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Abstract
Purpose Few studies have been done to investigate the impact
of mowing on N2O emissions and the abundance of functional
microbial genes, especially in sloping landscapes. This study
aims to explore the impact of mowing on key N2O-producing
processes under different topographical conditions in a semi-
arid grassland.
Materials and methods Soil samples were collected from a
semiarid grassland ecosystem in Xilingol region, Inner
Mongolia, where long-term management practices including
non-mowing and mowing in flat and sloping blocks were
conducted. We then determined (1) soil moisture, total carbon

(TC) and nitrogen (TN), and mineral N (NH4
+-N and NO3

−-
N) content; (2) the potential N2O emission from nitrification
(NN2O) and from denitrification (DN2O) and potential N2 emis-
sion (DN2); and (3) the gene abundance of ammonia-oxidizing
archaea (AOA) and ammonia-oxidizing bacteria (AOB), the
narG (nitrate reductase) gene, and nosZ (nitrous oxide reduc-
tase) gene.
Results and discussion Soil moisture and potential N2O emis-
sion from nitrification and denitrification were significantly
lower in sloping than in flat conditions, whereas the TC, TN,
NH4

+-N, NO3
−-N content, gene abundance of AOA, AOB,

narG, and nosZ showed no difference between flat and slop-
ing conditions. Mowing significantly decreased the gene
abundance of AOA, AOB, narG in both flat and sloping areas,
and significantly decreased potential N2O emissions, especial-
ly in sloping areas.
Conclusions The potential N2O emission was significantly
lower on sloping than flat grassland. Mowing significantly
decreased the potential N2O emissions, especially on sloping
grassland. Our results suggest that topographical conditions
should be incorporated into methods for estimating N2O emis-
sion and land management practices in semiarid grassland.

Keywords Microbial functional groups .Mowing . N2O
emission potential . Slope

1 Introduction

Nitrous oxide (N2O) emissions contribute to global warming
and to the catalytic depletion of the ozone layer (IPCC 2007).
They are mainly produced in soils by microbial nitrification
denitrification (Zumft 1997). Temperate grasslands are the
major sources of atmospheric N2O (Oenema et al. 2007),
and mowing for hay is an important land-use type in grassland
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regions. Much evidence has suggested that mowing or hay-
harvesting could significantly reduce carbon (C) and nitrogen
(N) deposits below ground, resulting in substrate limitation to
soil-inhabiting microbes, particularly in nutrient-limited envi-
ronments (Wan et al. 2002). Mowing leads to changes in the
size of the root system and thus causes the death and decay of
the roots and nodules, followed by decomposition, minerali-
zation of nitrogen (Sørensen et al. 2008), nitrification, and
denitrification (Pan et al. 2016) related to N2O emissions.

N2O production and reduction depend on both the abun-
dance of specific groups of soil microbes, such as AOA, AOB,
narG genes, etc. (Wrage et al. 2001; Canfield et al. 2010), and
on a range of soil abiotic factors, like soil pH, C, N, and water
content (Wallenstein et al. 2006), which regulate their activity.
Abiotic influences on N2O production in grassland are well
understood and have been extensively reviewed (e.g., Saggar
et al. 2004 and Luo et al. 2010. More recently, there has been a
greater focus on the role of microbial functional groups in
N2O emissions from soil (Chen et al. 2014; Zhong et al.
2014; Keil et al. 2015). Chen et al. (2014) showed that AOA
abundance decreased significantly with mowing, while the
effect of mowing on AOB abundance varies seasonally in
Inner Mongolia grasslands; Keil et al. (2015) also showed
increased potential N2O emissions and denitrification gene
abundance under mowing, but this was a combined effect of
mowing, fertilization, and grazing, making it impossible to
confirm effect of mowing alone. However, no information is
available on how mowing affects soil microbial functional
potentials of N cycles in grasslands under different topograph-
ical conditions.

The northern grasslands of China are mainly used for stock
raising, and a large part of this region is sloping (Yao 2005).
The effect of mowing on the soil ecosystems varies in flat or
sloping grasslands (Luo et al. 2013). Previous works investi-
gating N cycling components, for example, N2O flux (Letica
et al. 2010; Luo et al. 2013; Zhong et al. 2014), N leaching
(Parfitt et al. 2009), and urine and dung deposition patterns
(Betteridge et al. 2010) under varied topography, were mainly
conducted in humid climate in New Zealand or European
grassland. Little work has focused on the mechanisms driving
the variation in N2O production processes in sloping land-
scapes in semi-arid grasslands.

