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1. Introduction

Biodiversity mapping (i.e., presenting and analyzing the distribution
of biodiversity in space) is an essential tool in biogeography and con-
servation biology (Brooks et al., 2006; Pimm et al., 2014). An important
application of biodiversity maps is their use in modeling the geo-
graphical distribution of extinction risk of species to understand the
underlying causes of the risk and to allocate conservation priorities
(Davies et al., 2006). Biodiversity mapping is particularly powerful if it
is used in combination with other well-established conservation as-
sessment systems such as the International Union for Conservation of
Nature (IUCN) Red List (IUCN, 2001). The IUCN addresses species en-
dangerment by establishing quantitative criteria for assessing extinction
risk at the regional or global scale. With this species-specific knowledge
on extinction risk, threatened species can be directly mapped to identify
hotspots of extinction risk (Brooks et al., 2006). Depending on the
specific conservation targets, conservation hotspots can also be deli-
neated using combined measures of species diversity (usually overall or
small-ranged species richness), ecosystem services (e.g., forest carbon
stocks) and extrinsic threats (as measured by indexes of human pre-
sence or land cover change) (Myers et al., 2000; Jenkins et al., 2013).
Ideally, high congruence among these measures would provide a “silver
bullet” for multiple facets of biodiversity conservation or co-benefits for
climate change mitigation (Canadell and Raupach, 2008).

However, incongruence between the hotspots defined by different
measures (e.g., total species richness versus threatened species) is fre-
quently reported (Orme et al., 2005; Grenyer et al., 2006). The spatial
incongruence between those mapped “hotspots” suggests that different
mechanisms may underlie spatial distribution of species richness, re-
stricted-range species, and threatened species. It is well recognized that
broad-scale patterns of species richness are strongly influenced by
widespread species rather than rare species (Lennon et al., 2004).
Compared with widespread species, range-limited (e.g., < 250,000
km2; hereafter termed "endemic") species are more concentrated in
areas featuring a high environmental variation, rare/unusual climate
(Ohlemüller et al., 2008), or historically stable climate (Sandel et al.,

2011). Because of the limited distribution or rarity in number, endemic
or rare species are particularly vulnerable to anthropogenic dis-
turbances such as destruction and fragmentation of natural habitats
(Fahrig, 2003). As such, an area with more endemic species tends to be
an extinction hotspot, which is traditionally delineated by the total
number of threatened species (Brooks et al., 2002).

A potential problem with conventional biodiversity mapping based
on the absolute number of threatened species is that this cannot ade-
quately inform the degree of threat, i.e., "vulnerability" (Margules and
Pressey, 2000) in mapped areas. Although using absolute species rich-
ness has the advantage of highlighting particularly biodiverse regions at
risk, it may overlook less diverse areas with considerable threats, for
instance, many populous regions in eastern China could nevertheless
lose valuable local biodiversity and ecosystem functioning if land use
transformation continues to occur. This problem is commonly dealt
with by dividing the number of threatened species (denoted as TSR) by
the total number of species (denoted as SR) and then mapping the ratio
(Davies et al., 2006; Lee and Jetz, 2011). However, the TSR/SR ratio
(also termed crude rate in epidemiology studies) is not suitable for
mapping risk because the variance of this ratio depends on the size of
the denominator (i.e., SR) in each mapping unit. Specifically, given an
independent risk π of being exposed to an event for a given number of
species (SR), the number of species observed to be threatened (TSR) can
be taken to follow a binomial distribution. The variance of the TSR/SR
ratio estimator is π(1− π) / SR. If SR is small, the variance in the ratio
is high; if SR is large, the variance in the ratio is low. In other words, the
smaller SR, the less precise the ratio will be as an estimator of π. Hence,
the appearance of a large ratio could be entirely or partly due to the
small number problem (Elliott and Wartenberg, 2004), and the re-
sulting ratios will be highly variable and difficult to compare. Conse-
quently, any ratio map suggesting "outliers" may be spurious, as the
extreme values may simply result from high variability of the estimate.

To map the risk of species extinction, it is necessary to compare the
ratio to a benchmark. In other words, the observed number of threa-
tened species must be compared to an expected number of threatened
species to correctly represent the degree of extinction risk.
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Furthermore, smoothing techniques such as Bayesian smoothers
(Clayton and Kaldor, 1987) are required to address variance instability
in ratios due to the variability of SR across spatial units.

