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Abstract
1.	 Terrestrial ecosystems currently function as a net carbon (C) sink for atmospheric C 
dioxide (CO2), but whether this C sink can persist with global climate change is still 
uncertain. Such uncertainty largely comes from C turnover time in an ecosystem, 
which is a critical parameter for modelling C cycle and evaluating C sink potential. Our 
current understanding of how long C can be stored in soils and vegetation and what 
controls spatial variations in C turnover time on a large scale is still very limited.

2.	 We used data on C stocks and C influx from 2,753 plots in vegetation and 1,087 
plots in soils and investigated the spatial patterns as well controlling factors of C 
turnover times across forest ecosystems in eastern China.

3.	 Our results showed a clear latitudinal pattern of C turnover times, with the shortest 
turnover times in the low-latitude zones and the longest turnover times in the high-
latitude zones. Mean annual temperature and mean annual precipitation were the 
most important controlling factors on soil C turnover times, while forest age ac-
counted for the majority of variations in the vegetation C turnover times. Forest 
origin (planted or natural forest) was also responsible for the variations in vegeta-
tion C turnover times, while forest type and soil properties were not the dominant 
controlling factors.

4.	 Our study highlights the different dominant controlling factors in soil and vegeta-
tion C turnover times and different mechanisms underlying above- and below-
ground C turnover. These findings are essential to better understand (and reduce 
uncertainty) in predictive models of coupled C–climate system.
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1  | INTRODUCTION

Carbon (C) turnover time (τ, year), which equals residence time at 
steady state, refers to the average time elapsed between the input of 
a C atom through photosynthetic fixation and its loss through respi-
ratory or non-respiratory pathways (Barrett, 2002). It is an important 
indicator for ecosystem functions and a key parameter in coupled C 
cycle models (e.g. Earth System Models, ESMs) for predicting global C 

storage (Chen et al., 2015). However, substantial uncertainty remains 
about C turnover time, which prevents us from accurately assess-
ing the size of the terrestrial C sink and predicting future climate–C 
cycle feedbacks (Anav et al., 2013; Wieder, Cleveland, Smith, & Todd-
Brown, 2015). This uncertainty is even larger than that of C input of 
net primary productivity (Friend et al., 2014). Thus, it is urgently im-
portant to have a full understanding of C turnover time and its con-
trolling factors. This understanding, based on empirical observations, 
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can help to reduce the large degree of uncertainty in predictive models 
of the Earth’s coupled C–climate system (Friedlingstein et al., 2006).

C turnover time at steady state is commonly estimated as the ratio 
of C stock in a reservoir to input or output flux (Raich & Schlesinger, 
1992). Soil is the major C pool in terrestrial ecosystems and has a 
longer turnover time than vegetation (Schmidt et al., 2011). A cen-
tral topic in previous studies on soil organic C (SOC) dynamics is 
SOC turnover time (τsoil) and its determinants (Heckman et al., 2014; 
Koven et al., 2015; Schimel et al., 1994). It has been documented 
that at a small spatial scale, soil C turnover is mainly dependent on 
soil temperature and moisture (Craine, Fierer, & McLauchlan, 2010; 
Davidson & Janssens, 2006; Thomsen, Schjønning, Jensen, Kirstensen, 
& Christensen, 1999), soil chemical properties (Schindlbacher et al., 
2010; Xu, He, & Yu, 2016; Xu, Shi, et al., 2016), C quality (Chen, Liang, 
et al., 2016) or soil microbial community (Chen, Li, Lan, Hu, & Bai, 2016; 
Cleveland, Nemergut, Schmidt, & Townsend, 2007), while at national 
and global scales, latitude, altitude and associated climatic variables 
are suggested to be responsible for the variability of τsoil (Chen, Huang, 
Zou, & Shi, 2013). Moreover, soil C turnover is also affected by natural 
(e.g. fire and insects) and human disturbances (e.g. fertilizer, clear-
cutting and land use) (Reed, Ewers, & Pendall, 2014; Zhou, Zhao, Liu, 
& Oeding, 2013). Despite the considerable effort made to quantify the 
variations of SOC turnover among soil types, climatic conditions and 
under different disturbances (Garten & Hanson, 2006; Six & Jastrow, 
2002), large controversy over soil C turnover and its controlling factors 
remains, due to large spatial heterogeneity (Schmidt et al., 2011) and 
different experimental methods among case studies, making it difficult 
to compare τsoil at a large scale and to quantify the key controlling 
factors. Moreover, the direct and indirect pathways of these abiotic 
and biotic factors impacting on τsoil are unclear and less quantified in 
previous studies.

