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Abstract
1.	 Terrestrial	ecosystems	currently	function	as	a	net	carbon	(C)	sink	for	atmospheric	C	
dioxide	(CO2),	but	whether	this	C	sink	can	persist	with	global	climate	change	is	still	
uncertain.	 Such	uncertainty	 largely	 comes	 from	C	 turnover	 time	 in	 an	 ecosystem,	
which	is	a	critical	parameter	for	modelling	C	cycle	and	evaluating	C	sink	potential.	Our	
current	understanding	of	how	long	C	can	be	stored	in	soils	and	vegetation	and	what	
controls	spatial	variations	in	C	turnover	time	on	a	large	scale	is	still	very	limited.

2.	 We	used	data	on	C	stocks	and	C	influx	from	2,753	plots	in	vegetation	and	1,087	
plots	in	soils	and	investigated	the	spatial	patterns	as	well	controlling	factors	of	C	
turnover	times	across	forest	ecosystems	in	eastern	China.

3.	 Our	results	showed	a	clear	latitudinal	pattern	of	C	turnover	times,	with	the	shortest	
turnover	times	in	the	low-latitude	zones	and	the	longest	turnover	times	in	the	high-
latitude	zones.	Mean	annual	temperature	and	mean	annual	precipitation	were	the	
most	 important	controlling	factors	on	soil	C	turnover	times,	while	forest	age	ac-
counted	for	the	majority	of	variations	in	the	vegetation	C	turnover	times.	Forest	
origin	(planted	or	natural	forest)	was	also	responsible	for	the	variations	in	vegeta-
tion	C	turnover	times,	while	forest	type	and	soil	properties	were	not	the	dominant	
controlling	factors.

4.	 Our	study	highlights	the	different	dominant	controlling	factors	in	soil	and	vegeta-
tion	 C	 turnover	 times	 and	 different	mechanisms	 underlying	 above-	 and	 below-
ground	C	turnover.	These	findings	are	essential	to	better	understand	(and	reduce	
uncertainty)	in	predictive	models	of	coupled	C–climate	system.
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1  | INTRODUCTION

Carbon	 (C)	 turnover	 time	 (τ,	 year),	 which	 equals	 residence	 time	 at	
steady	state,	refers	to	the	average	time	elapsed	between	the	input	of	
a	C	atom	through	photosynthetic	fixation	and	its	loss	through	respi-
ratory	or	non-	respiratory	pathways	(Barrett,	2002).	It	is	an	important	
indicator	for	ecosystem	functions	and	a	key	parameter	 in	coupled	C	
cycle	models	(e.g.	Earth	System	Models,	ESMs)	for	predicting	global	C	

storage	(Chen	et	al.,	2015).	However,	substantial	uncertainty	remains	
about	 C	 turnover	 time,	 which	 prevents	 us	 from	 accurately	 assess-
ing	the	size	of	the	terrestrial	C	sink	and	predicting	future	climate–C	
cycle	feedbacks	(Anav	et	al.,	2013;	Wieder,	Cleveland,	Smith,	&	Todd-	
Brown,	2015).	This	uncertainty	is	even	larger	than	that	of	C	input	of	
net	primary	productivity	 (Friend	et	al.,	2014).	Thus,	 it	 is	urgently	 im-
portant	to	have	a	full	understanding	of	C	turnover	time	and	its	con-
trolling	factors.	This	understanding,	based	on	empirical	observations,	
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can	help	to	reduce	the	large	degree	of	uncertainty	in	predictive	models	
of	the	Earth’s	coupled	C–climate	system	(Friedlingstein	et	al.,	2006).

C	turnover	time	at	steady	state	is	commonly	estimated	as	the	ratio	
of	C	stock	in	a	reservoir	to	input	or	output	flux	(Raich	&	Schlesinger,	
1992).	 Soil	 is	 the	major	 C	 pool	 in	 terrestrial	 ecosystems	 and	 has	 a	
longer	 turnover	 time	 than	 vegetation	 (Schmidt	 et	al.,	 2011).	A	 cen-
tral	 topic	 in	 previous	 studies	 on	 soil	 organic	 C	 (SOC)	 dynamics	 is	
SOC	turnover	time	(τsoil)	and	its	determinants	(Heckman	et	al.,	2014;	
Koven	 et	al.,	 2015;	 Schimel	 et	al.,	 1994).	 It	 has	 been	 documented	
that	at	a	 small	 spatial	 scale,	 soil	C	 turnover	 is	mainly	dependent	on	
soil	 temperature	 and	moisture	 (Craine,	 Fierer,	&	McLauchlan,	 2010;	
Davidson	&	Janssens,	2006;	Thomsen,	Schjønning,	Jensen,	Kirstensen,	
&	Christensen,	 1999),	 soil	 chemical	 properties	 (Schindlbacher	 et	al.,	
2010;	Xu,	He,	&	Yu,	2016;	Xu,	Shi,	et	al.,	2016),	C	quality	(Chen,	Liang,	
et	al.,	2016)	or	soil	microbial	community	(Chen,	Li,	Lan,	Hu,	&	Bai,	2016;	
Cleveland,	Nemergut,	Schmidt,	&	Townsend,	2007),	while	at		national	
and	global	 scales,	 latitude,	 altitude	and	associated	climatic	variables	
are	suggested	to	be	responsible	for	the	variability	of	τsoil	(Chen,	Huang,	
Zou,	&	Shi,	2013).	Moreover,	soil	C	turnover	is	also	affected	by		natural	
(e.g.	 fire	 and	 insects)	 and	 human	 disturbances	 (e.g.	 fertilizer,	 clear-	
cutting	and	land	use)	(Reed,	Ewers,	&	Pendall,	2014;	Zhou,	Zhao,	Liu,	
&	Oeding,	2013).	Despite	the	considerable	effort	made	to	quantify	the	
variations	of	SOC	turnover	among	soil	types,	climatic	conditions	and	
under	different	disturbances	(Garten	&	Hanson,	2006;	Six	&	Jastrow,	
2002),	large	controversy	over	soil	C	turnover	and	its	controlling	factors	
remains,	due	to	large	spatial	heterogeneity	(Schmidt	et	al.,	2011)	and	
different	experimental	methods	among	case	studies,	making	it	difficult	
to	 compare	τsoil	 at	 a	 large	 scale	 and	 to	 quantify	 the	 key	 controlling	
factors.	Moreover,	 the	direct	and	 indirect	pathways	of	 these	abiotic	
and	biotic	factors	impacting	on	τsoil	are	unclear	and	less	quantified	in	
previous	studies.