Here, we propose “relative extinction risk” (RER) to quantify geo-
graphic variation in extinction (or threatened) risk. The concept of RER
was initially developed and widely used in epidemiology for mapping
disease distribution and outbreak (Sartorius et al., 2013; Saint-Jacques
et al., 2016), or identifying and predicting high-risk areas (Devine et al.,
1996; Shacham et al., 2017). For example, Shearer et al. (2018) as-
sembled 1155 geographical records of yellow fever virus infection and
incorporated environmental and biological explanatory covariates to
map and predict the incidence and the relative risk of apparent yellow
fever virus infection across the Americas and Africa. In our study,
“threatened species” is analogous to “incidence of disease” in epide-
miology (Wakefield, 2007; Lawson, 2013). Following this concept, RER
is measured as the ratio of the number of observed threatened species to
the expected number of threatened species. A relative extinction risk
significantly higher than one indicates that the region is suffering from
an excessively high level of extinction threats. In turn, such high pro-
portions of local loss of species may risk ecological functioning or
biological insurance (Hooper et al., 2012). Mapping relative extinction
risk thus provides valuable information for identifying areas in need of
immediate conservation action. Furthermore, the resulting estimate of
relative extinction risk provides a natural means to model the effect of
potential threatening factors on extinction risk, as is used in epide-
miology and public health studies (Sartorius et al., 2011; Lawson,
2013).

In this study, we mapped and compared relative extinction risk
distribution for threatened angiosperm species in China to demonstrate
the capacity of this method. We consider China as a particularly re-
levant country for mapping threatened species as China is one of the
megadiverse countries (~35,000 seed plant species) and has suffered
serious environmental problems that threaten the survival of many
species (He, 2009). We compiled an extensive database on the tax-
onomy, distribution, environmental, and human activity factors for the
Red List angiosperm species in China to address the following three
questions: (1) Are the hotspots of species richness, threatened species,
and relative extinction risk spatially congruent? (2) Are the spatial
patterns of threatened species richness and relative extinction risk ex-
plained by the same set of environmental and human activity risk
factors? (3) How may the degree of plant extinction risk affect local
ecosystem functioning (as measured by net primary productivity) and
which of the extinction risks (TSR versus RER) better reflects the de-
generation of ecosystem functioning? To answer these questions, we
mapped and compared the distributions of threatened species and the
relative species extinction risk. We then modeled the effects of en-
vironment and human activities on the distributions of threatened
species and relative extinction risk. We further examined the correla-
tion of threatened species richness and relative extinction risk with net
primary productivity (NPP). We concluded the study by discussing the
implications of RER methodology for informing conservation practice.

2. Study data

2.1. Data on IUCN Red List plant species

For the ease of description of the mapping method, we first in-
troduce the data on threatened species in China and the related cov-
ariates. The latest (2013) China IUCN Red List species (http://www.
mep.gov.cn/gkml/hbb/bgg/201309/W020130912562095920726.pdf)
were used in this study. This Red List evaluated 29,530 higher plant
species and infraspecific taxa in 2793 genera and 249 families, of which
17,701 are endemic in China. Based on the criteria of IUCN, species are
placed into one of seven categories: least concern (LC), near-threatened
(NT), vulnerable (VU), endangered (EN), critically endangered (CR),
extinct in the wild (EW), and extinct (EX), with those in the categories

CR, EN, or VU classified as Threatened. After screening species' names
with the latest version of Flora of China (http://www.efloras.org/flora_
page.aspx?flora_id=2) to exclude synonyms, we identified 27,399 an-
giosperm species with 925,195 spatial distribution records from the
county-level Chinese Vascular Plant Distribution Database (CVPDD),
which was compiled from three sources of data: Flora Reipublicae
Popularis Sinicae (http://frps.eflora.cn/), provincial and regional floras
in China (http://www.metasequoia.org/local.htm). We further re-
trieved and georeferenced 9,166,930 plant specimen records from
National Specimen Information Infrastructure (http://www.nsii.org.cn;
accessed in September 2017). The taxonomy of the specimen records
was checked with a name checking service (http://www.nsii.org.cn/
2017/namesautocheck.php) to ensure they were comparable with Flora
of China, Species2000 (Checklist 2017, http://www.sp2000.org.cn/
2017), and the CVPDD. The full list of Chinese angiosperm species
and their range sizes are included in the Appendix (Table S1).
Considering the dramatic changes in human activities in China in recent
decades, we used 1,903,030 records with valid county-level distribution
since the 1980s to correct the distribution information of the CVPDD.
We repeated the analyses using 4,550,638 records since the 1950s to
evaluate the influence of sampling bias of specimen collection on the
quality of distribution data (Yang et al., 2013). We found the results
were similar between the two datasets, so we only reported the results
with specimen information correction since the 1980s in the main text
but presented the results with datasets since the 1950s in Appendix
Table S2.