In contrast to τsoil, vegetation C turnover time (τveg) has been rarely 
examined although it is a crucial process in regulating stoichiometry 
and elemental cycle in an ecosystem (Erb et al., 2016), and also an 
important parameter in the ESMs to predict biomass allocation and 
productivity of the ecosystem (Bloom, Exbrayat, van der Velde, Feng, 
& Williams, 2016; Friend et al., 2014). τveg differs from seconds or 
months in foliage, years in fine roots, to decades in wood, which can 
subsequently lead to great variability of τveg (Malhi, Saatchi, Girardin, 
& Aragão, 2009; Trumbore, 2000). Previous studies have suggested 
that τveg is dependent on the combined effects of vegetation type, 
climate, soil and land use (Erb et al., 2016). However, our quantita-
tive understanding on the controlling factors of τveg is still very limited. 
Moreover, as it is difficult to measure foliage, root and wood C turn-
over times separately and directly in the field, the ESMs provide an 
alternative measurement of C turnover times for different vegetation 
compartments (e.g. Negrón-Juárez, Koven, Riley, Knox, & Chambers, 
2015). Models have undoubtedly improved our understanding of τveg 
among different compartments, but the challenge for model studies 
lies in that huge uncertainty which still exists. For example, turnover 
time of wood in tropical forests has been estimated to be 10–30 years 
faster in ESMs than the observed value (Negrón-Juárez et al., 2015), 
and globally ecosystem C turnover times have been underestimated 

by 36% in the ESMs (Carvalhais et al., 2014). Most importantly, our 
understanding of the determinant processes of τveg is still under de-
bate (Friend et al., 2014). Therefore, more observation-based empiri-
cal studies are needed to quantify τveg and its controlling factors.

Forests contain up to 80% of terrestrial above-ground C and 40% 
of below-ground C, thus play a critical role in terrestrial C cycle (Dixon 
et al., 1994). A recent study reveals that forests now serve as a net C 
sink for atmospheric CO2 (Pan et al., 2011), but whether this C sink will 
persist as the climate change remains largely uncertain (Goodale et al., 
2002). Thus, studying forest C turnover times will greatly improve 
our fundamental knowledge of terrestrial C cycle. Previous studies 
have investigated spatial variations of C turnover times associated 
with forest type and climate, and found that C turnover times have 
a latitudinal pattern and also differ among forest types (Chen et al., 
2013; Trumbore, 2000; Vesterdal, Elberling, Christiansen, Callesen, & 
Schmidt, 2012). Unfortunately, these studies have seldom considered 
the impacts of forest age. In comparing to other terrestrial ecosystems, 
a forest ecosystem is more complex as it is unevenly aged. Numerous 
studies have suggested that forest age is a critical factor determin-
ing ecosystem C storage and fluxes (Gray, Whittier, & Harmon, 2016; 
Ryan, Binkley, & Fownes, 1997; Yang, Luo, & Finzi, 2011), thus may af-
fect C turnover times. However, the impact of forest age on C turnover 
times over large areas is largely unknown.

In this study, we collected data from 2,753 forest plots in vegeta-
tion and 1,087 plots in soils from tropical to boreal forests in eastern 
China, which covers most forest types in the Northern Hemisphere 
(Fu et al., 2010). The main objectives of this study were to: (1) quan-
tify τveg and τsoil and their variations with climate zone, forest origin, 
forest type and forest age; (2) investigate the latitudinal patterns of 
C turnover times; and (3) reveal the controlling factors on the spatial 
variations of τveg and τsoil.

2  | MATERIALS AND METHODS

2.1 | Forest classification

Forest covers a wide latitudinal span from north to south in China. 
Therefore, the distribution of forest has a wide climatic range ex-
tending from boreal to tropical zones (Yu et al., 2006). Based on the 
principles of Chinese vegetation regionalization (Hou, Sun, Zhang, & 
He, 1982) and previous studies (He et al., 2017; Peng et al., 2016), we 
classified China’s forests as five forest type groups, including decidu-
ous broadleaf forest (DBF), deciduous needleleaf forest (DNF), ever-
green broadleaf forest (EBF), evergreen needleleaf forest (ENF), and 
needleleaf and broadleaf mixed forest (NBF). The five groups were 
further divided into 19 forest types associated with climate zones and 
39 forest subtypes (Table S1).