In	contrast	to	τsoil,	vegetation	C	turnover	time	(τveg)	has	been	rarely	
examined	although	 it	 is	a	crucial	process	 in	regulating	stoichiometry	
and	 elemental	 cycle	 in	 an	 ecosystem	 (Erb	 et	al.,	 2016),	 and	 also	 an	
important	parameter	 in	 the	ESMs	 to	predict	biomass	 allocation	and	
productivity	of	the	ecosystem	(Bloom,	Exbrayat,	van	der	Velde,	Feng,	
&	Williams,	 2016;	 Friend	 et	al.,	 2014).	 τveg	 differs	 from	 seconds	 or	
months	in	foliage,	years	in	fine	roots,	to	decades	in	wood,	which	can	
subsequently	lead	to	great	variability	of	τveg	(Malhi,	Saatchi,	Girardin,	
&	Aragão,	 2009;	Trumbore,	 2000).	 Previous	 studies	 have	 suggested	
that	 τveg	 is	 dependent	 on	 the	 combined	 effects	 of	 vegetation	 type,	
climate,	 soil	 and	 land	 use	 (Erb	 et	al.,	 2016).	However,	 our	 quantita-
tive	understanding	on	the	controlling	factors	of	τveg	is	still	very	limited.	
Moreover,	as	it	is	difficult	to	measure	foliage,	root	and	wood	C	turn-
over	 times	separately	and	directly	 in	 the	 field,	 the	ESMs	provide	an	
alternative	measurement	of	C	turnover	times	for	different	vegetation	
compartments	 (e.g.	Negrón-	Juárez,	Koven,	Riley,	Knox,	&	Chambers,	
2015).	Models	have	undoubtedly	improved	our	understanding	of	τveg 
among	different	compartments,	but	 the	challenge	 for	model	studies	
lies	in	that	huge	uncertainty	which	still	exists.	For	example,	turnover	
time	of	wood	in	tropical	forests	has	been	estimated	to	be	10–30	years	
faster	in	ESMs	than	the	observed	value	(Negrón-	Juárez	et	al.,	2015),	
and	globally	ecosystem	C	turnover	times	have	been	underestimated	

by	36%	 in	 the	ESMs	 (Carvalhais	et	al.,	2014).	Most	 importantly,	our	
understanding	of	the	determinant	processes	of	τveg	 is	still	under	de-
bate	(Friend	et	al.,	2014).	Therefore,	more	observation-	based	empiri-
cal	studies	are	needed	to	quantify	τveg	and	its	controlling	factors.

Forests	contain	up	to	80%	of	terrestrial	above-	ground	C	and	40%	
of	below-	ground	C,	thus	play	a	critical	role	in	terrestrial	C	cycle	(Dixon	
et	al.,	1994).	A	recent	study	reveals	that	forests	now	serve	as	a	net	C	
sink	for	atmospheric	CO2	(Pan	et	al.,	2011),	but	whether	this	C	sink	will	
persist	as	the	climate	change	remains	largely	uncertain	(Goodale	et	al.,	
2002).	 Thus,	 studying	 forest	 C	 turnover	 times	 will	 greatly	 improve	
our	 fundamental	 knowledge	 of	 terrestrial	 C	 cycle.	 Previous	 studies	
have	 investigated	 spatial	 variations	 of	 C	 turnover	 times	 associated	
with	 forest	 type	and	climate,	and	 found	 that	C	 turnover	 times	have	
a	 latitudinal	pattern	and	also	differ	 among	 forest	 types	 (Chen	et	al.,	
2013;	Trumbore,	2000;	Vesterdal,	Elberling,	Christiansen,	Callesen,	&	
Schmidt,	2012).	Unfortunately,	these	studies	have	seldom	considered	
the	impacts	of	forest	age.	In	comparing	to	other	terrestrial	ecosystems,	
a	forest	ecosystem	is	more	complex	as	it	is	unevenly	aged.	Numerous	
studies	 have	 suggested	 that	 forest	 age	 is	 a	 critical	 factor	 determin-
ing	ecosystem	C	storage	and	fluxes	(Gray,	Whittier,	&	Harmon,	2016;	
Ryan,	Binkley,	&	Fownes,	1997;	Yang,	Luo,	&	Finzi,	2011),	thus	may	af-
fect	C	turnover	times.	However,	the	impact	of	forest	age	on	C	turnover	
times	over	large	areas	is	largely	unknown.

In	this	study,	we	collected	data	from	2,753	forest	plots	in	vegeta-
tion	and	1,087	plots	in	soils	from	tropical	to	boreal	forests	in	eastern	
China,	which	 covers	most	 forest	 types	 in	 the	Northern	Hemisphere	
(Fu	et	al.,	2010).	The	main	objectives	of	this	study	were	to:	(1)	quan-
tify	τveg and τsoil	and	their	variations	with	climate	zone,	forest	origin,	
forest	 type	and	 forest	age;	 (2)	 investigate	 the	 latitudinal	patterns	of	
C	turnover	times;	and	(3)	reveal	the	controlling	factors	on	the	spatial	
variations	of	τveg and τsoil.

2  | MATERIALS AND METHODS

2.1 | Forest classification

Forest	 covers	 a	wide	 latitudinal	 span	 from	north	 to	 south	 in	China.	
Therefore,	 the	 distribution	 of	 forest	 has	 a	 wide	 climatic	 range	 ex-
tending	from	boreal	to	tropical	zones	(Yu	et	al.,	2006).	Based	on	the	
principles	of	Chinese	vegetation	regionalization	(Hou,	Sun,	Zhang,	&	
He,	1982)	and	previous	studies	(He	et	al.,	2017;	Peng	et	al.,	2016),	we	
classified	China’s	forests	as	five	forest	type	groups,	including	decidu-
ous	broadleaf	forest	(DBF),	deciduous	needleleaf	forest	(DNF),	ever-
green	broadleaf	forest	(EBF),	evergreen	needleleaf	forest	(ENF),	and	
needleleaf	 and	broadleaf	mixed	 forest	 (NBF).	 The	 five	 groups	were	
further	divided	into	19	forest	types	associated	with	climate	zones	and	
39	forest	subtypes	(Table	S1).