To eliminate the influence of county area on the estimation of
species richness (Rosenzweig, 1995), we gridded species distribution
data and all the environmental and human activity variables (see
below) to a 50 km scale with equal area projection. We excluded the
grid cells on borders or coasts that had less than half of their area on
land or inside China. The grids in Hainan and Taiwan islands were
excluded. Finally, 3769 grid cells were used in this study. The number
of threatened species in each grid cell was the number of IUCN threa-
tened species, and the relative extinction risk was calculated accord-
ingly following methods described in the section "Modeling relative
extinction risk" below. To identify risk factors, the distributions of the
threatened species richness and the relative extinction risk were mod-
eled using environmental, human activity, and spatial variables as de-
scribed below. We repeated the above analyses using 100 km grid cells
to further evaluate the robustness of our results to different spatial
scales and the transformation from county-level polygons to gridded
distributions. We found that the results were mostly consistent with
those using 50 km grid cells. Therefore, we reported only the results for
50 km grid cells in the main text but included the 100 km grid results in
the Appendix (Fig. S1 and Table S3).

2.2. Environmental variables (ENV)

Environmental variables include the bioclimatic variables extracted
from the WorldClim Database (grid size: 30 s, ~1 km) (Hijmans et al.,
2005) and the annual actual evapotranspiration (AET) and annual po-
tential evapotranspiration (PET) data compiled from the Global Eva-
potranspiration and Water Balance Data Sets (Ahn and Tateishi, 1994).
These variables were grouped into 4 categories: (1) Energy factors,
including mean annual temperature (MAT), mean temperature of the
coldest month (TCM), mean temperature of coldest quarter (TCQ), and
PET; (2) water availability factors, including mean annual precipitation
(MAP), mean precipitation of the driest month (PDM), AET, and
moisture index (MI) (calculated as AET / PET) (Shafer et al., 2001); (3)
heterogeneity factors, including the range of MAT, MAP, and standard
deviation of altitude within each grid; (4) climatic seasonality factors,
including temperature seasonality (TS) and precipitation seasonality
(PS).

To quantify the availability of analogous climates (AAC) for species
migration, we calculated the average Euclidian distance in climatic
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space between each focal cell and all other cells within 500 km. The
climatic space was defined with the first two principal component axes
(PCA) which captured 79.3% of the variation in the above 13 en-
vironmental variables after excluding variables having pairwise
Pearson correlation coefficient > 0.9. Areas with high AAC values
have more similar climatic conditions amenable to dispersal or migra-
tion.

Following Sandel et al. (2011), long-term climate stability was re-
presented by Late Quaternary climate-change velocity (CCV), measured
as the mean annual temperature velocity since the Last Glacial Max-
imum (21,000 years ago). CCV was calculated by dividing the tem-
perature change over time by the local temperature change across
space, as an indication of the dispersal rates required to track suitable
climates across the surrounding topography. The past mean annual
temperature was calculated using the mean value of the CCSM3 and
MIROC3.2 simulations from the Paleoclimate Modelling Inter-
comparison Project Phase II.

2.3. Human activity and land fragmentation variables (HAL)

Ground validated land cover/land use data with 15 land use types
(Appendix Table S4) were compiled from Ran et al. (2010), comprising
percentage area covered by corresponding vegetation types at the ori-
ginal 1 km resolution that was aggregated to 50× 50 km equal area
projected grids to match the species distribution maps. Historical ha-
bitat loss (before 2000) in China was estimated as the sum of land area
occupied by urban settlements, crops, and two thirds of pasture area,
under the assumption that pasture lands were incompletely cultivated
and less intensively used than croplands or urban areas (Lee and Jetz,
2011). Recent habitat loss (2000–2015) was aggregated and projected
from forest cover data at 30-meter resolution (Hansen et al., 2013). The
final habitat loss (HL) was the sum of historical and recent habitat loss.
We compiled data on population density (POP) in 2010 (http://sedac.
ciesin.columbia.edu/data/collection/gpw-v3) and road length (RL)
from 1980 to 2010 (http://sedac.ciesin.columbia.edu/data/set/groads-
global-roads-open-access-v1) as surrogate measures of land use in-
tensity. We also compiled data from Global Human Footprint in 2009
(Venter et al., 2016) as a composite measure of human pressure sug-
gested by previous studies (Di Marco et al., 2013).

We calculated landscape fragmentation metrics for each 50 km grid
by batch processing original 1 km land use maps; they included patch
clumpy index (CLUMPY), and core area index (CAI_MN). We used a
binary classification of habitat/non-habitat, which combined natural
land cover types into a single habitat class. Shannon's Diversity Index
(SHDI) and Shannon's evenness index (SHEI) were calculated for all 15
land use types as landscape level measures of habitat fragmentation
(Wang et al., 2014).

2.4. Spatial variables (SEF)

Moran's I test was performed to check for spatial autocorrelation in
the distribution of the threatened species richness (TSR) and the re-
lative extinction risk (RER). We then included spatial eigenvector
mapping (Griffith and Peres-Neto, 2006) together with the above en-
vironmental and human activity variables in the regression models of
TSR and RER to account for the possible spatial autocorrelation in TSR
and RER. We selected spatial eigenvector filters with a forward selec-
tion procedure and stopped including further eigenvector filters into the
models of TSR and RER once the Moran's I values in the residuals of the
regression models were no longer significant (Griffith, 2003).