The Inner Mongolian grassland is one of the best-
known rangelands in the eastern part of the Eurasian
steppe (Wang 2004). In recent decades, with the rapid
increase in livestock numbers, pastoralists prepare in-
creasingly more hay by mowing the natural grassland,
which has induced a series of grassland degradations (Li
et al. 2008) and altered N2O emissions (Zhang et al.
2015). However, there has been little research on the
impact of mowing on N2O emissions and the abundance
of functional microbial genes in grassland, especially in
sloping landscapes. The aim of this study is to explore

the impact of mowing on key soil characteristics and
microbial functional gene abundance known to regulate
N2O production under different topographical conditions
in the semi-arid grassland.

2 Materials and methods

2.1 Experimental site

This study was conducted at the Inner Mongolia Grassland
Ecosystem Research Station (IMGERS, 43° 38′ N, 116° 42′
E) of the Chinese Academy of Sciences, which is located in
the Xilin River Basin of Inner Mongolia, China (Bai et al.
2004). The topography consists of low rolling hills, with an
elevation ranging from 1200m to 1280m above sea level. The
mean annual precipitation is 346.1 mm, with about 60–80%
falling as rainfall in the growing season (April to September).
The mean annual temperature is 0.3 °C. The soil is classified
as dark chestnut (Calcic Chernozem, according to ISSS
Working Group RB, 1998). Stipa grandis (perennial bunch-
grass) and Leymus chinensis (perennial rhizomatous grass) are
the two dominant species of the native grassland vegetation in
the study area, which together account for 60–80% of total
aboveground biomass. The experimental area had been used
for sheep grazing until 2003, when the experiment was
established, and in order to have an equal starting point, the
whole area was cut to 3–5 cm stubble height at the end of the
2004 growing season.

Our experimental site, which covers a total area of 128 ha,
was established in 2005 with a split–split plot in a random
complete block design. The 128-ha area was first divided to-
pographically into two blocks (sloping and flat, with the slope
class about 3–4°), and each block was divided into different
management treatments (traditional grazing treatments, mixed
treatments [each plot alternated year on year between mowing
and grazing], and mowing treatments). In this study, we se-
lected two topography types (slope and flat) with two mowing
treatments (non-mowing and mowing), a total of four 2 ha
units. The mowing treatment was one-cut haying in mid-
August every year (2–3 cm above the ground).

2.2 Sampling procedures and parameters

Sampling was done in mid-August 2014, corresponding to
peak biomass in the growing season. Five 5 m × 5 m sampling
sub-plots were established randomly along a diagonal line in
each of the 4 plots. Within each soil sample plot, five soil
cores (5 cm in diameter) were collected and combined from
0 to 10 cm as one sample. Soil samples were then passed
through a 2 mm sieve and stored at 4 °C in the laboratory until
further use. Sub-samples of fresh soil were stored at − 20 °C
for DNA extraction.
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2.3 Chemical and microbial functional gene analyses

Soil NH4
+ and NO3

− concentrations were determined in 2 M
KCl extracts using a LACHAT Quickchem Automated Ion
Analyzer (FIA Star 5010 Analyzer; Tecator). Gravimetric soil
moisture content was determined by oven-drying at 105 °C for
24 h. Total soil C content was analyzed using the H2SO4-
K2Cr2O7 oxidation method (Nelson et al. 1996). Total N con-
tent was analyzed using the Kjeldahl acid-digestion method
with an auto-analyzer (Foss Inc., Hillerød, Sweden). DNA
was extracted from 0.3 g of frozen soil using a MoBio
Powersoil™ DNA Isolation Kit (San Diego, CA, USA) fol-
lowing the manufacturer’s instructions and stored at − 80 °C
until further required. The abundance of AOA, AOB, narG,
and nosZ genes was quantified in triplicate by real-time PCR
using an iCycler IQ (Biorad). The real-time PCR mixture
contained 2 ng of undiluted soil DNA, 5 pmol of primers
(Table 1), and 2 × SYBR Green iCycler iQ mixtures (Bio-
Rad, US) in a total of 25-ml reaction volumes.