2.2 | Data sources and data compilation

Vegetation	 C	 stock	 (Cveg)	 was	 derived	 from	 the	 ‘Strategic	 Priority	
Research	 Program’	 of	 the	 Chinese	 Academy	 of	 Sciences	 (No.	
XDA05050000),	 in	 which	 3,161	 plots	 covering	 main	 forest	 types	 in	
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China	were	 investigated	 (He	et	al.,	2017).	The	dimension	of	each	plot	
was	0.1	ha	and	each	plot	was	divided	 into	 ten	10	m	×	10	m	quadrats,	
with	 tree	 height	 and	 breast-	height	 diameter	 of	 each	 tree,	 and	 total	
number	 of	 trees	 recorded	 in	 each	quadrat.	By	 using	 allometric	 equa-
tions	based	on	the	tree	height	and	breast-	height	diameter	for	different	
tree	species	 (Ecosystem	Carbon	Sequeatration	Project,	2015),	we	cal-
culated	vegetation	biomass	(kg	C	m−2)	for	each	plot.	Among	the	3,161	
plots,	we	used	the	data	of	2,753	plots	which	located	in	the	eastern	China	
(Figure	1).	Of	these	2,753	plots,	there	were	627	DBF	plots,	149	DNF	
plots,	545	EBF	plots,	1,176	ENF	plots	and	256	NBF	plots.	The	forest	
origin	(planted	or	natural	forest)	was	recorded	for	each	plot.	Stand	age	
of	planted	forests	was	determined	by	the	time	since	the	afforestation,	
while	the	age	of	natural	forests	were	determined	by	the	mean	age	of	all	
tree	species	by	measuring	tree	rings.	The	Cveg	(kg	C	m

−2)	was	converted	
from	the	vegetation	biomass	by	a	conversion	factor	of	0.5	(Pregitzer	&	
Euskirchen,	2004).

Soil	C	stock	(Csoil)	was	derived	from	published	studies	from	2004	
to	2014	in	the	China	National	Knowledge	Infrastructure	(http://www.
cnki.net/)	 and	 in	 the	Web	of	Science	 (http://www.webofknowledge.
com),	including	field-	measured	data	from	1,087	plots	(DBF,	223	plots;	
DNF,	87	plots;	EBF,	359	plots;	ENF,	348	plots;	NBF,	70	plots)	 from	
northern	to	southern	China	(Figure	1).	The	disturbed	forest	plots	(e.g.	
fire,	cutting	and	fertilizer)	were	not	included	in	the	soil	dataset.	Data	

on	reported	soil	C	stock	(kg	C	m−2),	SOC	or	soil	organic	matter	(SOM)	
content	 (%),	 soil	 bulk	 density	 (BD,	 g/cm3)	 and	 soil	 layer	 depth	 (cm)	
were	extracted	from	the	original	studies.	The	SOC	content	was	calcu-
lated	by	the	SOM	content	using	the	Bemmelen	index	of	0.58	(Hollis,	
Hannam,	&	Bellamy,	2012).	For	better	comparison	with	different	sites,	
we	scaled	Csoil	up	to	100	cm	in	soil	depth.	When	soil	depth	was	more	
than	100	cm,	we	directly	extracted	the	data	down	to	100	cm.	When	
soil	depth	was	 less	 than	100	cm,	we	used	the	empirical	 relationship	
between	SOC	 content	 and	 soil	 layer	 depth,	 proposed	by	Chai	 et	al.	
(2015)	to	fit	Csoil	to	the	100	cm	soil	layer.	This	empirical	relationship	
between	 SOC	 content	 and	 depth	 performed	 very	 well	 in	 previous	
studies	(e.g.	Xu	et	al.,	2015;	Xu,	He,	et	al.,	2016).	Here,	we	randomly	
selected	200	sample	sites	to	evaluate	the	predictive	accuracy	of	the	
empirical	 relationship	 (Figure	 S1).	The	 results	 showed	 that	 the	 pre-
dicted	values	of	soil	C	stock	were	almost	 identical	 to	measured	val-
ues	 for	 the	 0–100	cm	 soil	 layer	 (R2	=	.95,	p < .001)	 (Figure	 S1).	The	
reported	Csoil	in	the	original	studies	was	used	directly,	if	not,	the	Csoil in 
0–100	cm	soil	profiles	was	calculated	using	Equation	(1):

where	 SOCi,	 BDi,	 Di	 and	 Ci	 represent	 SOC	 content,	 BD,	 soil	 depth	
and	volume	(%)	of	>2	mm	fraction	in	soil	layer	i,	respectively;	and	n	is	

(1)Csoil =

∑n

i=1
SOCi × BDi × Di × (1 − Ci)

10

F IGURE  1 Distribution	of	sampling	plots	for	estimation	of	C	turnover	times	in	vegetation	and	soils	across	forest	ecosystems	in	eastern	
China.	Forest	type	was	classified	as	five	groups:	DBF,	DNF,	EBF,	ENF	and	NBF

http://www.cnki.net/
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the	number	of	soil	layers.	If	soil	BD	data	were	not	directly	reported	in	
the	published	papers,	the	values	were	calculated	using	the	equation	
proposed	by	Adams	(1973).	Furthermore,	we	also	gathered	plot	infor-
mation,	such	as	latitude,	longitude,	mean	annual	temperature	(MAT),	
mean	annual	precipitation	(MAP),	dominant	tree	species,	forest	origin	
and	 forest	age.	Any	missing	geographical	 coordinates	were	digitized	
from	Google	Maps	(http://maps.google.com).

