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Traits drive global wood decomposition rates more than climate
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Abstract

Wood decomposition is a major component of the global carbon cycle. Decomposi-

tion rates vary across climate gradients, which is thought to reflect the effects of

temperature and moisture on the metabolic kinetics of decomposers. However,

decomposition rates also vary with wood traits, which may reflect the influence of

stoichiometry on decomposer metabolism as well as geometry relating the surface

areas that decomposers colonize with the volumes they consume. In this paper, we

combined metabolic and geometric scaling theories to formalize hypotheses regard-

ing the drivers of wood decomposition rates, and assessed these hypotheses using a

global compilation of data on climate, wood traits, and wood decomposition rates.

Our results are consistent with predictions from both metabolic and geometric scal-

ing theories. Approximately half of the global variation in decomposition rates was

explained by wood traits (nitrogen content and diameter), whereas only a fifth was

explained by climate variables (air temperature, precipitation, and relative humidity).

These results indicate that global variation in wood decomposition rates is best

explained by stoichiometric and geometric wood traits. Our findings suggest that

inclusion of wood traits in global carbon cycle models can improve predictions of

carbon fluxes from wood decomposition.
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1 | INTRODUCTION

Forests contain ~360 Pg of carbon (C) in plant biomass, about 20%

of which is stored in dead wood (Pan et al., 2011). Dead wood

biomass is predicted to increase with more frequent and intense cli-

mate extremes and disturbances (e.g., deforestation, storms, drought,

heat waves, and fire) in the future (Pan et al., 2011; Reichstein et al.,

Received: 6 October 2017 | Revised: 22 April 2018 | Accepted: 14 May 2018

DOI: 10.1111/gcb.14357

Glob Change Biol. 2018;24:5259–5269. wileyonlinelibrary.com/journal/gcb © 2018 John Wiley & Sons Ltd | 5259

http://orcid.org/0000-0002-2038-9901
http://orcid.org/0000-0002-2038-9901
http://orcid.org/0000-0002-2038-9901
http://www.wileyonlinelibrary.com/journal/GCB


2013). Decomposition returns the C stored in dead wood to the

atmosphere via microbial respiration. Thus, wood decomposition

plays a critical role in regulating global C stocks and fluxes (Bradford

et al., 2014; Harmon et al., 1986; Hoppe et al., 2015). However, the

mechanisms driving global variation in decomposition rates are still

not fully understood (Cornwell et al., 2009; Harmon et al., 1986),

which makes it difficult to predict terrestrial C cycle feedbacks under

projected global change scenarios.

Most decomposition studies at broad spatial scales have viewed

climate as the primary control on decomposition rates (Berg et al.,

1993; Harmon et al., 1986; Moore et al., 1999), with wood traits

having only a secondary influence (Bradford, Berg, Maynard, Wieder,

& Wood, 2016; Harmon et al., 1986). However, the relative impor-

tance of climate variables and wood traits has been a subject of

recent debate (Cornwell et al., 2008, 2009; Zhu et al., 2017). Some

studies have shown that variation in decomposition rates were influ-

enced by stoichiometric, geometric, and structural wood traits (van

der Wal, de Boer, Smant, & van Veen, 2007; van Geffen, Poorter,

Sass‐Klaassen, van Logtestijn, & Cornelissen, 2010; Weedon et al.,

2009). It has also been suggested that the colonization of microor-

ganisms and wood nutrient content, rather than climate, explained

much of the variation in decomposition rates (Bradford et al., 2014;

Cornwell et al., 2008; Vitousek, Turner, Parton, & Sanford, 1994).

However, most studies have been conducted at plot or regional

scales, and thus considered relatively limited ranges of variation in

climate and wood traits. There is therefore a need to evaluate the

relative influence of climate and traits on global variation in wood

decomposition rates.

To evaluate the relative influences of these drivers, we combine

metabolic and geometric scaling theories to link hypothesized cli-

mate and trait drivers with wood decomposition rates (Supporting

Information Appendix S1), and assess the hypothesized relationships

using a global compilation of climate, wood trait, and decomposition

data (Supporting Information Appendix S2). Metabolic scaling theory

(MST) predicts that decomposition rates will vary with temperature

and elemental stoichiometry due to their influence on the biochemi-

cal kinetics of decomposition (Allen, Gillooly, & Brown, 2005; Brown,

Gillooly, Allen, Savage, & West, 2004; Follstad Shah et al., 2017).