2.4 Incubation experiment to measure N2O emission
potential from nitrification and denitrification

The incubation experiment was performed in a 250-ml flask
with 40 g (dry weight) of sieved moist field soil. The head-
space inside the flask was set with three acetylene (C2H2)
partial pressures: 0, 10 Pa, and 10 K Pa, each with three rep-
licates (Hergoualc’h et al. 2007). Each flask was sealed with
an airtight rubber lid and incubated at temperatures and mois-
ture levels similar to those recorded in the field. Gas samples
of 1 ml from the headspace of the flasks were taken at 0, 1, and
7 days and analyzed for N2O concentration using a gas chro-
matograph (Agilent 7890 GC USA) equipped with a 63Ni-
electron capture detector operating with a column.

The N2O emission potential from nitrification was estimat-
ed from the difference in headspace N2O concentration be-
tween flasks without C2H2 and those with 10 Pa C2H2. The
N2O emission potential evolved by denitrification was esti-
mated from the headspace N2O concentration in the flasks
with C2H2 at 10 Pa. The N2 emission potential evolved by
denitrification was estimated by the headspace N2O concen-
tration difference between the flasks with C2H2 at 10 KPa and
those with C2H2 at 10 Pa. The 10 k Pa C2H2 concentration
inhibits the reduction of N2O to N2 (Klemedtsson et al. 1988;
Webster and Hopkins 1996).

2.5 Statistical analysis

For the controlled experiment, the statistical significance of
the effects of mowing, topography, and their interaction on
all data was tested with a two-way SAS ANOVA analysis
(SAS Institute, version 9). Significant differences were tested
using Duncan’s multiple-range test at the level of 0.05.

3 Results

3.1 Soil properties

Soil moisture content varied from 7 to 10% (w/w) (Table 2).
Soil moisture content was significantly lower with mowing
than non-mowing treatment (P < 0.01), and significantly low-
er on the slope than on the flat (P = 0.04), but there was no
interaction effect between mowing treatments and topography
(P = 0.49). Soil pH varied from 6.98 to 7.15, with no signif-
icant differences for treatment or topography (Tables 2 and 3).

The TN and TC content of soils were significantly lower
(TN: P = 0.01; TC: P < 0.01) only with mowing rather than
non-mowing treatment; there were no differences between flat
and slope and no interaction effects between mowing treat-
ments and topography (Tables 2 and 3).

The NH4
+-N content showed no differences between the

various conditions (Tables 2 and 3). However, the NO3
−-N

content was significantly lower with mowing than non-
mowing (P = 0.04), again with no difference between flat
and slope. No interaction was observed between mowing
treatments and topography for soil NO3

−-N (Tables 2 and 3).

3.2 Microbial functional genes

The AOA, AOB, and narG genes were significantly less abun-
dant under mowing than non-mowing treatment (AOA:
P = 0.02, AOB: P < 0.01, Fig. 1a, b), but none showed any
difference between flat and slope (both P > 0.05). The nosZ
gene abundance was not significantly affected by mowing or
topography (data not shown).

3.3 N2O production potential from nitrification
and denitrification

The N2O emission potential from nitrification (NN2O) and
denitrification (DN2O) and nitrogen gas from denitrification
(DN2) were significantly lower under mowing than non-
mowing treatment (NN2O: P < 0.01, DN2O: P = 0.02, DN2:
P < 0.01; Fig. 2); NN2O and DN2 were also significantly lower
on the slope than on the flat (NN2O: P = 0.03, DN2: P = 0.01),
whereas DN2O was only marginally lower on sloping than flat
blocks (DN2O: P = 0.10). No interaction effects were observed
between mowing treatments and topography.

