporting Information Table S3).

Our database included 36 variables: above- and belowground 
C, N and P pools (i.e., C, N and P stocks in plant leaves, stems, 
litter and roots, microbial biomass and soil), and C  :  N  :  P stoi-
chiometry (i.e., C : N, C : P and N : P ratios in plant leaves, stems, 
litter and roots, microbial biomass and soil). In total, there were 
38, 11, 16, 34, 31 and 94 studies for leaves, stems, litter, roots, mi-
crobial biomass and soil, respectively. Data in the text and tables 
were directly extracted, and those in the figures were extracted 
by using getdata software (version 2.24, http://getda​ta-graph-digit​
izer.com). We also extracted and tabulated information on mean 
annual temperature (MAT), mean annual precipitation (MAP), ele-
vation, grazing intensity, dominant species and soil depth. When 
MAT and MAP were not reported, we extracted them from the 
global climate database (http://www.world​clim.org/) according to 
the geographical coordinates.

Environmental variables included MAT with a range from −1.7 
to 15 °C, MAP from 160 to 4,200 mm, and elevation from 300 to 

http://getdata-graph-digitizer.com
http://getdata-graph-digitizer.com
http://www.worldclim.org/
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4,600  m. Grazing intensity was divided into un-grazed or fenced 
treatments (UG) as the control, light grazed (LG), moderate grazed 
(MG), and heavy grazed (HG) treatments. Because grasslands may 
differ in carrying capacity, it is difficult to set general criteria to clas-
sify studies according to grazing intensity. However, authors usually 
considered a light grazing intensity when livestock consume less 
than 20% of total plant biomass, a moderate intensity when live-
stock consume 20–50% of plants, and a heavy intensity when live-
stock overgraze grasslands (at least 50% of plants, Holechek & Galt, 
2000; Yan, Zhou, & Zhang, 2013). Therefore, studies were classified 
according to grazing intensity using the authors’ qualitative classi-
fication directly from papers or the references therein (Zhou et al., 
2017), which represented the relative impacts of grazing on plants 
and were relatively comparable among studies. The studies were 
also grouped into C3 and C4 grasslands according to the dominant 
species, and into different MAT (< 0, 0–5 and > 5 °C), MAP (< 400, 
400–800 and >  800  mm), elevation (<  1,500, 1,500–3,000 and 
> 3,000 m) and soil depth groups (< 15, 15–30 and > 30 cm).

2.2 | Data analysis

We used the same methods as Hedges, Gurevitch, and Curtis (1999) 
and Luo, Hui, and Zhang (2006) to quantify the responses of above- 
and belowground C, N and P contents and stoichiometry to grazing 
by using the response ratio (RR), which is the natural logarithm of the 
ratio between the mean value in grazing (Xt) to that in the control (Xc
) for a concerned variable:

The variance (v) of the RR is estimated by:

where nt and nc indicate the sample sizes, and st and sc are the standard 
deviations of the relevant  variable in the grazing and control treat-
ments, respectively. The average response ratio (RR++) across a group 
of experiments was calculated as the weighted mean of individual RR 
(RRi) with the weight (w) of each RR being the reciprocal of the vari-
ance (w = 1/v). The RR++ considered the precision of each individual 
study, which had the advantage compared to relative response (RR).

where k represents the number of RRs. The standard error (SE) of 
RR++ was calculated by:

The 95% confidence interval (CI) for RR++ was RR++ ± 
1.96  ×  S(RR++). The influence of livestock grazing was considered 
significant if the 95% CI did not overlap zero (Luo et al., 2006). The 
percentage change of a variable was calculated as [exp (RR++) – 1]  
× 100%. A t test was applied to examine the difference in RR++ 
between differential grazing intensities in groups with different 
climate (MAT, MAP), elevation, dominant species (C3 and C4), and 
soil depth. To validate the results from this meta-analysis, frequency (1)RR=Ln
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F I G U R E  1   Global distribution of the grazing experimental sites used in this meta-analysis. The sites were spread over all continents 
except Antarctica, with most of them located in eastern Asia and North America. LG, MG and HG represent sites with light, moderate 
and heavy grazing treatments, respectively. LMG, LHG, MHG and LMHG represent the combinations of two or three grazing intensities 
(e.g., LMG includes both light and moderate grazing, LMHG includes all three grazing intensities). GWI represents the sites with no grazing 
intensity information. The base map represents the global distribution of grasslands
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distributions of RR (n > 10) of C : N, C : P and N : P ratios in leaves, 
stems, litter, roots, microbial biomass and soil were fitted with a 
Gaussian function (i.e., normal distribution):

where x is the RR of a target variable; y is its frequency (i.e., num-
ber of RR values); α is a coefficient showing the expected number 
of RR values at x = μ; and μ and σ2 are the mean and variance of the 
frequency distributions, respectively. Linear regressions were con-
ducted to examine the relationships among C  : N, C  : P and N  : P 
ratios in leaves, stems, litter, roots and soil.