2.2 | Data sources and data compilation

Vegetation C stock (Cveg) was derived from the ‘Strategic Priority 
Research Program’ of the Chinese Academy of Sciences (No. 
XDA05050000), in which 3,161 plots covering main forest types in 
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China were investigated (He et al., 2017). The dimension of each plot 
was 0.1 ha and each plot was divided into ten 10 m × 10 m quadrats, 
with tree height and breast-height diameter of each tree, and total 
number of trees recorded in each quadrat. By using allometric equa-
tions based on the tree height and breast-height diameter for different 
tree species (Ecosystem Carbon Sequeatration Project, 2015), we cal-
culated vegetation biomass (kg C m−2) for each plot. Among the 3,161 
plots, we used the data of 2,753 plots which located in the eastern China 
(Figure 1). Of these 2,753 plots, there were 627 DBF plots, 149 DNF 
plots, 545 EBF plots, 1,176 ENF plots and 256 NBF plots. The forest 
origin (planted or natural forest) was recorded for each plot. Stand age 
of planted forests was determined by the time since the afforestation, 
while the age of natural forests were determined by the mean age of all 
tree species by measuring tree rings. The Cveg (kg C m

−2) was converted 
from the vegetation biomass by a conversion factor of 0.5 (Pregitzer & 
Euskirchen, 2004).

Soil C stock (Csoil) was derived from published studies from 2004 
to 2014 in the China National Knowledge Infrastructure (http://www.
cnki.net/) and in the Web of Science (http://www.webofknowledge.
com), including field-measured data from 1,087 plots (DBF, 223 plots; 
DNF, 87 plots; EBF, 359 plots; ENF, 348 plots; NBF, 70 plots) from 
northern to southern China (Figure 1). The disturbed forest plots (e.g. 
fire, cutting and fertilizer) were not included in the soil dataset. Data 

on reported soil C stock (kg C m−2), SOC or soil organic matter (SOM) 
content (%), soil bulk density (BD, g/cm3) and soil layer depth (cm) 
were extracted from the original studies. The SOC content was calcu-
lated by the SOM content using the Bemmelen index of 0.58 (Hollis, 
Hannam, & Bellamy, 2012). For better comparison with different sites, 
we scaled Csoil up to 100 cm in soil depth. When soil depth was more 
than 100 cm, we directly extracted the data down to 100 cm. When 
soil depth was less than 100 cm, we used the empirical relationship 
between SOC content and soil layer depth, proposed by Chai et al. 
(2015) to fit Csoil to the 100 cm soil layer. This empirical relationship 
between SOC content and depth performed very well in previous 
studies (e.g. Xu et al., 2015; Xu, He, et al., 2016). Here, we randomly 
selected 200 sample sites to evaluate the predictive accuracy of the 
empirical relationship (Figure S1). The results showed that the pre-
dicted values of soil C stock were almost identical to measured val-
ues for the 0–100 cm soil layer (R2 = .95, p < .001) (Figure S1). The 
reported Csoil in the original studies was used directly, if not, the Csoil in 
0–100 cm soil profiles was calculated using Equation (1):

where SOCi, BDi, Di and Ci represent SOC content, BD, soil depth 
and volume (%) of >2 mm fraction in soil layer i, respectively; and n is 

(1)Csoil =

∑n

i=1
SOCi × BDi × Di × (1 − Ci)

10

F IGURE  1 Distribution of sampling plots for estimation of C turnover times in vegetation and soils across forest ecosystems in eastern 
China. Forest type was classified as five groups: DBF, DNF, EBF, ENF and NBF

http://www.cnki.net/
http://www.cnki.net/
http://www.webofscienceknowledge.com
http://www.webofscienceknowledge.com
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the number of soil layers. If soil BD data were not directly reported in 
the published papers, the values were calculated using the equation 
proposed by Adams (1973). Furthermore, we also gathered plot infor-
mation, such as latitude, longitude, mean annual temperature (MAT), 
mean annual precipitation (MAP), dominant tree species, forest origin 
and forest age. Any missing geographical coordinates were digitized 
from Google Maps (http://maps.google.com).