4 Discussion

Many studies have reported greater N2O emission or emission
potential in low sloping landscapes due to higher C and N
substrates or soil water, but low sloping areas generally con-
stitute a small percentage of the whole sloping pasture, while
in medium or high sloping areas, usually N2O emission was
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lower (Letica et al. 2006; Hoogendoorn et al. 2008; Zhong
et al. 2016). Therefore, N2O emission on sloping areas is
generally lower than that on flat areas, because nutrition and
water aggregates through rain runoff and water infiltration in
medium or high slope areas cause lower soil fertility com-
pared with flat areas. Our results were consistent with this:
NN2O, DN2O, and DN2were all lower in sloping comparedwith
flat areas (Fig. 2), but in sloping areas, this was mainly caused
by soil moisture. In our study, there were no differences be-
tween sloping and flat areas in C and N substrates or the
abundance of key functional microbial groups; only soil mois-
ture was significantly lower in sloping areas (Tables 2 and 3;
Figs. 1 and 2), which suggested that soil moisture was the
main factors affecting the N2O-producing process. This is
not surprising; in our result, the correlation analysis also
showed that soil moisture had stronger correlation with the
NN2O or DN2O compared with other soil factors or the abun-
dance of key functional microbial groups (Table S1,
Electronic Supplementary Material); since in the Inner

Mongolian grasslands, N2O production also has proved to
be regulated mainly by changes in soil moisture (Bai et al.
2000; Zhong et al. 2014). In sloping areas, the soil has higher
infiltration capacities with more sand and reduced water avail-
ability (Hook and Burke 2000), leading to a lower potential
N2O emission.

We found that mowing significantly decreased the abun-
dance of key functional microbial groups responsible for ni-
trification and denitrification processes and decreased the
NN2O and DN2O in soils, suggesting that mowing has signifi-
cant effect on N2O production. In humid-climate grassland,
mowing can increase potential N2O emissions due to fertili-
zation following the mowing, or it can have a positive impact
on plant and soil microbial species and number, increasing the
rates of N and C cycling under relatively good soil moisture
conditions (Patra et al. 2006; Keil et al. 2015). However, in
semi-arid grassland, mowing may have a negative impact on
plant diversity, as few species are able to bear such a degree of
disturbance (Mariotte et al. 2013). It also leads to less input of

Table 1 Enzymes encoded by functional genes measured in this study, and thermal conditions and primer sequences used in qPCR

Functional
gene

Enzyme Annealing time and
temperature

Elongation time and
temperature

Primer Primer sequence Reference

Bacterial
amoA

Ammonia
monooxygen-
ase

55 °C, 30 s 72 °C, 45 s amoA1F, GGG GTT TCTACT GGT
GGT

Rotthauwe et al.
1997

amoA2R CCC CTC KGS AAA GCC
TTC TTC

Archaeal
amoA

Ammonia
monooxygen-
ase

55 °C, 30 s 72 °C, 45 s CrenamoA23F,
CrenamoA616R

ATGG
TCTGGCTWAGACG

Francis et al.
2005

GCCATCCATCTGTA
TGTCCA

narGa Nitrate reductase 58 °C, 30 s 72 °C, 30 s narGG-F, TAY GTS GGG CAG GAR
AAA CTG

López-Gutiérrez
et al. 2004

narGG-R CGTAGA AGA AGC TGG
TGC TGT T

nosZb Nitrous oxide 60 °C, 30 s 72 °C, 30 s nosZ2F, CGC RAC GGC AAS AAG
GTS MSS GT

Henry et al. 2006

reductase nosZ2R CAK RTG CAK SGC RTG
GCA GAA

aTouch down starting at 63 °C temperature decrease of 1 °C per cycle for 6 cycles
b Touch down starting at 65 °C temperature decrease of 1 °C per cycle for 6 cycles

Table 2 Gravimetric soil
moisture content, pH, TC, TN,
NH4

+-N, and NO3
−-Nin semiarid

grassland. Values are means ± 1
s.e.m (n=3)

Treatments Flat Slope

Non-mowing Mowing Non-mowing Mowing

Soil moisture (%) 9.75 ± 0.24 8.69 ± 0.18 9.36 ± 0.05 7.64 ± 0.14

pH 7.09 ± 0.13 7.05 ± 0.14 7.15 ± 0.15 6.98 ± 0.03

TC (g kg−1) 11.04 ± 0.56 8.92 ± 0.80 11.43 ± 0.69 8.95 ± 0.60

TN (g kg−1) 1.43 ± 0.06 1.21 ± 0.05 1.32 ± 0.08 1.13 ± 0.07

NH4
+-N (mg kg−1) 13.06 ± 1.86 10.59 ± 0.66 11.20 ± 4.06 8.43 ± 0.59

NO3
−-N (mg kg−1) 6.45 ± 0.94 3.25 ± 0.40 5.33 ± 1.08 3.87 ± 1.17

Values are means ± 1 s.e.m. (n = 3)
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labile C and N into the soil for roots and microorganisms, as a
result of the removal of hay from plots (Han et al. 2012). Our

study shows that mowing significantly decreases soil mois-
ture, as well as TC, TN, and NO3