3  | RESULTS

3.1 | Effects of grazing on above- and belowground 
C : N : P stoichiometry

Grazing significantly affected above- and belowground C : N : P stoi-
chiometry in grassland ecosystems (Figure 2, Supporting Information 
Figure S1). On average, grazing decreased C pools in leaves, stems, 

litter, microbial biomass and soil by 2.1, 2.4, 1.9, 22.3 and 4.1%, re-
spectively, but grazing increased root C pools by 1.5% (Figure 2). 
Grazing also decreased N pools in stems (−4.9%) and soil (−9.1%), but 
increased N pools in leaves, roots and microbial biomass by 17.2, 5.1 
and 4.5%, respectively. In addition, grazing increased P pools in leaves 
(+2.2%), stems (+15.8%), litter (+11.8%), roots (+5.1%) and soil (3.7%).

Grazing-induced changes in C, N and P pools significantly affected 
the C : N : P stoichiometry in grassland ecosystems. Specifically, graz-
ing decreased the soil N pool (−9.9%) more strongly than the soil C 
pool (−4.3%), leading to an increase in soil C : N ratio (+3.6%, Figure 2f, 
Supporting Information Figure S2). Grazing significantly decreased 
C  :  P ratios in leaves (−14.0%), stems (−5.0%), litter (−11.1%), roots 
(−5.8%) and soil (−3.9%), but increased microbial biomass C : P ratio 
by 29.8% (Figure 2). In addition, grazing significantly increased N : P 
ratios in leaves (+1.2%), roots (+3.1%) and microbial biomass (+17.1%), 
while it decreased N : P ratios in litter (−7.3%) and soil (−1.1%, Figure 2).

3.2 | Effects of grazing intensity on above- and 
belowground C : N : P stoichiometry

The response of aboveground C, N and P pools as well as their stoi-
chiometry to grazing largely depended on grazing intensity (Figure 3, 

(5)y =� exp

[

−
(x−�)2

2�2

]

F I G U R E  2   Effects of grazing on the C, N and P pools and C : N : P stoichiometry across different above- and belowground parts, 
including leaves, stems, litter, roots, microbial biomass and soil. Bars represent RR++ ± 95% confidence intervals. The vertical line is drawn at 
RR++ = 0. Asterisks (*) indicate the grazing effect on relevant variables are significant. Numbers for each bar indicate the sample size
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Supporting Information Figure S2). Specifically, light grazing signifi-
cantly increased leaf C : P and N : P ratios by 6.2 and 3.7%, respec-
tively, while moderate and heavy grazing decreased C : P ratios by 9.6 
and 25.0%, and N : P ratios by 0.3 and 18.5%, respectively (Figure 3a, 
Supporting Information Table S1). Light grazing significantly increased 
stem C : N, C : P and N : P ratios compared with moderate and heavy 
grazing (Figure 3b). In addition, heavy grazing decreased litter C : N and 
C : P ratios more strongly than light and moderate grazing (Figure 3c).

The responses of belowground C : N : P stoichiometry to grazing 
also varied with grazing intensity (Figure 3d–f). Light grazing did not 
significantly affect root C : N ratio, but moderate and heavy grazing 
increased it by 5.1 and 10.8%, respectively (Figure 3d). On the con-
trary, grazing significantly decreased root C : P and N : P ratios for 
all three intensities (i.e., light, moderate and heavy) but these effects 
became more severe with increased intensity (Figure 3d). Microbial 
C : N ratio increased under light grazing but decreased under heavy 
grazing, whereas the patterns in C : P and N : P ratios were uncertain 
due to small sample sizes (Figure 3e). For soil C : N : P stoichiometry, 
light grazing significantly increased C : N, C : P and N : P ratios by 
2.0, 6.4 and 4.6%, but heavy grazing decreased these ratios by 4.7, 
3.4 and 0.9%, respectively (Figure 3f). Moderate grazing significantly 
increased soil C : N and N : P ratios by 1.2 and 2.1%, respectively, but 
it did not affect soil C : P ratios.