Mean annual temperature and mean annual precipitation for each 
sampling plot in the vegetation dataset and the missing data in the soil 
dataset were taken from the National Climate Center (http://ncc.cma.
gov.cn/cn/) using kriging methods. The original meteorological data 
were derived from long-term observations of 722 meteorological sta-
tions in China (Wen & He, 2016). The kriging interpolation analyses 
were performed using ArcMap 10.0 (Environmental Systems Research 
Institute, Inc., Redlands, CA). Soil pH and BD were derived from the 
second National Soil Survey in China (National Soil Survey Office, 
1998). The contents of soil SOC, soil nitrogen (N, g/kg), phosphorus 
(P, ‰), potassium (K, ‰) and clay (%) for each plot were obtained from 
the China National Science and Technology Platform for Earth System 
Science Data Sharing (http://www.geodata.cn/).

According to the climate zone in which forest distributes across 
China, we classified the climate zone as five types: boreal (>50°N), 
temperate (40°N–50°N), warm temperate (33°N–40°N), subtropi-
cal (23°N–33°N) and tropical (<23°N). The forests were divided into 
five age groups based on the Forestry Standards for “Regulation 
for age-class and age-group division of main tree-species” of the 
People’s Republic of China (Table S2). As sample size for some special 

age group might be too small to be better analysed, the five age 
groups were further integrated into three categories: young forests, 
middle-age forests (mid-aged group plus premature group) and mature 
forests (mature group plus overmature group).

2.3 | Calculation of carbon turnover times

At steady state, forest C stock is the balance between the productiv-
ity and C losses (characterized by turnover times) (Malhi, Doughty, 
& Galbraith, 2011), thus τveg and τsoil can be estimated by using 
Equation (2) (Negrón-Juárez et al., 2015; Todd-Brown et al., 2013):

where τ is the C turnover time (year), C is the C stock (kg C m−2) and i is 
vegetation or soils. Annual NPP (kg C m−2 year−1) on a 0.008° × 0.008° 
grid, averaged over the observed years 2004–2014, was extracted 
from MODIS 17A3 (Smith, Cleveland, Reed, & Running, 2014) (http://
e4ftl01.cr.usgs.gov/MOLT/).

2.4 | Data analysis

Statistical analyses were performed using R statistical software 
v3.2.4 (R Development Core Team, 2016). First, one-way ANOVA 
with Duncan’s multiple-range tests were used to compare the dif-
ferences of τveg and τsoil among climate zones, forest origin, forest 
types and age groups. To explore spatial patterns of τveg and τsoil, we 
conducted an ordinary least squares (OLS) regression to evaluate the 

(2)τi=Ci∕NPP

F IGURE  2 C turnover times in vegetation (a–c) and soils (d–f) with different climate zones, forest origin and forest types. Error bars are 
standard error. Different letters on the top of error bars in each panel indicate significant differences at the p = .05 level (Duncan test). Trop, 
SubT, Warm, Temp and Bore are the abbreviation of tropical, subtropical, warm temperate, temperate and boreal respectively. The abbreviations 
of forest types are shown in Table S1

http://maps.google.com
http://ncc.cma.gov.cn/cn/
http://ncc.cma.gov.cn/cn/
http://www.geodata.cn/
http://e4ftl01.cr.usgs.gov/MOLT/
http://e4ftl01.cr.usgs.gov/MOLT/
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relationships between C turnover times and latitude, MAT and MAP. 
The OLS regressions were also used to investigate the relationships 
between C turnover times and forest age (year). A pairwise correla-
tion analysis was performed to explore correlations of C turnover 
times with soil variables (pH, BD, clay content, SOC, N, P and K). 
Second, we performed structural equation modelling (SEM) to ana-
lyse direct and indirect pathways determining C turnover times. To 
facilitate our analysis, we classified all soil variables into two groups, 
including soil nutrient (SOC, N, P and K) and soil environment (pH, 
BD and clay content). Mean annual temperature and mean annual 
precipitation were expressed as climate. Because the variables of 
climate, soil nutrient and soil environment groups were closely cor-
related, a principal components analysis (PCA) was performed to 
create a multivariate index representing each group (e.g. Chen, Li, 
et al., 2016; Chen, Liang, et al., 2016). Within each group, only vari-
ables significantly correlated with C turnover times were included 
in the PCA. The first principal components (PC1), which explained 
65%–95% of the total variance, were subsequently used to the SEM 
analysis (Table S3). In the SEM analysis, the data were fit to the model 
using the maximum likelihood estimation method. The χ2 and associ-
ated p value were used to evaluate the fitness of the model (Grace, 
2006). The SEM analysis was implemented using Amos 21.0 (Amos 
Development Corporation, Chicago, IL). Finally, we used general lin-
ear models (GLMs) to separate variance explained by climate, forest 
age, forest origin, forest type, soil nutrient and soil environment on C 
turnover times. C turnover times were natural logarithm-transformed 
to meet the parametric assumptions of normality. The explained 

variables having significant effects on C turnover times were in-
cluded in the final model.

