2023 5 34 5 http: //www.cjae.net
Chinese Journal of Applied Ecology May 2023 34(5): 1161-1168 DOI: 10.13287/j.1001-9332.202305.019

2023 34
(5): 1161-1168
Wang F' Lu YS Zhang ZC et al. Altitudinal variations and seasonal dynamics of near-surface and soil temperatures in subtropical
forests of Mt. Guanshan Jiangxi Province China. Chinese Journal of Applied Ecology 2023 34(5): 1161-1168

(! 200241; 2 332900; °
336000; * 400045: °
330045)
° 300~ 1300 m
12 2018 9 —2021 8 ( 15 cm) ( 8 cm)
. . 0.38.0.31.0.51 °C * (100 m) "'
0.40.0.38.0.42 °C - (100 m) ~';
=5<C 163 179 °C +d - (100 m) ™'
=5<C 15d o

Altitudinal variations and seasonal dynamics of near-surface and soil temperatures in subtropical forests of
Mt. Guanshan Jiangxi Province China. WANG Fang' LU Yaoshun' ZHANG Zhaochen® CHEN Lin’
YANG Yongchuan® ZHANG Hongwei' WANG Xiaoran' SHU Li' SHANG Xiaofan' LIU Pengcheng' YANG
Qingpei’® ZHANG Jian'" (' School of Ecological and Environmental Sciences East China Normal University
Shanghai 200241  China;, *Lushan Botanical Garden Chinese Academy of Sciences Jiujiang 332900 Jiangxi
China; *Administration of Jiangxi Guanshan National Nature Reserve Yichun 336000 Jiangxi China; 4Ministry of
Education Key Laboratory of the Three Gorges Reservoir Region’ s Eco-fnvironment Chongqing University
Chongqing 400045 China; ° Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization
Jiangxi Agricultural University Nanchang 330045 China) .

Abstract: Temperature lapse rate ( TLR) measured as the degree of temperature change along an altitudinal gra—
dient is a key indicator of multiple ecological processes of mountain systems. Although many studies have examined
temperature changes of open air or near-surface along altitudes we know little about altitudinal variations of soil
temperature which play an important role in regulating growth and reproduction of organisms as well as ecosystem
nutrient cycling. Based on temperature data of near-surface ( 15 cm above ground) and soil layers ( 8 cm below
eround) from 12 sampling sites of subtropical forest along an altitudinal gradient ( 300—-1300 m) in Jiangxi Guan—
shan National Nature Reserve from September 2018 to August 2021 we calculated the lapse rates of mean maxi—
mum and minimum temperatures as well as accumulated temperatures by using simple linear regression for both

near-surface and soil temperature. The seasonal dynamics of aforementioned variables were also evaluated. The
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results showed that there were large differences among mean maximum and minimum lapse rates for annual near—
surface temperature which were 0.38 0.31 and 0.51 °C + (100 m) ' respectively. But little variation was docu—
mented for soil temperature which were 0.40 0.38 and 0.42 °C -+ (100 m) ~' respectively. The seasonal variations
of temperature lapse rates for near-surface and soil layers were minor except for minimum temperature. The lapse
rates of minimum temperature were deeper in spring and winter for near-surface and in spring and autumn for soil
layers. For growing degree days ( GDD) the accumulated temperature under both layers were negatively correlated
with altitude and the lapse rates of =5 °C were 163 °C * d + (100 m) ~' for near-surface and 179 °C « d *
(100 m) 7' for soil. The =5 °C GDD in soil were about 15 days longer than that in near-surface at the same alti—
tude. The results showed inconsistent patterns of altitudinal variations between near-surface and soil temperature.
Soil temperature and its lapse rates had minor seasonal variations compared with the near-surface counterparts
which was related to the strong buffering capacity of soil.

Key words: forest microclimate; temperature lapse rate; seasonal dynamics; evergreen broad-eaved forest; altitu—

dinal gradient.
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Fig.2 Monthly mean temperatures of near-surface and soil at the altitudes of 300 and 1300 m.
I: Soil; 1I: Near-surface. The same below.
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Fig.5 Monthly variation of near-surface and soil in the lapse

rates of maximum temperature and minimum temperature.
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