2.5. Relationships between different measures of extinction risks and
ecosystem functioning

We made an attempt to link extinction risks with ecosystem func-
tioning. We used net primary productivity (NPP) to measure ecosystem

functioning. The Moderate Resolution Imaging Spectroradiometer
(MODIS) gridded 1 km annual NPP was derived from satellite measures
of vegetated cover and density from 2000 to 2015 (Zhao and Running,
2010). We mapped and masked the original data to exclude cropland
and urban settlements. Temporal change in NPP at each grid was
characterized by the slope of the linear trend with respect to time
(2000–2015). Relative temporal change of NPP was calculated as the
slope of the linear regression line divided by NPP in 2000 to measure
degeneration of ecosystem functioning over time among areas.

3. Modeling relative extinction risk

3.1. Extinction risk mapping

We mapped threatened species richness (TSR) and relative extinc-
tion risk (RER), respectively, and compared the difference between the
two mapping methods. For the traditional mapping, the total species
richness (or the threatened species richness) is directly placed on maps.
The biodiversity (or the threat) hotspots are then delineated as those
cells ranked in the top 2.5% or 5% by the number of (threatened)
species (Ceballos and Ehrlich, 2006).

In the context of extinction risk mapping, the threatened species
richness (TSRi) in a spatial unit i is assumed to follow a Poisson dis-
tribution with mean (and variance) θiETSR,i, where ETSR,i is the expected
number of threatened species, and θi is the relative extinction risk in a
spatial unit i. More precisely, the distribution of TSRi is conditional on
the unknown relative risk parameter θi

⋅TSR θ θ E~Poisson( ).i i i TSR i, (1)

The maximum likelihood estimator for the relative extinction risk
(θi) follows as:

=θ TSR
E

,i
i

TSR i,


(2)

with variance:

=Var θ θ
E

[ ] .i
i

TSR i,


(3)

Note that the expected number of threatened species is computed by
applying a reference estimate for the risk (r+) to the total (threa-
tened+unthreatened) species richness in unit i (SRi):

= ⋅ +E SR r ,TSR i i, (4)

where the overall mean risk r+ is obtained from the marginal dis-
tribution of the observed events TSRi, calculated as the ratio of the total
threatened species richness (TSR+) to the total species richness (SR+)
of the study area (the subscript+ indicates the sum over all the spatial
units):

=+
+

+
r TSR

SR
.

(5)

As ETSR,i depends on the population at risk (SRi, i.e., the total species
richness in area i), the variance of the estimate θi will vary with SRi. To
correct for variance instability, an empirical Bayes (EB) smoother is
widely applied by shrinking the estimates of θi in each area towards the
overall mean risk as an inverse function of the inherent variance
(Clayton and Kaldor, 1987). In Bayesian statistics, the overall mean risk
r+ is a prior, which is conceptualized as a random variable with its own
"prior" distribution. Specifically, assuming the prior distribution of θi to
have mean μi and variance σi2, the best linear Bayes estimator of the
RER is obtained by (Clayton and Kaldor, 1987)

= + −θ ω θ ω μ(1 ) ,i
EB

i i i i
  (6)

with weights ωi
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=
+

ω
σ

σ μ E( / )
,i
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i i TSR i

2

2
, (7)

and variance

= +Var θ σ μ E[ ] ( / ).i
EB

i i TSR i
2

, (8)

The EB estimate of RER is thus a weighted average of θi and the
"prior" with weights inversely related to their variance. Weight ωi ap-
proaches one when ETSR,i is large, giving all the weight in Eq. (6) to the
original estimate θi. As ETSR,i becomes smaller, and thus the variance of
the original estimate increases, more weight is given to the prior overall
mean risk r+.

Here we adopt a multivariate log-normal distribution for θi:
=θ λlog( ) ,i i (9)

with

λ MVN μ~ ( , Σ), (10)

where λ is an N by 1 vector of λi, μ is a vector of prior means, and Σ is a
variance-covariance matrix. Estimation of the log-relative risk λi is not
taken as log(TSRi / ETSR,i) but log((TSRi+0.5) / ETSR,i), because the
former is not defined when TSRi is zero. In the simple case with an i.i.d.
prior N(μ,σ2), the expectation–maximization (EM) algorithm can be
used to obtain estimates of the mean and variance of the normal dis-
tribution Eq. (10) by successively updating the following EB estimator
of λi until convergence (Lawson, 2013):

̂ ̂
̂= =

+ + − ⋅
+ +

θ λ
ϕ σ TSR λ σ

TSR σ
log( )

( 0.5) 0.5
1 ( 0.5)