Mean	annual	temperature	and	mean	annual	precipitation	for	each	
sampling	plot	in	the	vegetation	dataset	and	the	missing	data	in	the	soil	
dataset	were	taken	from	the	National	Climate	Center	(http://ncc.cma.
gov.cn/cn/)	 using	 kriging	methods.	The	 original	meteorological	 data	
were	derived	from	long-	term	observations	of	722	meteorological	sta-
tions	 in	China	 (Wen	&	He,	2016).	The	kriging	 interpolation	analyses	
were	performed	using	ArcMap	10.0	(Environmental	Systems	Research	
Institute,	 Inc.,	Redlands,	CA).	Soil	pH	and	BD	were	derived	from	the	
second	 National	 Soil	 Survey	 in	 China	 (National	 Soil	 Survey	 Office,	
1998).	The	contents	of	soil	SOC,	soil	nitrogen	(N,	g/kg),	phosphorus	
(P,	‰),	potassium	(K,	‰)	and	clay	(%)	for	each	plot	were	obtained	from	
the	China	National	Science	and	Technology	Platform	for	Earth	System	
Science	Data	Sharing	(http://www.geodata.cn/).

According	 to	 the	climate	zone	 in	which	 forest	distributes	across	
China,	we	 classified	 the	 climate	 zone	 as	 five	 types:	 boreal	 (>50°N),	
temperate	 (40°N–50°N),	 warm	 temperate	 (33°N–40°N),	 subtropi-
cal	(23°N–33°N)	and	tropical	 (<23°N).	The	forests	were	divided	into	
five	 age	 groups	 based	 on	 the	 Forestry	 Standards	 for	 “Regulation	
for	 age-	class	 and	 age-	group	 division	 of	 main	 tree-	species”	 of	 the	
People’s	Republic	of	China	(Table	S2).	As	sample	size	for	some	special	

age	 group	 might	 be	 too	 small	 to	 be	 better	 analysed,	 the	 five	 age	
groups	were		further	 integrated	 into	 three	 categories:	young	 forests,	
	middle-	age	forests	(mid-	aged	group	plus	premature	group)	and	mature	
forests	(mature	group	plus	overmature	group).

2.3 | Calculation of carbon turnover times

At	steady	state,	forest	C	stock	is	the	balance	between	the	productiv-
ity	 and	C	 losses	 (characterized	 by	 turnover	 times)	 (Malhi,	Doughty,	
&	 Galbraith,	 2011),	 thus	 τveg and τsoil	 can	 be	 estimated	 by	 using	
Equation	(2)	(Negrón-	Juárez	et	al.,	2015;	Todd-	Brown	et	al.,	2013):

where	τ	is	the	C	turnover	time	(year),	C	is	the	C	stock	(kg	C	m−2)	and	i	is	
vegetation	or	soils.	Annual	NPP	(kg	C	m−2 year−1)	on	a	0.008°	×	0.008°	
grid,	 averaged	 over	 the	 observed	 years	 2004–2014,	was	 extracted	
from	MODIS	17A3	(Smith,	Cleveland,	Reed,	&	Running,	2014)	(http://
e4ftl01.cr.usgs.gov/MOLT/).

2.4 | Data analysis

Statistical	 analyses	 were	 performed	 using	 R	 statistical	 software	
v3.2.4	 (R	Development	Core	 Team,	 2016).	 First,	 one-	way	ANOVA	
with	Duncan’s	multiple-	range	 tests	were	 used	 to	 compare	 the	 dif-
ferences	of	τveg and τsoil	 among	climate	 zones,	 forest	origin,	 forest	
types	and	age	groups.	To	explore	spatial	patterns	of	τveg and τsoil,	we	
conducted	an	ordinary	least	squares	(OLS)	regression	to	evaluate	the	

(2)τi=Ci∕NPP

F IGURE  2 C	turnover	times	in	vegetation	(a–c)	and	soils	(d–f)	with	different	climate	zones,	forest	origin	and	forest	types.	Error	bars	are	
standard	error.	Different	letters	on	the	top	of	error	bars	in	each	panel	indicate	significant	differences	at	the	p = .05	level	(Duncan	test).	Trop,	
SubT,	Warm,	Temp	and	Bore	are	the	abbreviation	of	tropical,	subtropical,	warm	temperate,	temperate	and	boreal	respectively.	The	abbreviations	
of	forest	types	are	shown	in	Table	S1

http://maps.google.com
http://ncc.cma.gov.cn/cn/
http://ncc.cma.gov.cn/cn/
http://www.geodata.cn/
http://e4ftl01.cr.usgs.gov/MOLT/
http://e4ftl01.cr.usgs.gov/MOLT/
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relationships	between	C	turnover	times	and	latitude,	MAT	and	MAP.	
The	OLS	regressions	were	also	used	to	investigate	the	relationships	
between	C	turnover	times	and	forest	age	(year).	A	pairwise	correla-
tion	 analysis	was	 performed	 to	 explore	 correlations	 of	 C	 turnover	
times	with	 soil	 variables	 (pH,	 BD,	 clay	 content,	 SOC,	N,	 P	 and	 K).	
Second,	we	performed	structural	equation	modelling	 (SEM)	to	ana-
lyse	direct	and	indirect	pathways	determining	C	turnover	times.	To	
facilitate	our	analysis,	we	classified	all	soil	variables	into	two	groups,	
including	soil	nutrient	 (SOC,	N,	P	and	K)	and	soil	environment	 (pH,	
BD	 and	 clay	 content).	Mean	 annual	 temperature	 and	mean	 annual	
precipitation	 were	 expressed	 as	 climate.	 Because	 the	 variables	 of	
climate,	soil	nutrient	and	soil	environment	groups	were	closely	cor-
related,	 a	 principal	 components	 analysis	 (PCA)	 was	 performed	 to	
create	 a	multivariate	 index	 representing	 each	 group	 (e.g.	 Chen,	 Li,	
et	al.,	2016;	Chen,	Liang,	et	al.,	2016).	Within	each	group,	only	vari-
ables	 significantly	 correlated	with	 C	 turnover	 times	were	 included	
in	 the	PCA.	 The	 first	 principal	 components	 (PC1),	which	 explained	
65%–95%	of	the	total	variance,	were	subsequently	used	to	the	SEM	
analysis	(Table	S3).	In	the	SEM	analysis,	the	data	were	fit	to	the	model	
using	the	maximum	likelihood	estimation	method.	The	χ2	and	associ-
ated	p	value	were	used	to	evaluate	the	fitness	of	the	model	(Grace,	
2006).	The	SEM	analysis	was	implemented	using	Amos	21.0	(Amos	
Development	Corporation,	Chicago,	IL).	Finally,	we	used	general	lin-
ear	models	(GLMs)	to	separate	variance	explained	by	climate,	forest	
age,	forest	origin,	forest	type,	soil	nutrient	and	soil	environment	on	C	
turnover	times.	C	turnover	times	were	natural	logarithm-	transformed	
to	 meet	 the	 parametric	 assumptions	 of	 normality.	 The	 explained	

variables	 having	 significant	 effects	 on	 C	 turnover	 times	 were	 in-
cluded	in	the	final	model.