Geometric scaling theory (GST) suggests that decomposition rates

will vary with wood size and shape due to the scaling of the surface

areas that decomposers colonize with the volumes that they con-

sume (McMahon & Kronauer, 1976; Niklas, 1994, 1995 ; Schmidt‐
Nielsen, 1984). Assuming the influences of these factors are multi-

plicative, variation in decomposition rates can be evaluated using a

single common expression:

k ¼ k1e
�E=kBTPαP hαh lαlasas eaρNαNDαD ; (1)

where the annualized wood decomposition rate k (year−1) has a

power‐law dependence on precipitation (P, mm), relative humidity (h,

dimensionless), length of the active season (las, day/year, sum of days

when daytime mean air temperature was >4°C; Pietikäinen, Pet-

tersson, & Bååth, 2005), wood nitrogen content (N, g N/g M), and

wood diameter (D, cm), with scaling exponents αP, αh, αh αlas , αN, and

αD, respectively (Supporting Information Table S1). GST and MST

predict that diameter‐scaling exponents for idealized wood geome-

tries will vary between −1 and −0.6 (Supporting Information

Appendix S1). Decomposition rates have an exponential dependence

on wood mass density (ρ, g/cm3) and a wood density coefficient (a,

cm3/g). The influence of temperature (T, K) is characterized by a

Boltzmann–Arrhenius relation with an apparent activation energy (E,

eV) and Boltzmann's constant (kB = 8.617 × 10−5 eV/K). Activation

energies of ~0.65 eV have been hypothesized based on the enzyme

kinetics of metabolism (Gillooly, Brown, West, Savage, & Charnov,

2001), whereas values of ~0.31–0.56 eV have been hypothesized

based on microbial ecoenzyme kinetics (extracellular enzymes not

enclosed within membranes of living cells; Sinsabaugh & Follstad

Shah, 2012; Wang, Post, Mayes, Frerichs, & Sindhu, 2012; Follstad

Shah et al., 2017). Finally, k1 (yearαlasþ1 mm�αP day�αlas cm�αD

gN�αN gMαN ) is a decomposition normalization constant. The formal-

izations of the above hypotheses in Equation (1) are consistent with

a “Fermi approach” for developing intentionally concise and efficient

“zeroth order” theory against which complexities can be later evalu-

ated (Harte, 2002; Marquet et al., 2014).

Although MST considers instantaneous rates, wood decomposi-

tion does not occur continuously through time at all sites across

the globe. As decomposition rate constants k are quantified at an

annual time resolution, their magnitudes are confounded by varia-

tion in active season length among study sites. By definition,

when all else is equal, sites with longer active seasons will have

larger values of k. We thus rewrite Equation (1) to give a more

instantaneous decomposition rate during the active season (k/las;

day−1), such that

k
las

¼ k2e
�E=kBTPαP hαheaρNαNDαD ; (2)

where k2 is another decomposition normalization constant

(day�1mm�αPgN�αNgMαNcm�αD ) that accounts for other potential dri-

vers that are not considered here (e.g., wood water content, wood

nutrient content, etc.).

Here we evaluate support for the hypotheses formalized in

Equations (1) and (2) using a new globally distributed dataset for cli-

mate, wood traits, and wood decomposition rates. These data fill the

climate space occupied by terrestrial woody plants across the world,

and thus span global ranges in both temperature and precipitation

(Figure 1a, b). Our objectives were to (a) assess the global activation

energy and diameter‐scaling exponent of wood decomposition and

(b) examine the relative importance of climate and wood traits on

wood decomposition rates.

2 | MATERIALS AND METHODS

2.1 | Data collection, compilation, and calculations

We searched the literature for decomposition rates of wood (defined

as woody plant tissues of any size including “twigs” and “fine woody
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debris”) using the ISI Web of Science database and the keywords

“(woody debris OR twigs) AND (decomposition OR decaying OR

processing)” (1900–2016). To avoid bias, papers meeting the follow-

ing criteria were selected: (a) decomposition of wood was measured

on the surface of the soil (not buried in the soil or hung in the air);

(b) either a decomposition rate constant or change in mass or wood

density over a known period of time was reported; and (c) wood

traits (initial wood N content, wood diameter, and wood density)

were recorded in the experiment. Papers that did not meet these

three criteria were excluded.

On the basis of the above criteria, we compiled a dataset that

consists of 191 observations from 83 sites and 142 tree species

(Supporting Information Appendix S2). These sites fill the climate

space occupied by terrestrial woody plants across the globe, and

thus span global ranges in both temperature and precipitation (Fig-

ure 1; Supporting Information Figure S1). Data were extracted from

the main text, tables, and/or digitized graphs of primary references.