,i
EB

i
EB i i

i

2 2

2
  

(11)

where prior estimates of the mean and variance are given by

∑= =
=

ϕ
n

λ λ1 ,
i

n

i
1


(12)

and

Fig. 1. (A) Distribution of angiosperm species in China at 50×50 km resolution, showing species richness (SR), (B) threatened species richness (TSR), which varies
from zero to 761, (C) the relative extinction risk (RER), and (D) relative temporal change of NPP during 2000–2015 (calculated as the temporal NPP change divided
by the NPP in year 2000). The SR and TSR hotspots (in panel A and B) with the upper 2.5% and 5% quantiles are shown in red and orange, respectively. In panel C,
the red and orange colors indicate RER hotspots at the significance levels P < 0.01 and P < 0.05, respectively. The numbers in panels C and D indicate Southeast
Tibet (area 1), Hengduan Mountains (area 2), Xishuangbanna Region (area 3), Sichuan Basin and Chengdu Plain (area 4), Guangdong Hills (area 5), and Northeast
Plain (area 6). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Following the above assumptions, “relative extinction risk hotspots”
can be naturally defined via the probability map of the log-normal
distribution (Lawson, 2013). A cell is an RER hotspot if the observed
threatened species richness is significantly higher than expected under
the log-normal model at P≤ 0.05.

Spatial congruence among the three types of hotspots (total rich-
ness, the number of threatened species, and relative extinction risk) was
evaluated by calculating the degree of spatial overlap and the correla-
tions between them.

3.2. Modeling extinction risk in terms of environmental, human activity,
and spatial covariates

We used log-transformed threatened species richness as the re-
sponse variable in the following analysis. This log-linear regression
model is commonly used to model species richness (e.g., Ricklefs and
He, 2016). For the relative extinction risk θi (Eq. (9)), log-transformed
θi has the property that it is centered at 0 with equal ranges on either
side (Prentice, 1985); the prior (Eq. (10)) also provides a natural means
to introduce explanatory variables in the log-linear model (Lawson,
2013):

= + + × + × + × +θ α α SR β γ δ εENV HAL SEFlog( ) log( ) ,0 (14)

where ε is a non-spatial random error term. The response variable θ can
be TSR or RER. Environment (ENV), human activity (HAL) variables,
and the selected spatial eigenvector filters (SEF) were included in the
model to determine their effects on TSR and RER. For both TSR and
RER models, log-transformed total species richness (SR) was included to
account for the background species pool.

3.3. Model selection

Multicollinearity in the ENV and HAL variables was removed by
excluding those variables with correlation coefficient > 0.9. The se-
lected explanatory variables were included in the regression model
(14). For human activity variables (HAL), the quadratic term of the
habitat loss area was included to account for the possible quadratic
effect. Interaction terms between habitat loss (HL), and habitat

diversity (SHEI), land use intensity (population density and road
length), and fragmentation metrics (CAI_MN) were also included to
account for potential interactive effects between anthropogenic threats.

Model selection was based on the Akaike information criterion
(AIC). The relative importance of the selected variables was assessed
using the probability of each variable being included in the “best”
models, estimated by summing the Akaike's weights of all candidate
models where the variable was included. Model fit was evaluated using
adjusted R2

adj and AIC. All numeric variables were standardized to 0–1
by (x− xmin) / (xmax− xmin) to facilitate comparison of the estimated
coefficients.

Landscape fragmentation metrics were calculated using FRAGST-
ATS (version 4.2) (McGarigal et al., 2012). Empirical Bayes estimates of
smoothed relative risk were implemented in the R package “DCluster”.
Moran's I values and tests were computed with the R package “spdep”.
Model selection and inference were implemented with the R package
“MuMIn”. All statistical analyses were performed using R (https://
www.r-project.org/) and ArcGIS 10.1 (Environmental Systems Re-
search Institute (ESRI), Redlands, CA.).

4. Results

The total species richness (SR), threatened species richness (TSR),
and relative extinction risk (RER) were unevenly distributed across
China (Fig. 1). High total and threatened species richness were con-
centrated in the same mountainous areas in southwestern and central
China (Fig. 1A, B; see areas 1, 2, and 3 in Fig. 1C). Species richness
alone explained 66% of the variation in TSR, indicating the high spatial
congruence between SR and TSR. In contrast, only 18% of the variation
in RER was explained by SR after spatial dependence was accounted
for. The distribution of high RER is less concentrated but high RER
mostly distributed in southeast Tibet (area 1) and southwestern China
(area 2 and 3), with some sparsely scattered in other parts of China,
including the Sichuan Basin, Guangdong Hills and Northeast Plain
(areas 4, 5, and 6 in Fig. 1C).