Grazing intensity also affected the link between above- and 
belowground C  :  N  :  P stoichiometry (Figure 4). Grazing-induced 
changes in soil C : N ratio [RR(soil C : N)] were negatively correlated 
with changes in litter C : N under both light and moderate grazing, 
but a positive correlation was found under heavy grazing (Figure 4c). 
In contrast, RR(soil C : P) was positively correlated with RR(root C : P) 
under both light and moderate grazing, but a negative correlation 
was detected under heavy grazing (Figure 4d).

3.3 | Effects of other factors on soil C : N : P 
stoichiometry under grazing

Grazing effects on soil C, N and P pools also depended on MAT, 
MAP and elevation (Figure 5, Supporting Information Figure S3). 
Specifically, grazing increased soil C pools when MAT  <  0  °C, but 
significantly decreased soil C pools in studies with MAT  >  0  °C 
(Figure 5a). The responses of the soil N pool, soil P pool, and soil C : P 
and soil N : P ratios to grazing became weaker when MAT increased 
(Figure 5b–f, Supporting Information Table S2). Furthermore, grazing 
decreased the soil P pool by 4.2% when MAP <  400  mm, but in-
creased soil P by 2.3% when MAP was 400–800 mm (Figure 5g). The 
average response of soil C : P and N : P ratios to grazing decreased 

F I G U R E  3   Influences of grazing intensity on C : N : P stoichiometry across different above- and belowground parts, including leaves, 
stems, litter, roots, microbial biomass and soil. Bars represent RR++ ± 95% confidence intervals. The vertical line is drawn at RR++ = 0. 
Asterisks (*) indicate the grazing effect on relevant variables are significant. Numbers for each bar indicate the sample size. LG = light 
grazing; MG = moderate grazing; HG = heavy grazing
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with MAP (Figure 5k, l, Supporting Information Table S2). The re-
sponse of the soil C pool to grazing shifted from positive to negative 
with increase in elevation, while the opposite trend was found for 
soil C : P ratio (Figure 5).

Soil depth and vegetation types (C3 versus C4) also affected 
the responses of soil C  : N, C  : P and N  : P ratios under different 
grazing intensities (Supporting Information Figures S3–S5), but re-
sponse patterns were uncertain due to the small sample sizes when 
the dataset was grouped into light, moderate and heavy grazing. 
Taken together, these changes support a conceptual framework in 
which grazing intensity determines the effects of livestock grazing 
on C : N : P stoichiometry in grassland ecosystems (Figure 6).

4  | DISCUSSION

Grazing is one of the main anthropogenic activities influencing the 
biogeochemical cycles of C, N and P in grassland ecosystems (Knops 
et al., 2002). Our analysis shows that grazing intensity affects above- 
and belowground C  :  N  :  P stoichiometry as well as their linkage 

across grasslands around the world. Our results showed that heavy 
grazing had significantly stronger effects on plant C : N : P stoichi-
ometry than light and moderate grazing, and that the effects on soil 
C  :  N  :  P stoichiometry shifted from positive to negative with in-
creasing grazing intensity (Figure 3). These patterns were closely as-
sociated with changes in above- and belowground C, N and P pools. 
Below, we will discuss how these results can be explained by grazing 
effects on plant ecophysiology, animal waste, microbial activity, and 
soil physicochemical environmental conditions (Figure 6).

4.1 | Effects of grazing intensity on aboveground 
C : N : P stoichiometry

The effects of grazing on leaf and litter C : N : P stoichiometry switched 
from positive to negative or became more negative with increasing 
grazing intensity, except for the N : P ratio in litter (Figure 3a, c). The 
decreased C : N, C : P and N : P ratios in plants could result from accel-
erated nutrient cycling or increased nutrient availability induced by 
livestock faeces and urine (Bai et al., 2012). Grazing increased the leaf 