3  | RESULTS

3.1 | Carbon turnover times in vegetation and soils

τveg varied from 0.12 to 35.5 years, with a median value of 7.6 years, 
while τsoil ranged from 0.9 to 152 years, with a median value of 
17.7 years (Figure S2). C turnover times varied significantly (p < .001) 
with forest origin and forest type (Figure 2b,c,e,f). On average τveg 
and τsoil in natural forests were larger than those in planted forests 
(p < .001). Mean τveg for forest types ranged from 6.4 (EBF), 8.6 (ENF), 
9.3 (DBF), 10.8 (NBF) to 15.1 years (DNF), while mean τsoil ranged from 
15.4 (EBF), 23.5 (DBF), 24.3 (ENF), 37.9 (NBF) to 53.8 years (DNF). 
Across all forest plots, C turnover times significantly increased with 
forest age (p < .001, Figure 3a,b). There were significant differences 
among forest age groups (p < .001), with mature forests having longer 
C turnover times than middle-age and young forests (Figure 3c,d).

3.2 | Spatial patterns of carbon turnover times

C turnover times were positively correlated with latitude across all for-
est plots (Figure 4a,d). There were significant differences among cli-
mate zones (p < .001), with the longest C turnover times in the boreal 
zone and the shortest values in the tropical area (Figure 2a,d). C turno-
ver times decreased with increasing MAT and MAP (Figure 4b,c,e,f). 

F IGURE  3 C turnover times in 
vegetation (n = 2,753) and soils (n = 823) 
as a function of forest age across all forests 
(a, b) and in different age groups (c, d). 
Different letters on the top of error bars 
(c, d) indicated significant differences at 
the p = .05 level (Duncan test)
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MAT explained more spatial variations of C turnover times in soils 
(R2 = .35) than those in vegetation (R2 = .16), while MAP explained 
20% variations for τsoil and 10% variations for τveg.

3.3 | Controlling factors of carbon turnover times

The results of pairwise correlation analysis indicated that soil nutri-
ent and soil environment variables were significantly correlated with 
C turnover times for both vegetation and soils (p < .01, Table S4). 
Overall, C turnover times exhibited a significant increase with increas-
ing SOC, N and P contents. Conversely, C turnover times were nega-
tively correlated with clay content.

The SEM analysis showed that the model explained 27% of the vari-
ance in τveg (Figure 5a). Climate had direct negative effects on τveg and 
presented indirect effects on τveg by negatively affecting soil nutrient, 
which consequently led to shorter τveg. Soil nutrient showed direct pos-
itive effects on τveg, while soil environment had no significant effects on 
τveg. Forest age exerted a positive effect on τveg through its direct effect 
on τveg and the indirect effect via its positive correlation with soil nutri-
ent. Latitude had an indirect effect on τveg by changing climate. Taken 
together, forest age and latitude were the most important direct and 
indirect controlling factors of τveg variation respectively (Figure S3a, c).

The model explained 44% of the variance for τsoil (Figure 5b). Climate, 
forest age, soil nutrient and soil environment were the direct predictors 

of τsoil. Among the direct predictors, climate was the most important con-
trol on τsoil. Compared with the standardized path coefficients for τveg, 
the direct effects of climate increased from −0.27 to −0.55, while the di-
rect impact of forest age decreased from 0.30 to 0.28 in τsoil (Figure S3b). 
Latitude also exerted a strong indirect effect on τsoil, with standardized 
path coefficient increased from 0.30 in τveg to 0.48 in τsoil (Figure S3d).

The GLMs analysis presented that climate, forest age, forest origin, 
forest type and soil nutrient exhibited a combined control on C turnover 
times for both vegetation and soils (Table 1). Specifically, climatic variables 
accounted for 9.4% and 28.8% of the variance for τveg and τsoil, respec-
tively, whereas forest age explained 12.4% and 8.6% of the corresponding 
variance. Forest origin accounted for 7.5% of the variance for τveg, while 
the corresponding variance could be only explained by 0.9% for τsoil. 
Furthermore, forest type explained an additional 0.7% and 1.2% of the 
variance for τveg and τsoil, respectively, while soil nutrient accounted for 
0.5% and 1.5% of the corresponding variance in the final model (Table 1).