The spatial incongruence between RER and SR was also reflected in
the spatial overlap of their hotspots. Under the 2.5% upper quantile
criterion for SR and TSR and P < 0.01 significance level for RER, only
16 cells (40,000 km2) contained overlapping RER and SR hotspots
(Fig. 2A), which account for 22.2% of the total 72 RER hotspot cells
(180,000 km2). In contrast, TSR and SR shared 61 hotspot cells

Fig. 2. Venn diagram showing the number and percentage of hotspots that are spatially overlapped among the three diversity components: species richness (SR),
threatened species richness (TSR), and relative extinction risk (RER). (A) SR and TSR hotspots are identified by the grid cells of the 2.5% upper quantile while RER
hotspots are defined at P < 0.01; (B) SR and TSR hotspots are the 5% upper quantile while RER hotspots are defined at P < 0.05.
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(152,500 km2), accounting for 64.2% of the total 95 TSR hotspot cells
(237,500 km2). When the criterion was relaxed to 5% upper quantile for
SR (and TSR) and P < 0.05 significance level for RER, 72 cells
(180,000 km2) are found overlapped between the RER and SR hotspots,
accounting for 39.8% of RER hotspot cells (Fig. 2B), but 72.9% of TSR
hotspot cells were overlapped with SR hotspots in this case (Fig. 2B).

The difference between TSR and RER defined risks can be further
illustrated by the following results. Area 1 (southeast Tibet), area 2
(Hengduan Mountains), and area 3 (Xishuangbanna Region) in Fig. 1C
were identified as biodiversity hotspots by total species richness
(Fig. 1A; there were 3441, 5475 and 3486 species, respectively) and
threat hotspots by TSR (Fig. 1B; 225, 691, and 635, respectively). By the
measure of RER, area 1 and 3 were also identified as hotspots at the
P < 0.01 significance level but area 2 was identified as marginally
significant (P < 0.05) (Fig. 1C). In contrast, areas 4 (Sichuan Basin), 5
(Guangdong Hills), and 6 (Northeast Plain) were not identified as bio-
diversity or threatened species richness hotspots (SR and TSR were
below the criterion of 5% upper quantile; Fig. 1A and B), but these three
areas were identified as RER hotspots (due to their high proportions of
threatened species, 127/1104, 130/1691, and 14/415, respectively).

The distributions of both TSR and RER can be well explained by

environmental and human activity variables. As shown by the "best"
models selected by the AIC in Table 1, the models for threatened species
richness and relative extinction risk shared many common environ-
mental and human activity variables but also differed in many of them.
Specifically, environmental effects on TSR and RER include energy and
water availability, topographic heterogeneity, and climatic variability/
stability factors (Table 1). Among those environmental variables that
were different between the two models, altitude (ALT) had no sig-
nificant effect on TSR while the standard deviation of altitude
(ALT_STD) was only selected by the RER model.

The most interesting difference between the TSR and RER models is
reflected in the effects of human activity variables (Table 1). Among the
three major anthropogenic factors (habitat loss, land use intensity, and
habitat fragmentation), habitat loss (HL) showed a negative effect on
TSR but its effect on RER was quadratic. The quadratic term of popu-
lation density (POP) was significantly negative on TSR but not on RER.
Road length (RL) was only selected by the RER model. Habitat frag-
mentation (CAI_MN) showed no significant effect on TSR but a highly
significant effect on RER. Although all the interaction terms in the TSR
model were significant, only one of them was significant in the RER
model (Table 1).

We also found that RER was a better indicator of ecosystem func-
tioning loss, as measured by relative temporal change of NPP, than TSR
(Fig. 3). The relationship between NPP and SR (or TSR) was less con-
sistent. For example, between 2000 and 2015, NPP decreased in RER
hotspots where SR and TSR were low (such as areas 4, 5, and 6) but
increased in some SR and TSR hotspots where RER was low (around
area 2).

5. Discussion

Biodiversity mapping is a major tool for biodiversity study and
conservation. It is particularly useful for describing biodiversity pat-
terns and monitoring conservation status (Jenkins et al., 2013; Watson
et al., 2013). Although conservation planning is encouraged to use
methods that can directly incorporate threats, such as Marxan and C-
plan (Watts et al., 2017), to identify priority areas, threatened species
richness remains the essential biodiversity measure in such exercises.
The conventional approach maps the absolute richness of threatened or
endemic species and measures the magnitude of extinction risk as well
as irreplaceability in an area. Our results confirmed that the threatened
species richness (Fig. 1B) and the total species richness (Fig. 1A) were
highly congruent, with over 60% of variation in TSR being explained by
SR.

With little doubt, areas with both high threat and high number of
species should be considered as the priorities in conservation practice.
For example, the Xishuangbanna region (area 3 as identified in Fig. 1C)
was identified as a hotspot in terms of SR and TSR (Fig. 1A, B). Xish-
uangbanna lies within the Indo-Burma global biodiversity hotspot and
harbors some 16% of the vascular flora of China (Zhang and Cao,
1995). The area has suffered substantial deforestation and land use
change with much of the primary tropical forests being converted to
rubber plantation or other developments (Xu et al., 2014).