Authors were contacted if it was clear that the desired data had

been collected but not reported in the paper. Information extracted

from each paper included location (i.e., latitude, longitude and coun-

try), study duration (including beginning and ending dates), species

names, the approach to quantifying decomposition (direct or

chronosequence), initial wood density, decomposition rate constant

or percent mass/density loss, and initial litter chemistry (% C, N, C/

N). We obtained decomposition rates as fitted k values, the decay

constant in the single negative exponential decay model (Equations

S1–S2 in Supporting Information Appendix S1, Olson, 1963). When

only mass‐ or density‐loss data were reported, we estimated k via

regression of Equation S1. For cases in which initial wood densities

were not provided (<15% of our dataset), we filled the data from

the Global Wood Density Database (Chave et al., 2009) based on

both tree species and location. For cases in which wood diameters

were not provided (<13% of our dataset), these data were imputed

via predictive mean matching (PMM) using the “mice” package in

the statistical software R 3.4.3 (R Core & Team, 2017).

Climate data for each site were obtained from the Twentieth

Century Reanalysis Project, a global one‐half degree resolution grid-

ded climate dataset (Compo et al., 2011). For each site where

decomposition data were available, we obtained climate time series

at a 3‐hr resolution based on bilinear interpolation. Climate data

were then truncated and averaged so they corresponded to the time

period when the decomposition experiments were conducted. This

helps minimize error arising from scale mismatch of data (Michaletz,

2018; Michaletz, Cheng, Kerkhoff, & Enquist, 2014; Michaletz, Ker-

khoff, & Enquist, 2018). Temperature, precipitation, and relative

humidity were calculated as both annual and active season values.

We defined the length of active season for wood decomposition as

the sum of days when mean daily air temperature was >4°C, as

microbial growth and enzyme activity almost ceases at air tempera-

tures <4°C (Pietikäinen et al., 2005). Mean annual temperature (°C)

was calculated as the 12‐month average of mean monthly air tem-

peratures, whereas microbial active season temperature (°C) was cal-

culated as the average across microbial active season days only.

Temperature was also expressed as the Boltzmann factor exponent

1/kBT, where kB is the Boltzmann constant (8.617 × 10−5 eVK−1)

and T is temperature (K). The Boltzmann factor exponent was also

calculated as annual and active season averages < 1/kBT > ma and <

1/kBT > as, respectively. Mean annual precipitation Pma (mm) was

taken as the 12‐month sum of mean monthly totals, mean annual

relative humidity hma (%) was taken as the mean of mean monthly

values, mean active season precipitation Pas (mm) was taken as the

sum of mean daily totals in the active season, and mean active sea-

son relative humidity has (%) was calculated as the mean of mean

daily values in the active season.

To explore global patterns of decomposition rates, we divided

tree species into different tree taxa and functional groups (an-

giosperms and gymnosperms), leaf life span (evergreen and decidu-

ous), and divided the globe into different regions (tropical,

temperate, and boreal regions). The tropical region was defined

between 23.5°S–23.5°N; the temperate region was 23.5° N–50° N

and 23.5° S–50° S; and the boreal region was 50°N–66.5°N (Spurr &

Barnes, 1980).

2.2 | Statistical analyses

We used three distinct analyses to evaluate the hypotheses in Equa-

tions (1) and (2). First, consistent with many previous studies (Berg

et al., 1993; Harmon et al., 1986; Moore et al., 1999), we used

bivariate ordinary least squares (OLS) regression to characterize rela-

tionships between annual decomposition rates k and each covariate

in Equation (1). As an additional test, we used orthogonal distance

regression (ODR), which minimizes residual variation in both the x‐
and y‐dimensions and is less biased than OLS in estimates of the

functional relationship between two variables subject to error (War-

ton, Wright, Falster, & Westoby, 2006). We fitted ODR using the

package “pracma” in R. Results of bivariate analyses can be com-

pared directly to those of previous studies. However, as they do not

account for correlated variation among independent variables, we

cannot draw firm conclusions regarding the correct strength of these

relationships and the relative importance of hypothesized drivers.

Second, to evaluate the relative importance of each hypothesized

driver while accounting for correlated variation among all covariates,

we used multiple regression to fit Equation (1) to data for annual

decomposition rate constant (k) and fit Equation (2) to data for

active season decomposition rates (k/las) and climate variables. Active

season data are more appropriate than annual data for evaluating

the metabolic kinetics of decomposition, as they consider only the

time periods during which decomposition actually occurs, and thus

better correspond to predictions of MST for instantaneous rates

(Michaletz et al., 2018). Functional forms for precipitation‐, relative
humidity‐, wood N‐, and wood density‐dependence of k in Equation

(1) were assessed using partial residual plots (Supporting Information

Table S1) obtained using crPlots() from the R package “car.” To eval-

uate potential collinearity problems that may arise from relationships

between model covariates (Ryan, 1997), we calculated variance–in-
flation factors (VIFs) for each covariate in each model using vif() from
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the package “car” in R. VIFs for all covariates were lower than 4