3  | RESULTS

3.1 | Carbon turnover times in vegetation and soils

τveg	varied	from	0.12	to	35.5	years,	with	a	median	value	of	7.6	years,	
while	 τsoil	 ranged	 from	 0.9	 to	 152	years,	 with	 a	 median	 value	 of	
17.7	years	(Figure	S2).	C	turnover	times	varied	significantly	(p < .001)	
with	 forest	 origin	 and	 forest	 type	 (Figure	2b,c,e,f).	 On	 average	 τveg 
and τsoil	 in	natural	 forests	were	 larger	 than	 those	 in	planted	 forests	
(p < .001).	Mean	τveg	for	forest	types	ranged	from	6.4	(EBF),	8.6	(ENF),	
9.3	(DBF),	10.8	(NBF)	to	15.1	years	(DNF),	while	mean	τsoil	ranged	from	
15.4	 (EBF),	23.5	 (DBF),	24.3	 (ENF),	37.9	 (NBF)	 to	53.8	years	 (DNF).	
Across	all	 forest	plots,	C	turnover	 times	significantly	 increased	with	
forest	age	 (p < .001,	Figure	3a,b).	There	were	significant	differences	
among	forest	age	groups	(p < .001),	with	mature	forests	having	longer	
C	turnover	times	than	middle-	age	and	young	forests	(Figure	3c,d).

3.2 | Spatial patterns of carbon turnover times

C	turnover	times	were	positively	correlated	with	latitude	across	all	for-
est	plots	 (Figure	4a,d).	There	were	significant	differences	among	cli-
mate	zones	(p < .001),	with	the	longest	C	turnover	times	in	the	boreal	
zone	and	the	shortest	values	in	the	tropical	area	(Figure	2a,d).	C	turno-
ver	times	decreased	with	increasing	MAT	and	MAP	(Figure	4b,c,e,f).	

F IGURE  3 C	turnover	times	in	
vegetation	(n = 2,753)	and	soils	(n = 823)	
as	a	function	of	forest	age	across	all	forests	
(a,	b)	and	in	different	age	groups	(c,	d).	
Different	letters	on	the	top	of	error	bars	
(c,	d)	indicated	significant	differences	at	
the	p = .05	level	(Duncan	test)
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MAT	 explained	more	 spatial	 variations	 of	 C	 turnover	 times	 in	 soils	
(R2	=	.35)	 than	 those	 in	 vegetation	 (R2	=	.16),	 while	MAP	 explained	
20%	variations	for	τsoil	and	10%	variations	for	τveg.

3.3 | Controlling factors of carbon turnover times

The	results	of	pairwise	correlation	analysis	 indicated	 that	 soil	nutri-
ent	and	soil	environment	variables	were	significantly	correlated	with	
C	 turnover	 times	 for	 both	 vegetation	 and	 soils	 (p < .01,	 Table	 S4).	
Overall,	C	turnover	times	exhibited	a	significant	increase	with	increas-
ing	SOC,	N	and	P	contents.	Conversely,	C	turnover	times	were	nega-
tively	correlated	with	clay	content.

The	SEM	analysis	showed	that	the	model	explained	27%	of	the	vari-
ance in τveg	(Figure	5a).	Climate	had	direct	negative	effects	on	τveg and 
presented	indirect	effects	on	τveg	by	negatively	affecting	soil	nutrient,	
which	consequently	led	to	shorter	τveg.	Soil	nutrient	showed	direct	pos-
itive	effects	on	τveg,	while	soil	environment	had	no	significant	effects	on	
τveg.	Forest	age	exerted	a	positive	effect	on	τveg	through	its	direct	effect	
on τveg	and	the	indirect	effect	via	its	positive	correlation	with	soil	nutri-
ent.	Latitude	had	an	indirect	effect	on	τveg	by	changing	climate.	Taken	
together,	 forest	age	and	 latitude	were	 the	most	 important	direct	and	
indirect	controlling	factors	of	τveg	variation	respectively	(Figure	S3a,	c).

The	model	explained	44%	of	the	variance	for	τsoil	(Figure	5b).	Climate,	
forest	age,	soil	nutrient	and	soil	environment	were	the	direct	predictors	

of τsoil.	Among	the	direct	predictors,	climate	was	the	most	important	con-
trol	on	τsoil.	Compared	with	the	standardized	path	coefficients	for	τveg,	
the	direct	effects	of	climate	increased	from	−0.27	to	−0.55,	while	the	di-
rect	impact	of	forest	age	decreased	from	0.30	to	0.28	in	τsoil	(Figure	S3b).	
Latitude	also	exerted	a	strong	indirect	effect	on	τsoil,	with	standardized	
path	coefficient	increased	from	0.30	in	τveg	to	0.48	in	τsoil	(Figure	S3d).

The	GLMs	analysis	presented	that	climate,	forest	age,	forest	origin,	
forest	type	and	soil	nutrient	exhibited	a	combined	control	on	C	turnover	
times	for	both	vegetation	and	soils	(Table	1).	Specifically,	climatic	variables	
accounted	for	9.4%	and	28.8%	of	the	variance	for	τveg and τsoil,	respec-
tively,	whereas	forest	age	explained	12.4%	and	8.6%	of	the	corresponding	
variance.	Forest	origin	accounted	for	7.5%	of	the	variance	for	τveg,	while	
the	 corresponding	 variance	 could	 be	 only	 explained	 by	 0.9%	 for	 τsoil. 
Furthermore,	forest	type	explained	an	additional	0.7%	and	1.2%	of	the	
variance for τveg and τsoil,	respectively,	while	soil	nutrient	accounted	for	
0.5%	and	1.5%	of	the	corresponding	variance	in	the	final	model	(Table	1).