F I G U R E  4   Relationships between the response ratios (RRs) of soil C : N ratio and leaf, litter C : N ratio, and the RR of soil C : P ratio 
and stem, root C : P ratio in different grazing intensities. LG = light grazing; MG = moderate grazing; HG = heavy grazing; All = all grazing 
intensities
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F I G U R E  5   Effects of different environmental factors (mean annual temperature, MAT; mean annual precipitation, MAP; and elevation) 
on soil C : N : P stoichiometry. Bars represent RR++ ± 95% confidence intervals. Numbers for each bar indicate sample size. MAT is separated 
into < 0, 0–5 and > 5 ℃, MAP is grouped into < 400, 400–800 and > 800 mm, while elevation is divided into < 1,500, 1,500–3,000, 
and > 3,000 m. Asterisks (*) indicate the grazing effect on relevant variables are significant. C, carbon; N, nitogen; P, phosphorus
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N pool but decreased the soil N pool (Figures 2, 6), suggesting that the 
decreased C : N ratio in leaves and litter with grazing were mainly due 
to the accelerated N cycling (Bai et al., 2012). However, the enhanced 
soil P pool under grazing (Figures 2, 6) largely caused the decreases 
in leaf C : P and N : P and litter C : P ratios, which might stem from 
both increased P use efficiency and soil P availability. The increase 
in litter N : P ratio under heavy grazing can probably be explained by 
plants failing to recycle N in time before grazing-induced defoliation 
(Avila-Ospina, Moison, Yoshimoto, & Masclaux-Daubresse, 2014). 
The changes in C : N : P stoichiometry of stems under light grazing 
were much larger than those of leaves and litter (Figure 3a–c), prob-
ably because leaves can absorb nutrients from stems to maintain an 
optimal stable C : N : P stoichiometry (Tang et al., 2018).

4.2 | Effects of grazing intensity on belowground 
C : N : P stoichiometry

The C : N : P stoichiometry of belowground processes was strongly 
regulated by grazing intensity. With increasing grazing intensity, 

effects on root C : P and N : P ratios became more negative, while 
effects on root C : N ratio became more positive (Figure 3a, d). The 
increased root C : N ratio may arise from grazing-induced C translo-
cation to roots relative to N (Ritchie, Tilman, & Knops, 1998). This is 
a protective strategy, whereby plants allocate more non-structural 
carbohydrates to belowground organs to reduce C loss induced by 
overgrazing (Whigham & Simpson, 1978). Similar to the situations 
in leaves, the decreasing pattern in root C : P and N : P ratios with 
increasing grazing intensity might be due to enhanced N and P use 
efficiencies and increased soil P availability (Chapin, Matson, & 
Mooney, 2002).

The responses of soil C  : N  : P stoichiometry to grazing inten-
sity have important implications for the development of sustainable 
strategies for grassland management. Our results showed that light 
grazing significantly increased the C  :  N, C  :  P and N  :  P ratios of 
soil but heavy grazing decreased these ratios (Figure 3f). The in-
creases in soil C : N and C : P ratios under light grazing may result 
from grazing-induced increases in C-rich root exudates (Bardgett, 
Wardle, & Yeates, 1998). Heavy grazing with frequent livestock 
trampling and lower productivity may reduce both litter fall and root 

F I G U R E  6   A conceptual diagram of the influence of different grazing intensities on processes controlling the above- and belowground 
C : N : P stoichiometry of grassland ecosystems. Nutrient pools include C, N and P content in above-and belowground plants, microbes and 
soil. Green upward arrows represent positive responses, red downward arrows negative responses. The positive or negative responses 
under different intensities are drawn based on the responses of C, N and P pools as well as our previous study (Zhou et al., 2017). LG = light 
grazing; MG = moderate grazing; HG = heavy grazing; MAT = mean annual temperature; MAP = mean annual precipitation
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exudates, causing soil C and N loss (Figure 6; Derner et al., 1997; 
Heyburn, Mckenzie, Crawley, & Fornara, 2017). However, inputs 
of livestock urine and faeces may partly compensate N loss, result-
ing in a decreased C : N ratio under heavy grazing (Bai et al., 2012; 
Mcsherry & Ritchie, 2013). Moderate and heavy grazing decreased 
the soil N pool but increased the soil P pool (Figures 2, 6, Supporting 
Information Figure S2). These differences in grazing effects can pos-
sibly be explained by the mechanisms underlying N and P cycles. 
Whereas N can enter natural ecosystems through multiple routes, 
P derives mostly from mineral weathering (Peñuelas et al., 2013). 
Thus, we hypothesize that grazing increases soil P availability by 
stimulating rock weathering rates, possibly because of decreases in 
plant cover and increases in soil aridity and soil exposure (Delgado-
Baquerizo et al., 2013; Eldridge & Delgado-Baquerizo 2017).