4  | DISCUSSION

4.1 | Influences of abiotic factors on carbon turnover 
times

Our results demonstrate a latitudinal pattern of C turnover times and 
climate controls (MAT, MAP) on the spatial patterns of C turnover 

F IGURE  4 Relationships between C turnover times and latitude (a, d), mean annual temperature (MAT; b, e) and mean annual precipitation 
(MAP; c, f) for vegetation (n = 2,753) and soils (n = 1,087). Error bars are standard error. ***p < .001
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times across all forests (Figure 4). The results agree with previous 
studies that reported the shortest turnover times in the low-latitude 
zones and the longest turnover times in the high-latitude zones (Bird, 
Chivas, & Head, 1996; Bloom et al., 2016; Carvalhais et al., 2014; 
Chen et al., 2013). τsoil was negatively related with MAT for all for-
ests in this study (Figure 4), which is not consistent with Giardina 
and Ryan (2000) who reported that there were no significant trends 
of τsoil with temperature in global forests. Negative correlations 
between temperature and τsoil are widely observed in soil incuba-
tions (Knorr, Prentice, House, & Holland, 2005), field measurements 
(Sanderman, Amundson, & Baldocchi, 2003; Trumbore, 2000), isotope 

trace (Trumbore, Chadwick, & Amundson, 1996) or modelling stud-
ies (Schimel et al., 1994; Townsend, Vitousek, & Trumbore, 1995; Xu, 
He, et al., 2016; Xu, Shi, et al., 2016). This negative relationship could 
be explained by the fact that increasing MAT or soil temperature en-
hances soil C mineralization by stimulating soil microbes and enzymes 
activities (Conant et al., 2011; Leirós, Trasar-Cepeda, Seoane, & Gil-
Sotres, 1999), and subsequently accelerates τsoil. Mean annual precipi-
tation also determines the variations of τsoil. Previous field or model 
studies both indicated that increase in precipitation or increasing soil 
water content accelerates soil C decomposition (Davidson, Verchot, 
Cattânio, Ackerman, & Carvalho, 2000; Knapp et al., 2008; Reichstein 

F IGURE  5 Structure equation modelling 
examining the direct and indirect effects 
on C turnover times in vegetation (a) 
(n = 2,753) and soils (b) (n = 823). Double-
headed arrows represent covariance 
between related variables. Single-headed 
arrows indicate the hypothesized direction 
of causation. Dark green and blue arrows 
indicate positive and negative relationships 
respectively. Arrow width is proportional 
to the strength of the relationship. 
Double-layer rectangles represent the first 
component from the PCA conducted for 
soil nutrient, climate and soil environment. 
The dark green “↑” and blue symbol “↓” 
indicate a positive or negative relationship, 
respectively between the variables and C 
turnover times. The numbers adjacent to 
arrows are standardized path coefficients. 
The proportion of variance explained (R2) 
appears alongside each response variables 
in the model. Goodness-of-fit statistics 
for the model are shown alongside each 
model. *p < .05, **p < .01, ***p < .001

(a)

(b)
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et al., 2003), and thereby results in faster SOC turnover. Multiple 
mechanisms have been suggested underlying the positive effect of 
increasing precipitation on the SOC turnover, including stimulating 
microbial activities, enhancing nitrogen availability and increasing 
above- and below-ground C inputs (Posada & Schuur, 2011; Schimel 
et al., 1994). A global synthesis of precipitation manipulation experi-
ments indicated that the normalized increased precipitation of 28% of 
the MAP increased soil respiration on average by 16% and decreased 
precipitation reduced soil respiration by 17% (Liu, Wang, et al., 2016). 
However, it is noticeable that MAP may not be an accurate predictor 
of soil water content because the MAP hides its temporal distribution 
(Sanderman et al., 2003). This is the reason why MAP is not as impor-
tant as the MAT in controlling τsoil, especially at large scales (Figures 
S4 and S5).