(Supporting Information Table S2), far less than the threshold of 10

above which collinearity may adversely affect regression results

(Dormann et al., 2013; Ryan, 1997). As k/las and < 1/kBT > as are

nonindependent, their shared term las may give rise to spurious cor-

relations (Brett, 2004), but this was not observed in our data (Sup-

porting Information Table S3). Partial regression statistics were

obtained using modelEffectSizes() from the R package “lmSupport,”
and partial regression plots were prepared with data from avPlots()

of the “car” package. Partial regression plots show the correct

strength of the relationship between the dependent variable and

each independent variable while controlling for the influence of all

other independent variables included in the model; plotted variables

are residuals, so the slope and variance equal the partial estimates

from the multiple regression model.

Multiple regression analyses were performed on 191 data points

from 83 sites, where 37 sites (45% of all sites) included two or more

data points. In these cases, multiple observations within sites had

the same climate data but different wood trait data, which may bias

results to reflect variation in traits rather than climate. To evaluate

the potential impact of this on our results, we re‐ran multiple regres-

sions after randomly selecting one wood sample from each site, and

repeated this process 500 times. As a further test, we used classifi-

cation and regression trees (CART) to examine the relationships

between wood decomposition rates, climate variables, and wood

traits for the entire set of 191 data points using the packages

“rpart” and “rpart.plot” in R. The ANOVA method was used to

divide the data into progressively smaller groups that maximized

homogeneity within the groups while minimizing the residual vari-

ance. The model was fitted using the one standard error rule and

then pruned to minimize the estimated error (De’ath & Fabricius,

2000).

Third, we used linear mixed‐effects models (LMMs) to assess the

relative importance of wood traits and climate variables on decompo-

sition rates. LMMs are appropriate for macroecological datasets that

comprise multiple observations from the same site and the same spe-

cies, as in our dataset. The complete model (Equation (2)) was fitted to

the entire database as well as data subsets (i.e., angiosperms versus

gymnosperms; deciduous versus evergreen; tropical regions versus

temperate regions) using LMM from the R package “lme4.” The first

step in our analysis was to select the form of the variables. Based on

partial residual results (Supporting Information Table S1), temperature,

wood density, and wood diameter were best characterized as expo-

nential functions, whereas precipitation, relative humidity, and wood

N were best characterized by power laws. Then variables were

selected for the lowest AIC score when evaluated as a single explana-

tory variable for wood decomposition rates. We constructed LMMs

that included one to all six of the explanatory variables and used low-

est AIC to determine which model structure to retain (Supporting

Information Table S4). Both spatial location (i.e., actual site) and tree

F IGURE 1 Variation in wood decomposition rates at 191 sites spanning global climate gradients. (a) Geographical distribution of the sites
where data were available in forest distribution map (Crowther et al., 2015). (b) Variation in annualized wood decomposition rates (k, year−1) in
relation to mean annual temperature and mean annual precipitation. All major terrestrial plant biomes are shown (Whittaker, 1970). Circle size
and color represent classes of decomposition rates. (c) Correlations between annualized wood decomposition rates (k, year−1) and variables of
climate and wood traits by multiple regression. Positive correlations are displayed in blue and negative correlations in red color. Color intensity
and the size of the circle are proportional to the correlation coefficients. Variable names: k, wood decomposition rate (year−1); N, wood N
content (g N/g M); D, wood diameter (cm); ρ, wood mass density (g/cm3); <1/kBT > ma, averaged annual temperature (eV−1); Pma, mean annual
precipitation (mm); hma, mean annual relative humidity (%); las, length of the active season (d); <1/kBT > as, averaged active season temperature
(eV−1); Pas, active season precipitation (mm); and has, active season relative humidity (%)
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species (i.e., individual species) were used as random (intercept) terms

in LMMs, as our dataset contains multiple observations for some sites

and species. To examine the relative effect size (defined here as the

parameter estimate and confidence interval obtained from the LMM)

of each predictor on decomposition rate, each predictor variable was

Z‐score transformed. These transformed data were then used in the

LMM analyses, which gave the parameter estimates. In addition, we

used two sets of LMMs to assess the relative importance of climate

and wood traits on decomposition rates. First, we compared the r2 val-

ues of submodels that include only climate (temperature, precipitation,

and relative humidity) or traits (wood N, diameter, and density) to eval-

uate their relative importance (circle areas in Figure 3b). Second, we

used the difference in r2 values of the full model and the submodels to

consider the combined effects of climate and traits on decomposition

rates (areas in circles that were not overlaid with other circles in Fig-

ure 3b). We then compared r2 values and AIC scores in LMMs with all

fixed effects and LMMs with only climate or wood traits for the entire

database and subdatabase (Supporting Information Table S5). We cal-

culated r2 values to estimate variance explained by the explanatory

variables for the minimally adequate LMMs, which follows Nakagawa

and Schielzeth (2013) to retain the random effects structure. On the

basis of this method, we calculated the r2 values for each significant

explanatory variable to represent relationships on the multivariate

model.