Microbes usually mediate the plant–soil feedback through mo-
bilization and immobilization of nutrients, which may link the micro-
bial C  : N  : P stoichiometry to soil stoichiometry (Bai et al., 2012). 
A previous study indicated a strong correlation between responses 
of microbial and soil C pools to grazing (Zhou et al., 2017). In this 
study, we also found that effects of grazing intensity on microbial 
C : N ratio were similar to those on soil C : N ratio (Figure 3e), sug-
gesting that grazing affects these ratios through similar mechanisms, 
for example, grazing-induced root exudation, input of livestock urine 
and faeces, and trampling.

4.3 | Grazing intensity changed linkage between 
plant and soil C : N : P stoichiometry

Grazing intensity influences the relationship between plant and soil 
C : N : P stoichiometry (Bagchi & Ritchie, 2010; Liu et al., 2015). In 
this study, we found that correlations between the responses of 
litter and soil C  : N ratios were negative under light and moderate 
grazing but became positive under heavy grazing (Figure 4c). These 
changes were probably due to the  larger mixture of litter and soil 
with livestock urine and greater litter N fixation under heavy grazing 
than light and moderate grazing, enhancing microbial diversity and 
activity and stimulating the decay rate of litter (Knops et al., 2002).

Similarly, our results show that grazing-induced changes in soil C : P 
were positively correlated with changes in root C : P under both light 
and moderate grazing (Figure 4d). These results suggest a tight linkage 
between roots and soil under these grazing regimes due to increased 
root exudates and cascading effects on plant P uptake and then root 
P content (Bai et al., 2012; Gifford, & Marshall, 1973). However, this 
relationship became negative under heavy grazing, possibly because 
heavy grazing decreased soil C content but increased photosynthetic 
C allocation to roots (Klumpp et al., 2009). Alternatively, the cascade 
effect described above disappeared (Bai et al., 2012) and the excess P 
uptake by roots had a negative influence upon soil P.

Despite the correlations of soil stoichiometry with litter and root 
stoichiometry, soil C and N pools tended to respond more negatively 
to grazing than those of litter and roots (Figure 2). This suggests that 
grazing stimulated soil C and N loss through abiotic pathways. For ex-
ample, livestock activities might change soil structure by disrupting 

aggregates and surface crust, leading to increased soil susceptibil-
ity to water and wind erosion and stimulating soil C and N losses 
(Neff, Reynolds, & Belnap, 2005). These effects may complicate the 
links between plants and soil, and provide another explanation as to 
why correlations between plant and soil stoichiometry changed with 
grazing intensities (Figure 4).

4.4 | Regulation of grazing effects on soil 
C : N : P stoichiometry by climate, soil depth and 
vegetation type

Climate, soil depth and vegetation type are known to affect the bio-
geochemical cycles of C, N and P (Mcsherry & Ritchie, 2013; Yuan & 
Chen, 2015), and might also affect the responses of these cycles to 
grazing. Responses of soil C : N : P stoichiometry to grazing increased 
with MAT but decreased with MAP (Figure 5). P limitation is more 
common in warmer biomes whereas N limitation is more common in 
colder biomes, explaining why grazing effects on soil N : P increased 
with MAT (Reich & Oleksyn, 2004). Grasslands in humid regions typ-
ically have greater plant productivity and higher microbial diversity 
than grasslands in arid regions (Bai et al., 2012), possibly explain-
ing why grazing accelerated N cycling and decreased soil N stocks 
more strongly in humid regions. Because soil N can easily be leached 
with rainfall (Vitousek, Porder, Houlton, & Chadwick, 2010)  as well 
as the grazing effects on soil P were relatively similar for humid and 
dry regions, grazing  decreased soil N  :  P along the MAP gradient. 
As higher elevations are usually associated with lower temperature 
and greater precipitation, the increased responses of soil C : N and 
C : P ratios to grazing along the elevation gradient might be mainly 
explained by the effects of MAP, whereas the decreased responses 
of soil N : P might be due to the effects of MAT (Figure 5p–r).