Climate controls on the variations of τveg are not as dominant as 
that for soils (Table 1, Figures 4 and 5). In fact, at the plot scale, the 
determinant of climate on τveg is likely to be confounded by forest 
age, tree density and other factors. At larger scales, e.g. within 2° lati-
tude interval (Figure S4) or 5° latitude interval (Figure S5), the impact 
of climate on τveg becomes more evident. The negative correlations 
between τveg and climate may also be related to biomass allocations. 
Luo, Wang, Zhang, Booth, and Lu (2012) and Reich et al. (2014) both 
indicated that more biomass is allocated into roots at the expense of 
foliage in cold and relative dry climates, as roots, especially coarse 
roots, have slower turnover rates than foliage and are more likely to 
contribute to the latitudinal variations of τveg.

Compared with previous studies, this study advances our un-
derstanding on the controlling mechanisms of C turnover times 
by revealing the direct and indirect pathways of abiotic factors 
(Figure 5). On the one hand, the direct impacts of climate factors 
explained more variations of τsoil and τveg than those of soil environ-
ment and nutrients. On the other hand, climate factors indirectly 
impacted τsoil and τveg by substantially changing soil environment 
and nutrients. These findings emphasize the need to incorporate 
climate impacts into biogeochemical model development and 
evaluation.

4.2 | Influences of biotic factors on carbon 
turnover times

We discovered that forest age is a dominant biotic factor that modu-
lates C turnover times, especially for vegetation (Table 1, Figures 3 
and 5). On the one hand, C stock in the vegetation increases with 
stand development, (Cheng et al., 2015; Fonseca, Benayas, & Alice, 
2011). For instance, in a natural vegetation succession, C storage in bi-
omass increased from 1.70 (grasslands), 4.15 (shrublands), 22.3 (shrub 
forests), 70.3 (secondary forests) to 142.2 Mg C ha−1 (primary forest) 
in karst regions (Liu, Liu, et al., 2016). On the other hand, with forest 
growth, stand NPP declines as trees age (Gray et al., 2016), which may 
result from nutrient limitation, stomatal constraint, declines in pho-
tosynthesis during stand development (Gower, McMurtrie, & Murty, 
1996; McDowell, Phillips, Lunch, Bond, & Ryan, 2002; Tang, Luyssaert, 
Richardson, Kutsch, & Janssens, 2014). Moreover, it has been dem-
onstrated that increases in heterotropical respiration (Rh) in early 
succession following disturbances are commonly evident (McKinley 
et al. 2011). In global temperate forests, Rh has been reported decline 
from 9.7 Mg C ha−1 year−1 in young forests (0–10 years) to 2.8 Mg 
C ha−1 year−1 in old forests (121–200 years) (Pregitzer & Euskirchen, 
2004). The combination of increasing vegetation C pool size and de-
creasing NPP or Rh results in the increment of τveg with stand devel-
opment. Therefore, forest age is a main determinant of τveg across all 
forests (Figures 3 and 5). For τsoil, forest age plays a less important 
role than climate factors in determining the variations of τsoil. This is 
likely because soils consist of both newly fixed and old C, with C age 
ranging from months to decades, and even over several hundred years 
(Parton, Schimel, Cole, & Ojima, 1987).

Our findings also show that forest origin, to some extent, shapes 
τveg (Table 1). This could be due to planted forests having higher rel-
ative growth rates and photosynthetic rates than natural forests, re-
sulting in a relative higher NPP. The reason might also be that planted 
forests and natural forests have different biomass allocation patters. 
Plants usually allocate more biomass to roots than to foliage with 
plant growth (Shipley & Meziane, 2002). Planted forests are usually 

TABLE  1 Summary of general linear models for vegetation and soil C turnover times

Factor

τveg (ln-transformed) τsoil (ln-transformed)