3 | RESULTS

Three sets of analyses were consistent with expectations from

metabolic scaling theory (MST) and geometric scaling theory (GST),

showing that wood traits (not climate) were the strongest statistical

predictors of global variation in wood decomposition rates. First,

bivariate ordinary least squares regression (OLS) and orthogonal dis-

tance regression (ODR) suggested that both climate variables and

wood traits were important predictors of global variation in annual-

ized decomposition rates (Figure 1c and Supporting Information Fig-

ure S3; Table 1 and Supporting Information Table S6). Wood

decomposition rates increased exponentially with average active

season temperature < 1/kBT > as (r2 = 0.31, p = 2.00 × 10−16). The

estimated activation energy E was 0.68 eV, with a 95% confidence

interval (95% CI) of 0.54−0.83 (Table 1) that included the value of

0.65 eV hypothesized for respiration (Allen et al., 2005; Brown

et al., 2004), but excluded the range of ~0.31–0.56 eV hypothesized

for kinetics of microbial ecoenzymes (Follstad Shah et al., 2017;

Sinsabaugh & Follstad Shah, 2012; Wang et al., 2012). Some of the

variation in wood decomposition rates was explained by active sea-

son length (r2 = 0.16, p = 6.72 × 10−9) and the active season rela-

tive humidity (r2 = 0.07, p = 2.01 × 10−3), whereas almost none of

the variation was explained by the active season precipitation

(r2 = 0.03, p = 0.05). Wood traits were generally stronger predictors

of decomposition rates, which increased with wood N content

(r2 = 0.40, p = 2.00 × 10−16) and wood density (r2 = 0.09,

p = 2.27 × 10−5), and decreased with wood diameter (r2 = 0.18,

p = 1.171 × 10−9).

Second, multiple regression models (Figure 2 and Supporting

Information Table S3; the same general results were obtained for

annual data in Supporting Information Figure S4) showed that most

of the explained variation in wood decomposition rates (full model

adjusted r2 = 0.59) was accounted for by two wood traits: N content

(partial r2 = 0.25; Figure 2d) and diameter (partial r2 = 0.20; Fig-

ure 2e). In contrast to bivariate analyses (Figure 1c; Supporting Infor-

mation Figure S3), average active season temperature < 1/kBT > as

(partial r2 = 0.09; Figure 2a) and relative humidity (partial r2 = 0.07;

Figure 2c) accounted for only minor amounts of the explained varia-

tion in decomposition rates, whereas active season precipitation

(partial r2 = 0.00; Figure 2b) and wood density (partial r2 = 0.00; Fig-

ure 2f) accounted for none of the explained variation. The estimated

activation energy of E = 0.30 eV (Supporting Information Table S3)

had a 95% CI of 0.16−0.43 that excluded the value of 0.65 eV

hypothesized for respiration (Allen et al., 2005; Brown et al., 2004)

but were more consistent with the range ~0.31–0.56 eV for micro-

bial ecoenzyme kinetics (Follstad Shah et al., 2017; Sinsabaugh &

Follstad Shah, 2012; Wang et al., 2012). The diameter‐scaling expo-

nent (αD) was estimated as −0.35 with a 95% CI of −0.45 to −0.25

that did not include the values predicted by GST and MST for ideal-

ized wood geometries. The same general conclusions were obtained

from 500 multiple regressions based on randomly selecting a single

wood sample for each site, showing that these results were not an

artifact of having multiple observations within some sites (Supporting

Information Figure S5). Regression tree analyses also identified wood

N as the most important driver of decomposition rates (Supporting

Information Figure S6).

Third, linear mixed‐effects models (LMM) also showed that wood

traits were better predictors of variation in decomposition rates than

climate variables (Figure 3). In contrast to multiple regression, LMMs

did not assume independence among observations, so it was more

appropriate for datasets with multiple observations from a single site

(as was the case for some of our data). Wood traits (N content,

diameter, and density) explained 49% of the variation in global nor-

malized decomposition rates, whereas climate variables (temperature,

humidity, and precipitation) explained only 21% (Figure 3b). Wood

decomposition rates increased with N content and decreased with

diameter (Figure 3a). These same general results were obtained for

various subsets of taxa (Supporting Information Figure S7), leaf life

spans (Supporting Information Figure S8) and climate regions (Sup-

porting Information Figure S9).