4  | DISCUSSION

4.1 | Influences of abiotic factors on carbon turnover 
times

Our	results	demonstrate	a	latitudinal	pattern	of	C	turnover	times	and	
climate	 controls	 (MAT,	MAP)	 on	 the	 spatial	 patterns	 of	 C	 turnover	

F IGURE  4 Relationships	between	C	turnover	times	and	latitude	(a,	d),	mean	annual	temperature	(MAT;	b,	e)	and	mean	annual	precipitation	
(MAP;	c,	f)	for	vegetation	(n = 2,753)	and	soils	(n = 1,087).	Error	bars	are	standard	error.	***p < .001
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times	 across	 all	 forests	 (Figure	4).	 The	 results	 agree	 with	 previous	
studies	that	reported	the	shortest	turnover	times	in	the	low-	latitude	
zones	and	the	longest	turnover	times	in	the	high-	latitude	zones	(Bird,	
Chivas,	 &	 Head,	 1996;	 Bloom	 et	al.,	 2016;	 Carvalhais	 et	al.,	 2014;	
Chen	et	al.,	 2013).	τsoil	was	negatively	 related	with	MAT	 for	 all	 for-
ests	 in	 this	 study	 (Figure	4),	 which	 is	 not	 consistent	 with	 Giardina	
and	Ryan	(2000)	who	reported	that	there	were	no	significant	trends	
of τsoil	 with	 temperature	 in	 global	 forests.	 Negative	 correlations	
between	 temperature	 and	 τsoil	 are	 widely	 observed	 in	 soil	 incuba-
tions	 (Knorr,	Prentice,	House,	&	Holland,	2005),	 field	measurements	
(Sanderman,	Amundson,	&	Baldocchi,	2003;	Trumbore,	2000),	isotope	

trace	 (Trumbore,	Chadwick,	&	Amundson,	 1996)	 or	modelling	 stud-
ies	(Schimel	et	al.,	1994;	Townsend,	Vitousek,	&	Trumbore,	1995;	Xu,	
He,	et	al.,	2016;	Xu,	Shi,	et	al.,	2016).	This	negative	relationship	could	
be	explained	by	the	fact	that	increasing	MAT	or	soil	temperature	en-
hances	soil	C	mineralization	by	stimulating	soil	microbes	and	enzymes	
activities	 (Conant	et	al.,	2011;	Leirós,	Trasar-	Cepeda,	Seoane,	&	Gil-	
Sotres,	1999),	and	subsequently	accelerates	τsoil.	Mean	annual	precipi-
tation	also	determines	the	variations	of	τsoil.	Previous	field	or	model	
studies	both	indicated	that	increase	in	precipitation	or	increasing	soil	
water	 content	 accelerates	 soil	C	decomposition	 (Davidson,	Verchot,	
Cattânio,	Ackerman,	&	Carvalho,	2000;	Knapp	et	al.,	2008;	Reichstein	

F IGURE  5 Structure	equation	modelling	
examining	the	direct	and	indirect	effects	
on	C	turnover	times	in	vegetation	(a)	
(n = 2,753)	and	soils	(b)	(n = 823).	Double-	
headed	arrows	represent	covariance	
between	related	variables.	Single-	headed	
arrows	indicate	the	hypothesized	direction	
of	causation.	Dark	green	and	blue	arrows	
indicate	positive	and	negative	relationships	
respectively.	Arrow	width	is	proportional	
to	the	strength	of	the	relationship.	
Double-	layer	rectangles	represent	the	first	
component	from	the	PCA	conducted	for	
soil	nutrient,	climate	and	soil	environment.	
The	dark	green	“↑”	and	blue	symbol	“↓”	
indicate	a	positive	or	negative	relationship,	
respectively	between	the	variables	and	C	
turnover	times.	The	numbers	adjacent	to	
arrows	are	standardized	path	coefficients.	
The	proportion	of	variance	explained	(R2)	
appears	alongside	each	response	variables	
in	the	model.	Goodness-	of-	fit	statistics	
for	the	model	are	shown	alongside	each	
model. *p < .05,	**p < .01,	***p < .001

(a)

(b)
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et	al.,	 2003),	 and	 thereby	 results	 in	 faster	 SOC	 turnover.	 Multiple	
mechanisms	 have	 been	 suggested	 underlying	 the	 positive	 effect	 of	
increasing	 precipitation	 on	 the	 SOC	 turnover,	 including	 stimulating	
microbial	 activities,	 enhancing	 nitrogen	 availability	 and	 increasing	
above-		and	below-	ground	C	inputs	(Posada	&	Schuur,	2011;	Schimel	
et	al.,	1994).	A	global	synthesis	of	precipitation	manipulation	experi-
ments	indicated	that	the	normalized	increased	precipitation	of	28%	of	
the	MAP	increased	soil	respiration	on	average	by	16%	and	decreased	
precipitation	reduced	soil	respiration	by	17%	(Liu,	Wang,	et	al.,	2016).	
However,	it	is	noticeable	that	MAP	may	not	be	an	accurate	predictor	
of	soil	water	content	because	the	MAP	hides	its	temporal	distribution	
(Sanderman	et	al.,	2003).	This	is	the	reason	why	MAP	is	not	as	impor-
tant	as	the	MAT	in	controlling	τsoil,	especially	at	large	scales	(Figures	
S4	and	S5).