TSR measures the magnitude of the threat to diversity in an area and
conservation actions based on the absolute threatened or endemic
species richness could be proactive in the long term. In contrast, RER
measures the degree of threat an area has suffered and thus is com-
plementary to TSR. The RER is particularly useful for identifying areas
with considerable threats but low diversity (Brooks et al., 2006; Turner
et al., 2007). This was also evident in our study. For instance, the po-
pulous southern and northeastern China (areas 4, 5 and 6, see Fig. 1C)
were major RER hotspots suffering a high degree of extinction risk, but
they are not SR hotspots (Fig. 1A) nor TSR hotspots (Fig. 1B). This
shows how non-SR or TSR hotspots could be disproportionally affected
by human activities; common to these three areas is that they are highly
populated (e.g., the present population density is 530 people/km2 in

Table 1
The best models for threatened species richness and relative extinction risk
selected for environmental (ENV), human activity and landscape (HAL), and
spatial (SEF) variables. The adjusted R2 was used to evaluate the overall
goodness of fit. *** indicates P < 0.001, ** P < 0.01, * P < 0.05. Variables
that were not selected are denoted by "-". Variables that were selected but not
significant are not asterisked. Note that the relative extinction risk and the total
and threatened species richness are all log-transformed in the regression
models.

Variables Threatened species
richness

Relative extinction
risk

(Intercept) −3.13*** −0.51***
SR 0.92*** 0.01
Energy and water availability
PET 1.06*** 0.47***
MI 0.32*** 0.22***
PCQ −1.58*** −0.39***

Topography and heterogeneity
ALT −0.06 −0.31 ***
ALT_STD - 0.2 ***

Climatic variability/stability
MDR −0.92*** −0.39***
CCV_MN −0.75*** −0.36***
AAC −0.84*** −0.45***
PS −0.47*** −0.19***

Habitat loss
HL −0.27*** 0.12
HL2 - −0.43***

Land use intensity
HFP 0.48*** 0.31***
RL - 0.06**
POP 1.61*** 0.48***
POP2 1.46** -

Habitat fragmentation
SHEI 0.22*** 0.15***
CAI_MN −0.04 0.02***

Interactions
HL ∗ POP −3.94*** -
HL ∗ CAI_MN 2.13*** -
HL ∗ CAI_CV 0.45*** 0.28***
R2
adj 0.93 0.79

Note: Covariate abbreviations are as follows: SR: total species richness, PET:
annual potential evapotranspiration, MI: moisture index, PCQ: mean pre-
cipitation of the coldest quarter, MAP range: range of mean annual precipita-
tion, CCV_MN: mean climate-change velocity, AAC: availability of analogous
climates, PS: precipitation seasonality, MDR: mean diurnal range, ALT: altitude,
HL: habitat loss, HFP: human footprints, RL: road length, POP: population
density, SHEI: Shannon's evenness index, CAI_MN: mean core area index,
CAI_CV: coefficient of variance of core area index.
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area 4, Sichuan Basin) and have long histories of cultivation (d'Alpoim
Guedes, 2011; He et al., 2014; Feng et al., 2017). In contrast, the
Hengduan Mountains (area 2), a global biodiversity hotspot (Myers
et al., 2000) with many endemic and threatened species, was identified
as a SR and TSR hotspot (Fig. 1A, B). However, the area has suffered
relatively low human activities because of its inaccessibility and low
human population density (~3 people/km2). This area was identified as
a less significant hotspot (P < 0.05) by RER (Fig. 1C), indicating that
the degree of threat is not as serious as for areas 4, 5, and 6. These
results suggest that it would be cost-effective to conserve the Hengduan
Mountains area (because of its high TSR) but if resources are limited,
the area should be of relatively low priority for conservation investment
because of its low degree of threats (low RER) compared to areas 4, 5,
and 6. It is clear that RER, being complementary to TSR, can contribute
to identifying potential gaps of the TSR or SR based conservation
planning systems.

Conservation is ultimately about maintaining biodiversity by mini-
mizing and averting the impacts of multiple threatening factors. If the
final goal is to reduce the direct pressures on biodiversity and to safe-
guard ecosystems as well as species diversity (e.g., Convention on

Biological Diversity Aichi Targets 6 & 12), it is essential to identify
underlying threat processes occurring within an area, whether the area
is species-rich or species-poor. The regression model of RER (Eq. (14))
allows us to do so. Although many of the RER-identified risk factors also
affect TSR (Table 1), there is no methodological or ecological reason
that this has to be the case. A high TSR could arise from a high total
species richness (i.e., by chance alone a high SR could lead to a high
TSR) or high threats, or both, in an area. As such, it is ambivalent to use
a TSR hotspot to infer underlying causes. After the effect of the total
number of species has been accounted for, our results show that TSR
and RER of the angiosperm species in China are affected by many
shared environmental factors but different human activity factors at
both the 50 km (Table 1) and the 100 km scale (Appendix Table S2).
Among the differences between TSR and RER models, the significant
environmental covariates selected by the RER model (Table 1) suggest
that threatened species are particularly vulnerable in areas at low al-
titude (ALT) but with a high degree of topographic heterogeneity
(ALT_STD). The effects of historical climate change and the availability
of analogous distribution area (CCV_MN, AAC and CCV_STD) on RER
are important at the 50 km scale (Table 1) but not at the 100 km scale