In summary, estimated coefficients (exponents and activation

energies) varied between bivariate (OLS) and multivariate (multiple

regression and LMM) regression approaches (Table 1). However,

results from multiple regression and LMM were statistically indistin-

guishable, and better characterized the correct relationship between

decomposition rates and each covariate as they controlled out the

influence of other covariates. All analyses (Table 1) were consistent

in suggesting that wood traits were stronger predictors of global

variation in wood decomposition rates than climate variables. Wood

N was the most important variable on controlling decomposition

rates in three sets of analyses.
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4 | DISCUSSION

Global variation in wood decomposition rates was consistent with

predictions from both MST and GST. The activation energy of

E = 0.68 eV (Table 1; 95% CI = 0.54−0.83) estimated with bivariate

regression included the value of 0.65 eV hypothesized for respiration

(Allen et al., 2005; Brown et al., 2004). While using multiple linear

regression to fit Equation (2) to active season decomposition rates

(k/las) and driver variables (Figure 2 and Supporting Information

Table S4), the estimated activation energy of E = 0.30 eV (95% CI =

0.16−0.43) was significantly lower than the value of 0.65 eV (Allen

et al., 2005; Brown et al., 2004), but largely overlapped with the

range of E = 0.31–0.56 eV hypothesized for extracellular enzymes

important for the acquisition of N and P and the degradation of cel-

lulose and lignin (Follstad Shah et al., 2017; Sinsabaugh & Follstad

Shah, 2012; Wang et al., 2012). As bivariate analyses did not

account for the correlated variation among independent variables,

we drew firm conclusions regarding the correct strength of these

relations and the relative importance of the hypothesized drivers

with multiple regression. This implies that rate‐limiting reactions in

wood decomposition may be constrained by stoichiometric imbal-

ance, low moisture availability and activation energies of key

enzymes for the degradation of macromolecular constituents such as

lignin and cellulose (Cornwell et al., 2009; Hu et al., 2017).

Diameter‐scaling exponents were also consistent with predictions

based on the idealized wood particle geometries from four scaling

models: geometric similarity theory (Niklas, 1995), elastic similarity

theory (McMahon & Kronauer, 1976; Niklas, 1995), stress similarity

theory (Niklas, 1995), and the West‐Brown‐Enquist (West, Brown, &

Enquist, 1999) network theory. These predictions originate from dif-

ferent optimality theories for length‐to‐diameter geometry in woody

plant stems and branches. It is important to consider these various

idealizations as length‐to‐diameter geometries vary spatially (Bertram,

1989) and temporally (Niklas, 1995) within individuals, reflecting spa-

tial and temporal variation in constraints on scaling of plant form

and function. In our study, the diameter‐scaling exponent (αD) was

estimated as −0.35, which was significantly lower than GST and

MST predictions for idealized wood geometries that ranged between

−1 and −0.6 (see Supporting Information Appendix S1). These

differences arose because broken, decomposing wood particles were

shorter than that expected for idealized geometries, meaning that

the scaling of length with diameter departs from idealized optimality

assumptions. For example, if wood particle length scales with the ¼

power of diameter, then k/las will scale with the −0.34 power of

diameter, which is approximately equal to our empirically fitted value

of αD = −0.35 (Supporting Information Appendix S1).

Our bivariate and multiple regression results showed that wood

traits were better predictors of global variation in decomposition

rates than climate variables (Figures 1c, 2 and 3). Wood traits

explained more than twice as much variation in decomposition rates

than did climate (Figure 3b). Furthermore, wood N content and

diameter (not temperature or precipitation) were the most important

drivers of decomposition rates (Figures 2 and 3a). This suggests the

traditional view of climate as the dominant driver of decomposition

at broad spatial scales may be an artifact of plot‐ or regional‐scale
analyses based on relatively limited ranges of climate variables and

wood traits. Bradford et al. (2014) suggested that local‐scale controls

should be the primary control on C dynamics of decaying wood in

response to environmental change. Similarly, Zhu et al. (2017) found

that traits rather than climate variables were the optimal factors for

predicting C stocks and fluxes of dead organic matter. Wood traits

involved in C quality and nutrient availability strongly influence

microbial community on decomposition processes (Manning, Rose-

mond, Gulis, Benstead, & Kominoski, 2018; van der Wal et al.,

2007). These traits also influence how microbial community compo-

sition might respond to changes in the environment (e.g., warming

and drought; Lavorel & Garnier, 2002; Matulich & Martiny, 2015),

whereas microbial taxa determine microbial decay capacity and

decomposition rates (Hu et al., 2017). Therefore, wood traits may

play a dominant role in determining the microbial taxa for wood

decomposition across global climate gradients.