Climate	controls	on	the	variations	of	τveg	are	not	as	dominant	as	
that	for	soils	 (Table	1,	Figures	4	and	5).	 In	fact,	at	the	plot	scale,	the	
determinant	 of	 climate	 on	 τveg	 is	 likely	 to	 be	 confounded	 by	 forest	
age,	tree	density	and	other	factors.	At	larger	scales,	e.g.	within	2°	lati-
tude	interval	(Figure	S4)	or	5°	latitude	interval	(Figure	S5),	the	impact	
of	 climate	on	τveg	becomes	more	evident.	The	negative	 correlations	
between	τveg	and	climate	may	also	be	related	to	biomass	allocations.	
Luo,	Wang,	Zhang,	Booth,	and	Lu	(2012)	and	Reich	et	al.	(2014)	both	
indicated	that	more	biomass	is	allocated	into	roots	at	the	expense	of	
foliage	 in	 cold	 and	 relative	 dry	 climates,	 as	 roots,	 especially	 coarse	
roots,	have	slower	turnover	rates	than	foliage	and	are	more	likely	to	
contribute	to	the	latitudinal	variations	of	τveg.

Compared	with	 previous	 studies,	 this	 study	 advances	 our	 un-
derstanding	 on	 the	 controlling	 mechanisms	 of	 C	 turnover	 times	
by	 revealing	 the	 direct	 and	 indirect	 pathways	 of	 abiotic	 factors	
(Figure	5).	On	the	one	hand,	 the	direct	 impacts	of	climate	factors	
explained	more	variations	of	τsoil and τveg	than	those	of	soil	environ-
ment	and	nutrients.	On	 the	other	hand,	climate	 factors	 indirectly	
impacted	τsoil and τveg	by	 substantially	 changing	 soil	 environment	
and	nutrients.	These	 findings	 emphasize	 the	 need	 to	 incorporate	
climate	 impacts	 into	 biogeochemical	 model	 development	 and	
evaluation.

4.2 | Influences of biotic factors on carbon 
turnover times

We	discovered	that	forest	age	is	a	dominant	biotic	factor	that	modu-
lates	C	 turnover	 times,	 especially	 for	 vegetation	 (Table	1,	 Figures	3	
and	 5).	On	 the	 one	 hand,	 C	 stock	 in	 the	 vegetation	 increases	with	
stand	development,	 (Cheng	et	al.,	 2015;	Fonseca,	Benayas,	&	Alice,	
2011).	For	instance,	in	a	natural	vegetation	succession,	C	storage	in	bi-
omass	increased	from	1.70	(grasslands),	4.15	(shrublands),	22.3	(shrub	
forests),	70.3	(secondary	forests)	to	142.2	Mg	C	ha−1	(primary	forest)	
in	karst	regions	(Liu,	Liu,	et	al.,	2016).	On	the	other	hand,	with	forest	
growth,	stand	NPP	declines	as	trees	age	(Gray	et	al.,	2016),	which	may	
result	 from	nutrient	 limitation,	 stomatal	 constraint,	 declines	 in	pho-
tosynthesis	during	stand	development	(Gower,	McMurtrie,	&	Murty,	
1996;	McDowell,	Phillips,	Lunch,	Bond,	&	Ryan,	2002;	Tang,	Luyssaert,	
Richardson,	Kutsch,	&	Janssens,	2014).	Moreover,	 it	has	been	dem-
onstrated	 that	 increases	 in	 heterotropical	 respiration	 (Rh)	 in	 early	
succession	 following	disturbances	 are	 commonly	 evident	 (McKinley	
et	al.	2011).	In	global	temperate	forests,	Rh	has	been	reported	decline	
from	9.7	Mg	C	 ha−1 year−1	 in	 young	 forests	 (0–10	years)	 to	 2.8	Mg	
C	ha−1 year−1	in	old	forests	(121–200	years)	(Pregitzer	&	Euskirchen,	
2004).	The	combination	of	increasing	vegetation	C	pool	size	and	de-
creasing	NPP	or	Rh	results	in	the	increment	of	τveg	with	stand	devel-
opment.	Therefore,	forest	age	is	a	main	determinant	of	τveg	across	all	
forests	 (Figures	3	 and	5).	 For	τsoil,	 forest	 age	plays	 a	 less	 important	
role	than	climate	factors	in	determining	the	variations	of	τsoil.	This	is	
likely	because	soils	consist	of	both	newly	fixed	and	old	C,	with	C	age	
ranging	from	months	to	decades,	and	even	over	several	hundred	years	
(Parton,	Schimel,	Cole,	&	Ojima,	1987).

Our	findings	also	show	that	forest	origin,	to	some	extent,	shapes	
τveg	(Table	1).	This	could	be	due	to	planted	forests	having	higher	rel-
ative	growth	rates	and	photosynthetic	rates	than	natural	forests,	re-
sulting	in	a	relative	higher	NPP.	The	reason	might	also	be	that	planted	
forests	and	natural	forests	have	different	biomass	allocation	patters.	
Plants	 usually	 allocate	 more	 biomass	 to	 roots	 than	 to	 foliage	with	
plant	growth	 (Shipley	&	Meziane,	2002).	Planted	forests	are	usually	

TABLE  1 Summary	of	general	linear	models	for	vegetation	and	soil	C	turnover	times

Factor

τveg (ln- transformed) τsoil (ln- transformed)