Fig. 3. Relationships between (A) threatened species richness (TSR) (R2= 0.058, P < 0.001), (B) relative extinction risk (RER) (R2= 0.12, P < 0.001) and relative
temporal change of net primary productivity (NPP) from 2000 to 2015 (calculated as temporal NPP change divided by the NPP in year 2000). Primary color dots
indicate grid cells unique to one type of hotspot (yellow, species richness ranked top 5%; blue, threatened species richness ranked top 5%; red, relative extinction risk
at the significance level P < 0.05), secondary color dots indicate overlap between two types, and black indicates overlap of all three types. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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(Appendix Table S2). The most significant environmental covariates in
the TSR regression model are energy and water availability and climatic
variability (PET, MI, CCV_MN and PS), suggesting the importance of
energy and water in determining species richness or endemism as well
as extinction risk (Kreft and Jetz, 2007; Sandel et al., 2011). The con-
sistency in environmental effects on RER and TSR highlights the “ir-
replaceable” aspect of physical environments as “arenas” for biological
activity (Beier and Brost, 2010). However, the “vulnerability” aspect of
extinction risk was better revealed by RER from the effects of habitat
loss and road length. The human footprint (HFP) had a significantly
positive effect on both TSR and RER, but the effect of habitat loss was
significantly negative (Table 1). This is not unexpected given that our
measure of habitat loss mainly reflects historical area loss of natural
habitat in China from the 1950s to the 1980s (Appendix Table S2 and
Table 1) while human footprint indicates current intensity of human
activities. Although habitat loss and fragmentation metrics (e.g., SHEI
and CAI_MN) could impose joint threats to many species (Mantyka-
pringle et al., 2012), none of the interactions in our study were sig-
nificant (Tables 1 and S2). This is possibly because the effect of habitat
loss was so strong that it overwhelmed the effect of fragmentation,
consistent with the "habitat amount hypothesis" (Fahrig, 2013). To in-
vestigate that, we conducted an analysis by purposely excluding the
habitat loss terms (i.e., HL and HL2) from the RER regression model but
retaining the HL interaction terms (see Table 1). This analysis showed
that the HL interaction terms had highly significant effects on RER
(results not shown).

It is necessary to mention a caveat for our study. IUCN endangered
species were identified by criteria relating to population size, range
size, population decline, and habitat fragmentation. Although the de-
tailed factors used to classify China 2013 Red List species are unknown,
there is a possibility that the factors used to define an endangered
species are also used as covariates in our regression models. This could
unintentionally elevate the importance of such covariates as risk fac-
tors. This inflation could potentially contribute to the significant cor-
relation observed between TSR and habitat fragmentation metrics, al-
though this still cannot explain the negative effect of habitat loss on
TSR.

Having understood the distinction between TSR and RER (the
former measures the absolute risk, the latter measures the degree of
extinction risk), the question naturally arises as to which of the two
measures better indicates the degradation of ecosystem functioning.
Although both TSR and RER are significantly correlated with the de-
creasing trend of NPP from 2000 to 2015, RER is clearly more strongly
associated with the degradation of ecosystem functioning (Fig. 3). The
oft-documented positive relationship between biodiversity and eco-
system functioning (Bunker et al., 2005) predicts that loss of species
from local communities could result in loss of biological insurance and
species-poor communities would suffer more from losing the same
number of species. As such, RER should be a better indicator of the
change of ecosystem functioning, including climate change mitigation
such as change in NPP.

To summarize, we have proposed a novel approach for biodiversity
mapping and demonstrated its application to mapping and analyzing
the extinction risk of angiosperm species in China. The basic concept of
the method is relative extinction risk (RER) that describes the degree
species suffer from threats. In contrast to the conventionally used ab-
solute number of threatened species, RER removes the confounding
effect of background species richness. There is a well-developed theory
about RER in epidemiology that allows for a formal statistical definition
of “RER hotspots” as well as a prediction tool (Waller and Carlin, 2010).
RER mapping provides an alternative description of the extinction risk
distribution of threatened species that better indicates degeneration of
ecosystem functioning. If used together with species-specific evaluation
on extinction risk, such as the IUCN Red List, RER mapping should
complement conventional conservation methods to facilitate biodi-
versity conservation and management.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.biocon.2018.07.012.
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