Main-effect model Final model Main-effect model Final model

MS F SS% MS F SS%

Climate 212.58 356.42*** 9.36 107.28 394.97*** 28.80

Forest age 281.17 471.42*** 12.38 32.17 118.45*** 8.63

Forest type 16.33 27.38*** 0.72 4.34 15.98*** 1.16

Forest origin 169.86 284.79*** 7.48 3.18 11.71*** 0.85

Soil nutrient 10.57 17.72*** 0.47 5.74 21.14*** 1.54

Soil environment 3.31 5.55 0.11 0.42

***F values in bold indicate p < .001. Climate, first components from a PCA conducted with MAT, MAP; Soil nutrient, first components from a PCA con-
ducted with soil SOC, N and P; Soil environment, first components from a PCA conducted with soil pH, BD and clay content; MS, mean square; SS%, per-
centage of sum square explained.
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young forests with fast-growing species, so allocate more biomass 
to foliage to compete for light. Natural forests are generally old for-
ests that allocate more biomass to roots and stem to support their 
standing (Peichl & Arain, 2007). The slower turnover rates in roots 
and stem than foliage (Negrón-Juárez et al., 2015) leads to a relative 
longer τveg in natural forests. Such differences in biomass allocation 
between planted forests and natural forests also highlight the impor-
tance of the impact of forest age. Our results about C turnover times 
in different forest types were similar to the model study in Zhou, Shi, 
Jia, Li, and Luo (2010), where there were shorter C residence times in 
broadleaved forests than in needleleaf forests, and shorter residence 
times in evergreen forest than in deciduous forests. However, forest 
type was not a key factor determining C turnover times in the final 
model in this study (Table 1). This may be because climate, forest age 
and forest origin in combination offsets the impact of forest type on 
C turnover times.

In summary, biotic factors (forest age, forest origin and forest 
type) accounted for 21% of the variations in the τveg, thus acted as 
the dominant determinants of vegetation C turnover, while for τsoil, 
biotic factors accounted for 11% of the variations, thus played a rela-
tive weaker role than climate factors (Table 1). The various dominant 
controlling factors for τveg and τsoil imply different mechanisms un-
derlying above- and below-ground C turnover, which needs further 
investigation to improve our fundamental knowledge of C cycling in 
forest ecosystems.

4.3 | Implications and sources of uncertainties

By using C stock/NPP method, the τsoil in this study was 24.3 years on 
average (Figure S2). This estimate is in agreement with the reported 
value of 24 years for the globally mean τsoil estimated by the same 
method (Todd-Brown et al., 2013). Carvalhais et al. (2014) reported 
a mean ecosystem C turnover time of 22.5 years for different biomes 
of the world using C stock/influx method. The present result of τsoil is 
also comparable to the reported range of 21.0–23.2 years (Chen et al., 
2013), and 32 years (Raich & Schlesinger, 1992) in the studies using 
the ratio of C stock over C efflux (Rh).

Besides the experimental methods mentioned above, modelling 
approaches have been also performed to estimate C turnover times. 
For instance, Negrón-Juárez et al. (2015) conducted the work on τveg 
in tropical forests based on 22 ESMs, which demonstrated various C 
turnover times for different compartments (e.g. τleaf, 0.30–3.3 years; 
τwood, 11–54 years; τroot, 3–23 years). Although modelling is an im-
portant tool in studying C turnover times, the performance of models 
is always unsatisfactory. A recent analysis of 11 ESMs showed that 
large uncertainties still existed among different models (Todd-Brown 
et al., 2013), which subsequently constrains their ability to predict C 
storage capacity in terrestrial ecosystems (Chen et al., 2015). Thus, the 
empirical results in this study could provide a useful benchmark for 
model parameterization.

We also acknowledge that our estimates of C turnover times in the 
present work may have the following uncertainties. The first uncer-
tainty is that we estimated C turnover times based on the steady-state 

assumption that rarely happens in reality. In fact, C turnover times are 
constantly affected by environmental conditions and C input fluxes 
for the C cycling. Thus, C turnover times are always time-dependent, 
except at longer time-scales where the effects of environmental con-
ditions and C input fluxes can be ignored, considering the ecosystem is 
at or near steady state (Sierra, Müller, Metzler, Manzoni, & Trumbore, 
2017). Moreover, C turnover times and other metrics of C cycling rates 
are always model-dependent, and it is difficult to obtain them from 
observations alone without steady-state assumption (Sierra et al., 
2017). Nevertheless, C turnover times at steady state could be useful 
to inform and parameterize the C cycle models. As discussed here, τ 
means the apparent turnover times, like that in the study of Carvalhais 
et al. (2014). In addition, we also assumed that soils are a homoge-
neous pool, which disregards the reality that soils consist of C that 
turns over with different rates ranging from single years to centuries 
(Davidson et al., 2000). So far, it has been a big challenge to separate 
soils into different pools and quantify each pool’s turnover time in em-
pirical study. With those inevitable uncertainties, however, this study 
provides empirical evidences and dataset on the variations of τveg and 
τsoil at a large scale (Figure 1), which is invaluable for model evaluation 
and benchmark analysis. Furthermore, the controlling factors for turn-
over times revealed in this study will provide insight into the sensitivity 
and potential response of forest C cycling to future climate change.
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