Main- effect model Final model Main- effect model Final model

MS F SS% MS F SS%

Climate 212.58 356.42*** 9.36 107.28 394.97*** 28.80

Forest	age 281.17 471.42*** 12.38 32.17 118.45*** 8.63

Forest	type 16.33 27.38*** 0.72 4.34 15.98*** 1.16

Forest	origin 169.86 284.79*** 7.48 3.18 11.71*** 0.85

Soil	nutrient 10.57 17.72*** 0.47 5.74 21.14*** 1.54

Soil	environment 3.31 5.55 0.11 0.42

***F	values	in	bold	indicate	p < .001.	Climate,	first	components	from	a	PCA	conducted	with	MAT,	MAP;	Soil	nutrient,	first	components	from	a	PCA	con-
ducted	with	soil	SOC,	N	and	P;	Soil	environment,	first	components	from	a	PCA	conducted	with	soil	pH,	BD	and	clay	content;	MS,	mean	square;	SS%,	per-
centage	of	sum	square	explained.
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young	 forests	with	 fast-	growing	 species,	 so	 allocate	more	 biomass	
to	foliage	to	compete	for	light.	Natural	forests	are	generally	old	for-
ests	 that	 allocate	more	biomass	 to	 roots	and	 stem	 to	 support	 their	
standing	 (Peichl	&	Arain,	 2007).	The	 slower	 turnover	 rates	 in	 roots	
and	stem	than	foliage	(Negrón-	Juárez	et	al.,	2015)	leads	to	a	relative	
longer	τveg	 in	natural	 forests.	Such	differences	 in	biomass	allocation	
between	planted	forests	and	natural	forests	also	highlight	the	impor-
tance	of	the	impact	of	forest	age.	Our	results	about	C	turnover	times	
in	different	forest	types	were	similar	to	the	model	study	in	Zhou,	Shi,	
Jia,	Li,	and	Luo	(2010),	where	there	were	shorter	C	residence	times	in	
broadleaved	forests	than	in	needleleaf	forests,	and	shorter	residence	
times	in	evergreen	forest	than	in	deciduous	forests.	However,	forest	
type	was	not	a	key	factor	determining	C	turnover	times	 in	the	final	
model	in	this	study	(Table	1).	This	may	be	because	climate,	forest	age	
and	forest	origin	in	combination	offsets	the	impact	of	forest	type	on	
C	turnover	times.

In	 summary,	 biotic	 factors	 (forest	 age,	 forest	 origin	 and	 forest	
type)	accounted	for	21%	of	 the	variations	 in	 the	τveg,	 thus	acted	as	
the	dominant	determinants	of	vegetation	C	 turnover,	while	 for	τsoil,	
biotic	factors	accounted	for	11%	of	the	variations,	thus	played	a	rela-
tive	weaker	role	than	climate	factors	(Table	1).	The	various	dominant	
controlling	 factors	 for	τveg and τsoil	 imply	 different	mechanisms	 un-
derlying	above-		and	below-	ground	C	 turnover,	which	needs	 further	
investigation	to	improve	our	fundamental	knowledge	of	C	cycling	in	
forest	ecosystems.

4.3 | Implications and sources of uncertainties

By	using	C	stock/NPP	method,	the	τsoil	in	this	study	was	24.3	years	on	
average	(Figure	S2).	This	estimate	is	in	agreement	with	the	reported	
value	of	24	years	 for	 the	globally	mean	τsoil	 estimated	by	 the	 same	
method	 (Todd-	Brown	et	al.,	 2013).	Carvalhais	et	al.	 (2014)	 reported	
a	mean	ecosystem	C	turnover	time	of	22.5	years	for	different	biomes	
of	the	world	using	C	stock/influx	method.	The	present	result	of	τsoil	is	
also	comparable	to	the	reported	range	of	21.0–23.2	years	(Chen	et	al.,	
2013),	and	32	years	(Raich	&	Schlesinger,	1992)	in	the	studies	using	
the	ratio	of	C	stock	over	C	efflux	(Rh).

Besides	 the	 experimental	 methods	mentioned	 above,	 modelling	
approaches	have	been	also	performed	to	estimate	C	turnover	times.	
For	instance,	Negrón-	Juárez	et	al.	(2015)	conducted	the	work	on	τveg 
in	tropical	forests	based	on	22	ESMs,	which	demonstrated	various	C	
turnover	times	for	different	compartments	 (e.g.	τleaf,	0.30–3.3	years;	
τwood,	 11–54	years;	 τroot,	 3–23	years).	Although	modelling	 is	 an	 im-
portant	tool	in	studying	C	turnover	times,	the	performance	of	models	
is	 always	unsatisfactory.	A	 recent	 analysis	of	11	ESMs	 showed	 that	
large	uncertainties	still	existed	among	different	models	(Todd-	Brown	
et	al.,	2013),	which	subsequently	constrains	their	ability	to	predict	C	
storage	capacity	in	terrestrial	ecosystems	(Chen	et	al.,	2015).	Thus,	the	
empirical	 results	 in	 this	 study	could	provide	a	useful	benchmark	 for	
model	parameterization.

We	also	acknowledge	that	our	estimates	of	C	turnover	times	in	the	
present	work	may	have	 the	 following	uncertainties.	The	 first	uncer-
tainty	is	that	we	estimated	C	turnover	times	based	on	the	steady-	state	

assumption	that	rarely	happens	in	reality.	In	fact,	C	turnover	times	are	
constantly	 affected	 by	 environmental	 conditions	 and	C	 input	 fluxes	
for	the	C	cycling.	Thus,	C	turnover	times	are	always	time-	dependent,	
except	at	longer	time-	scales	where	the	effects	of	environmental	con-
ditions	and	C	input	fluxes	can	be	ignored,	considering	the	ecosystem	is	
at	or	near	steady	state	(Sierra,	Müller,	Metzler,	Manzoni,	&	Trumbore,	
2017).	Moreover,	C	turnover	times	and	other	metrics	of	C	cycling	rates	
are	always	model-	dependent,	and	 it	 is	difficult	 to	obtain	 them	from	
observations	 alone	 without	 steady-	state	 assumption	 (Sierra	 et	al.,	
2017).	Nevertheless,	C	turnover	times	at	steady	state	could	be	useful	
to	inform	and	parameterize	the	C	cycle	models.	As	discussed	here,	τ 
means	the	apparent	turnover	times,	like	that	in	the	study	of	Carvalhais	
et	al.	 (2014).	 In	 addition,	we	also	assumed	 that	 soils	 are	 a	homoge-
neous	pool,	which	disregards	 the	 reality	 that	 soils	 consist	 of	C	 that	
turns	over	with	different	rates	ranging	from	single	years	to	centuries	
(Davidson	et	al.,	2000).	So	far,	it	has	been	a	big	challenge	to	separate	
soils	into	different	pools	and	quantify	each	pool’s	turnover	time	in	em-
pirical	study.	With	those	inevitable	uncertainties,	however,	this	study	
provides	empirical	evidences	and	dataset	on	the	variations	of	τveg and 
τsoil	at	a	large	scale	(Figure	1),	which	is	invaluable	for	model	evaluation	
and	benchmark	analysis.	Furthermore,	the	controlling	factors	for	turn-
over	times	revealed	in	this	study	will	provide	insight	into	the	sensitivity	
and	potential	response	of	forest	C	cycling	to	future	climate	change.
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