−-N concentration (Tables 2
and 3). All these soil factor changes caused the reduced abun-
dance of genes AOA, AOB, and narG (Fig. 1) and thus lower
levels of potential N2O emission under mowing (Fig. 2).

Management and topography are both relevant drivers of
N2O emission in grassland, confirming results from other
management types (e.g., grazing, fertilization) (Han et al.
2012; Luo et al. 2013). However, our results did not show
any conclusive evidence of interactive effects of mowing
and topography on N2O production potentials in the Inner
Mongolian grassland (Fig. 2). The N2O production potential

Fig. 2 Soil NN2O (a), DN2O (b), and DN2 (c) in mid-August 2014 in
semiarid grassland. M mowing treatments (non-mowing and mowing);
T topography (flat and slope). Values are means ± 1 s.e.m. (n = 3)

Fig. 1 Soil AOA (a), AOB (b), and narG (c) gene copies in semiarid
grassland; M mowing treatment (non-mowing and mowing); T
topography (flat and slope). Values are means ± 1 s.e.m. (n = 3)

Table 3 Results (P value) from two-way ANOVA for the effects of
mowing treatments (M), topography (T), and their interaction (T × M) on
soil moisture, pH, TC, TN, NH4

+-N, and NO3
−-N in semiarid grassland.

Values are means ± 1 s.e.m (n=3)

Factor Soil moisture pH TC TN NH4
+-N NO3

−-N

M < 0.01 0.42 < 0.01 0.01 0.28 0.03

T 0.04 0.95 0.76 0.19 0.40 0.80

T × M 0.49 0.65 0.79 0.91 0.95 0.38

Values are means ± 1 s.e.m. (n = 3)
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showed the same trend in response to mowing on the slope as
on the flat, but in sloping area, the response to mowing on
N2O production potentials appeared to be more sensitive to
changes. This may be related to higher soil infiltration capac-
ity in slope than in flat land (Hook and Burke 2000); on the
other hand, high sensitivity of soil physio-chemical and bio-
logical properties to mowing is also related to the loss of soil
nutrients with mowing that results in lower C and N cycling
rates (Zhong et al. 2016). Our study also showed greater re-
duction in soil moisture and gene abundance of AOA and AOB
under mowing on sloping land (Table 2 and Fig. 1). The high
sensitivity of soil moisture and microbial function genes’ re-
sponse to mowing in sloping areas caused a greater reduction
in potential N2O production in these areas.

However, narG gene abundance shows a different trend
under mowing from that of DN2O on the flat and on the slope
(Fig. 1c and Fig. 2c). Two possible reasons may help explain
the different trend between narG gene abundance and DN2O

observed in this study: (1) gene abundance cannot provide
information on real-time process rates since such rates are
dependent on environmental conditions (Petersen et al.
2012); (2) soil NO3

−-N concentration is the substrate of
narG; our result showed the gene abundance of narG had
significant positive correlation with soil NO3

−-N but not with
soil moisture (Table S1, Electronic Supplementary Material);
it indicates that the abundance of narG is mainly affected by
soil substrate concentration instead of soil moisture. The nosZ
gene abundance shows no difference under any of the condi-
tions, which is consistent with Zhong et al. (2014) and agrees
with findings from grassland ecosystems (Chroňáková et al.
2009) in which soil was not strongly affected by environmen-
tal changes.

5 Conclusions

In conclusion, potential N2O emission was significantly lower
in sloping than in flat grassland chiefly because of the lower
soil moisture in sloping areas. Mowing significantly decreases
potential N2O emissions, especially on slopes, and sloping
grassland is more sensitive to human activities than flat. Our
results suggest that estimating N2O emission and choosing
land management practices in semiarid grassland should con-
sider topography.
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