Wood N content and diameter were the most important traits

controlling global normalized decomposition rates (Figures 2, 3). N is

expected to limit decomposition because degradative enzymes

needed N‐rich conditions (C:N ratios is ~ 3:1) for wood decay (Ster-

ner & Elser, 2002), whereas C:N ratios in wood were much higher

(most between 200 and 1,200:1). Low N availability of wood may

TABLE 1 Coefficients, 95% confidence interval (95% CI), and r2 values for ordinary least squares regression models, multiple regression
models, and linear mixed‐effects models for global wood decomposition rates

Variables

OLS Multiple regression LMM

Coefficient 95% CI r2 Coefficient 95% CI r2 Coefficient 95% CI r2

<1/kBT > as −0.68 −0.83 to −0.54 0.31 −0.30 −0.43 to −0.16 0.09 −0.27 −0.34 to −0.10 0.18

Pas 0.31 0.00 to 0.61 0.02 −0.10 −0.33 to 0.13 0.00 −0.07 −0.09 to 0.15 0.00

has −1.72 −2.61 to −0.82 0.07 −1.21 −1.87 to −0.55 0.07 −1.13 −0.29 to −0.05 0.11

las 1.27 0.86 to 1.69 0.16 – – – – – –

N 0.79 0.65 to 0.93 0.40 0.50 0.37 to 0.62 0.25 0.48 0.28 to 0.48 0.37

D −0.45 −0.59 to −0.31 0.18 −0.35 −0.45 to 0.25 0.20 −0.37 −0.44 to 0.24 0.29

ρ 2.22 1.21 to 3.23 0.09 −0.27 −0.96 to 0.43 0.00 −0.31 −0.15 to 0.05 0.00

5264 | HU ET AL.



divert microbial energy investment away from lignocellulase synthe-

sis and toward N acquisition (Sinsabaugh, Hill, & Follstad Shah,

2009). Microbial composition has also been observed to interact

more strongly with changing N availability and less with changing

moisture or temperature (Matulich & Martiny, 2015), indicating N

availability was more important than temperature for wood decom-

position rates. The size effect on wood decomposition (i.e., large‐di-
ameter wood decompose more slowly than small‐diameter wood) is

F IGURE 2 Partial regression plots illustrating relationships between active season wood decomposition rates and individual covariates from
Equation (2) at 191 globally distributed sites. Plots show the relation (slope and variance) between decomposition rates and each covariate
while controlling for the influence of all other model covariates. (a) Mean active season temperature; (b) Mean active season precipitation; c,
Mean active season relative humidity; (d) Wood N content; (e) Wood diameter; (f) Wood density; (e) mathematical constant (~2.718). ** and
*** indicate significant correlation between wood decomposition rates and the corresponding variable at p < 0.01 and p < 0.001, respectively.
There were no significant linear relationships between active season decomposition rate and active season precipitation, and wood density

F IGURE 3 Relative importance of climate and wood traits on controlling global wood decomposition rates (n = 191). (a) Model‐averaged
effect size of the predictors on active season wood decomposition rates (based on Z‐scores with linear mixed‐effects models) at the global
scale. (b) Percentage of variations in active season decomposition rates explained by climate, wood traits, and both climate and wood traits at
the global scale. Points denote average estimates, and lines denote 95% confidence intervals. Filled circles indicate significance at p < 0.05.
Climate variables in skyblue; wood traits in green
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a logical consequence of a decrease in surface area to volume ratio

with an increase in diameter (van Geffen et al., 2010), which affects

microbial and macrodecomposer accessibility to the substrate (Corn-

well et al., 2009; van der Wal et al., 2007). In addition, heartwood is

usually the most decay resistant component and its proportion

increases with wood diameter (Harmon et al., 1986), and moisture

content and water flux in the substrate decreases with wood diame-

ter (Cornwell et al., 2009), so the overall decay rate should decrease

with wood size. In our study, wood density was an unimportant trait

for predicting variations in decomposition rates, which was consis-

tent with the finding from Weedon et al. (2009), who suggested that

wood chemistry drove differences in decomposition rates between

gymnosperms and angiosperms rather than wood density.

As was the case with many global datasets (Follstad Shah et al.,

2017; Michaletz et al., 2018; Weedon et al., 2009), our data are

heavily biased toward temperate regions, whereas tropical regions

were underrepresented relative to their importance for the global C

cycle (Malhi, Doughty, & Galbraith, 2011; Taylor et al., 2017).