Our results showed that grazing induced larger increases in soil 
C  : N ratio in deeper soil compared to surface soil, due to weaker 
decreases in soil C stocks and stronger decreases in soil N stocks 
(Supporting Information Figure S2). Under grazing, frequent tram-
pling activity in topsoil may largely destroy soil aggregates, accelerate 
decomposition of soil organic matter, and increase soil susceptibility 
to water and wind erosion (Neff et al., 2005), thereby causing larger 
decreases in soil C stocks but weak effects on soil N stocks compared 
to those in deeper soil. In addition, differences in root biomass dis-
tribution (Schuman, Reeder, Manley, Hart, & Manley, 1999) and mi-
crobial community composition (Shrestha & Stahl, 2008) within the 
plant–soil system may also affect the response of soil N and P pools 
and N : P ratios to grazing at different soil depths (Zhou et al., 2017).

Differential responses of C  :  N  :  P stoichiometry to grazing 
were also found between C3 and C4 plants. Unfortunately, most 
of the comparisons did not have sufficient data to draw a solid 
conclusion (Figure 6). With relatively larger sample size, grazing 
increased C : N ratios in C4 plants more strongly than in C3 plants. 
These results can possibly be explained by higher root-to-shoot 
ratios, higher root exudates, and tighter association with mycorrhi-
zae to stimulate soil organic C storage in C4 grasslands (Mcsherry 
& Ritchie, 2013).
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4.5 | Implications for future experiments and 
terrestrial ecosystem models

Understanding the effects of grazing intensity on the C : N : P stoi-
chiometry of grassland ecosystems will help us improve grassland 
management and predict climate–biosphere feedbacks (Derner 
et al., 1997; Zhou, Luo, Chen, Hu, et al., 2019). Recent ecosystem 
models usually consider grazing effects through three primary 
processes (i.e., direct intake, excretion, and trampling; Chen et 
al., 2018), and apply livestock density and/or weight of livestock 
to indicate grazing intensity (Chen et al., 2019). In contrast, Earth 
system models (ESMs) simulate grazing by direct biomass removal 
(Erb et al., 2017), although the coupled C, N and P cycles have 
been incorporated into some models (Thum et al., 2019). Our re-
sults showed that grazing intensity significantly influenced plant 
and soil C  :  N  :  P stoichiometry as well as their linkage (Figures 
3, 4). Furthermore, grazing might trigger the defence strategy of 
plants, shift the biomass allocation, and change plant nutrient use 
efficiency (Figure 6). These grazing-induced changes in C  : N  : P 
stoichiometry have not been incorporated into grazing models and 
ESMs (Thum et al., 2019). Integrating grazing effects on C : N : P 
stoichiometry into ESMs and validating these models against field 
observations may improve prediction of ecosystem functioning in 
grasslands worldwide (Bello et al., 2010).

Most of the studies included in this meta-analysis were con-
ducted in the temperate grasslands in eastern Asia and Northern 
America (Figure 1). More experiments are needed to understand 
the impact of grazing on tropical savanna and boreal tundra. 
Moreover, field experiments are needed to provide mechanis-
tic insight into grazing effects on C, N and P cycles. In addition 
to climate, soil depth, and vegetation type, management history 
might also regulate the response of C : N : P stoichiometry to graz-
ing (Chapin et al., 2002; Zhou et al., 2017). Fortunately, both the 
grazed and ungrazed plots of most of the selected studies were 
free of grazing for at least for 10 years prior to the start of the ex-
periment, minimizing the effect of land use history. Nevertheless, 
well-designed transect experiments might yield insights into graz-
ing effects across large spatial scales and provide useful baselines 
for evaluating grazing effects in ESMs.

5  | CONCLUSIONS

Grazing is a key anthropogenic disturbance that strongly influences 
the ecosystem C, N and P cycles as well as their stoichiometry. 
Our analysis showed that heavy grazing generally had stronger ef-
fects on ecosystem C  : N  : P stoichiometry than light and moder-
ate grazing, indicating substantial impacts of livestock disturbance 
on biogeochemical cycles of C, N and P in grassland ecosystems. 
The differential responses of soil N and P pools to grazing and 
their linkage between plants and soil suggested that soil physico-
chemical processes played an important role in regulating grazing 
effects. Experiments that are focused on belowground processes 

and experiments in tropical and boreal grasslands could deepen 
our understanding of the responses of ecosystems to grazing. 
Incorporating the effects of grazing intensity into the framework of 
next-generation ESMs may improve predictions on how human dis-
turbance affects the functioning of grassland ecosystems.
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