Although the majority of our sites were located in a relatively small

proportion of the total land area on earth (North America, East Asia,

and Europe; Figure 1a), the sites did fill the climate space occupied

by terrestrial woody plants, and thus spanned global ranges in both

temperature and precipitation (Figure 1b). Indeed, for these sites,

MAT varied from − 4.5 to 27.2°C, and MAP ranged between 354

and 4,005 mm, which covered most forest distribution areas in the

world (Supporting Information Figure S1). The range of temperature

and precipitation across our study sites was comparable to many

other global surveys for plants, animals, and phytoplankton, and are

broad enough to characterize general patterns of climate effects on

ecological communities (Zhou et al., 2017). Nevertheless, our conclu-

sions should be re‐evaluated in future studies that used large, high‐
quality observational, and experimental datasets.

Understanding wood decomposition rates under global change is

important for modeling the C cycle feedbacks to climate (Bradford

et al., 2014; Cornwell et al., 2009). Our work based on both MST

and GST highlights the importance of wood traits for wood decom-

position across global climate gradients. This challenges the conven-

tional view that climate is the dominant driver of decomposition

rates at broad spatial scales. This perspective provides the basis for

parameterization of most Earth system models (Oleson et al., 2013).

If the wood traits such as N or size change under future climates,

Earth system models that are parameterized with climate–decompo-

sition relationships only can lead to decomposition rate projections

that substantively differ from models that explicitly consider the

potential changes in wood traits. Our study suggests that current

wood decomposition models can be substantially improved by incor-

porating relationships between traits such as resources and physical

property in wood and wood decomposition rates in combination

with climate factors.

Wood traits have already been shown to be useful parameters in

decomposition models (Cornwell et al., 2009). For example, the use

of wood chemical composition, especially lignin to N ratio, as a crite-

rion for dividing the material into soil organic C pools with different

decay rates seems to be a good approach in temperate and boreal

ecosystems (Cornwell et al., 2009). In our study, because wood N

content is the most important trait controlling global decomposition

rates (Figures 2, 3), we suggest that difference of initial wood nutri-

ent concentrations related with tree taxa can be incorporated in

models based on the biochemical kinetics of decomposition (Allen

et al., 2005; Follstad Shah et al., 2017; Sinsabaugh & Follstad Shah,

2012). This would enable the models to represent the known trait‐
based differences in wood decay rates that are probably not related

to temperature and moisture (Zell, Kändler, & Hanewinkel, 2009).

Our analyses suggest wood diameter is the second most important

trait influencing decomposition rates (Figures 2, 3), which reduces

the surface area to volume ratio governing microbial decomposition

rates. Wood size is not included in most decomposition models (e.g.,

CLM 4.5 (Oleson et al., 2013) and CENTURY (Parton, Stewart, &

Cole, 1988), but see LPJ (Smith, Prentice, & Sykes, 2001)) based on

the “big leaf” approximation. The development of next generation of

demographic models (Fisher et al., 2018) allows explicit representa-

tion of tree size and thus more explicit simulation of size impact on

wood decomposition. Finally, we want to point out that, by fitting

models derived from physicochemical processes to observations col-

lected over environmental gradients, we can potentially inform

parameter values that control wood decomposition rate in global

wood decomposition models.

In conclusion, our study combined MST and GST to link multiple

hypothesized drivers to global variations in wood decomposition

rates. Using multiple approaches to fit our theory to data spanning

global climate gradients, we have shown that global variation in

wood decomposition was consistent with predictions from both

MST and GST. Our compiled data conformed to power laws as pre-

dicted by both theories. Additionally, multiple regression and mixed

model estimates of the activation energies for wood decomposition

were statistically indistinguishable from expectations for the kinetics

of extracellular enzymes that are important for microbial decomposi-

tion. Furthermore, diameter‐scaling exponents estimated using three

regression approaches were all consistent with how the scaling of

length with diameter in decomposing wood particles departs from

idealized optimality assumptions. We have also shown that wood

traits were stronger predictors of variation in wood decomposition

rates than climate variables. Diameter and wood N content were the

most important traits controlling global normalized decomposition

rates. Specifically, wood diameter influenced the relationship

between the surface area on which microbial decomposers reside to

the volume of the wood that they consume, resulting in a decrease

in decomposition rates with wood diameter (Cornwell et al., 2009;

van der Wal et al., 2007; van Geffen et al., 2010). The importance of

wood N potentially originates from the relatively low nutrient avail-

ability of most dead wood. The observed increase in wood decom-

position rates with N content has important implications for

assessing effects of N deposition on wood decomposition rates.

Although wood traits are key drivers of variation in decomposition

rates, they are not included in most Earth system models, and most

models have only one single coarse wood debris pool for wood
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decomposition (e.g., the Community Land Model; Oleson et al.,

2013). Our results suggest that inclusion of wood traits in these

models will improve global change predictions.
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